Potassium Increases Nitrogen and Potassium Utilization Efficiency and Yield in Foxtail Millet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Experimental Design
2.3. Biomass
2.4. Plant N and K Concentration
2.5. Enzyme Extraction and Analysis
2.6. Yield
2.7. Calculation Formulae for Relevant Parameters
2.8. Statistical Analysis
3. Results
3.1. Potassium Promoted Dry Matter Accumulation in Foxtail Millet
3.2. Potassium Application Increased K and N Concentrations in Foxtail Millet
3.3. Potassium Fertilization Improved K and N Accumulation in Foxtail Millet Plants
3.4. Potassium Improves the Activity of Enzymes Related to N Metabolism in Millet
3.5. Potassium Application Improves Millet Nutrient Utilization Efficiency and Grain Yield
3.6. Effects of N and K Accumulation, and DM Accumulation on Millet Yield
4. Discussion
4.1. Potassium Fertilization Promoted Dry Matter Accumulation
4.2. Potassium Application Improves N and K Utilization Efficiency
4.3. Effects of N and K Accumulation and Dry Matter Accumulation on Yield
4.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Moller, I.S.; White, P. Chapter 6—Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–189. [Google Scholar]
- Hu, W.; Zhao, W.Q.; Yang, J.S.; Oosterhuis Derrick, M.; Loka Dimitra, A.; Zhou, Z.G. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiol. Bioch. 2016, 101, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita, F.M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Xu, X.X.; Wang, F.; Xing, Y.; Liu, J.Q.; Lv, M.X.; Meng, H.; Du, X.; Zhu, Z.L.; Ge, S.F.; Jiang, Y.M. Appropriate and Constant Potassium Supply Promotes the Growth of M9T337 Apple Rootstocks by Regulating Endogenous Hormones and Carbon and Nitrogen Metabolism. Front. Plant Sci. 2022, 13, 827478. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture–Status and perspectives. J. Plant Physiol. 2014, 2014, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ Nutrition in Plants. Front. Plant Sci. 2019, 10, 281. [Google Scholar] [CrossRef]
- Li, K.-L.; Tang, R.-J.; Wang, C.; Luan, S. Potassium nutrient status drives posttranslational regulation of a low-K response network in Arabidopsis. Nat. Commun. 2023, 14, 360. [Google Scholar] [CrossRef]
- Wang, X.W.; Hu, W.H.; Ning, X.L.; Wei, W.W.; Tang, Y.J.; Gu, Y. Effects of potassium fertilizer and straw on maize yield, potassium utilization efficiency and soil potassium balance. Arch. Agron. Soil Sci. 2022, 69, 679–692. [Google Scholar] [CrossRef]
- Pal, Y.; Gilkes, R.J.; Wong, M.T.F. Soil factors affecting the availability of potassium to plants for Western Australian soils: A glasshouse study. Soil Res. 2001, 39, 611–625. [Google Scholar] [CrossRef]
- Hoa, N.M.; Janssen, B.H.; Oenema, O.; Dobermann, A. Potassium budgets in rice cropping systems with annual flooding in the Mekong River Delta. Better Crops Plant Food. 2006, 90, 25–29. [Google Scholar]
- Yang, X.E.; Liu, J.X.; Wang, W.M.; Ye, Z.Q.; Luo, A.C. Potassium Internal Use Efficiency Relative to Growth Vigor, Potassium Distribution, and Carbohydrate Allocation in Rice Genotypes. J. Plant Nutr. 2004, 27, 837–852. [Google Scholar] [CrossRef]
- DU, Q.; Zhao, X.-H.; Xia, L.; Jiang, C.-J.; Wang, X.-G.; Han, Y.; Wang, J.; Yu, H.-Q. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J. Integr. Agric. 2019, 18, 395–406. [Google Scholar] [CrossRef]
- Ghulam, H.A.; Javaid, A.; Rafiq, A.; Moazzam, J.; Muhammad Anwar-ul-Haq Shafaqat, A.; Muhammad, I. Potassium application mitigates salt stress differently at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul. 2015, 76, 111–125. [Google Scholar]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed]
- Rufty, T.W.; Jackson, W.A.; Raper, C.D. Nitrate Reduction in Roots as Affected by the Presence of Potassium and by Flux of Nitrate through the Roots. Plant Physiol. 1981, 68, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.M.; Romero, L. Relationship between potassium fertilisation and nitrate assimilation in leaves and fruits of cucumber (Cucumis sativus) plants. Ann. Appl. Biol. 2002, 140, 241–245. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, A.; Xin, X.; Yang, W.; Zhang, J.; Ding, S. Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. Field Crop. Res. 2018, 221, 157–165. [Google Scholar] [CrossRef]
- Zhiipao, R.R.; Pooniya, V.; Biswakarma, N.; Kumar, D.; Shivay, Y.S.; Dass, A.; Mukri, G.; Lakhena, K.K.; Pandey, R.K.; Bhatia, A.; et al. Timely sown maize hybrids improve the post-anthesis dry matter accumulation, nutrient acquisition and crop productivity. Sci. Rep. 2023, 13, 1688. [Google Scholar] [CrossRef]
- Rengel, Z.; Damon, P.M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008, 133, 624–636. [Google Scholar] [CrossRef]
- Wu, G.L.; Guo, L.Y.; Cui, Z.Y.; Li, Y.; Yin, Y.P.; Wang, Z.L.; Jiang, G.M. Differential effects of nitrogen managements on nitrogen, dry matter accumulation and transportation in late-sowing winter wheat. Actaecologicasinica 2012, 32, 5128–5137. [Google Scholar]
- Gu, S.L.; Ma, J.P. Accumulation and distribution rule of dry materials and its contribution to foxtail millet yield. Acta Agric. Boreali Sin. 2002, 2, 30–35. [Google Scholar]
- Yang, L.S.; Zhang, Y.T.; Yang, L.Q.; Xie, J.; Yang, M.; Zhang, Y.Q.; Shi, X.J. Effects of different nitrogen and potassium rates on dry matter accumulation, transport and yield of rice. Soil Fert. Sci. China 2019, 4, 89–95. [Google Scholar]
- Song, J.; Wang, S.X.; Li, L.; Huang, J.L.; Zhao, B.; Zhang, J.W.; Ren, B.Z.; Liu, P. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.). Acta. Agron. Sin. 2023, 49, 539–551. [Google Scholar]
- Sharma, S.; Kaur, G.; Singh, P.; Alamri, S.; Kumar, R.; Siddiqui, M.H. Nitrogen and potassium application effects on productivity, profitability and nutrient use efficiency of irrigated wheat (Triticum aestivum L.). PLoS ONE 2022, 17, e0264210. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhao, K.; Ma, J.; Huang, L.; Zhuang, H. Post-Anthesis Nitrogen Dynamic Models and Characteristics of Rice Combined with Sowing Date and Nitrogen Application Rate. Sustainability 2022, 14, 4956. [Google Scholar] [CrossRef]
- Seabra, A.R.; Silva, L.S.; Carvalho, H.G. Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol. 2013, 13, 137. [Google Scholar] [CrossRef] [PubMed]
- Ahanger, M.A.; Qi, M.; Huang, Z.; Xu, X.; Begum, N.; Qin, C.; Zhang, C.; Ahmad, N.; Mustafa, N.S.; Ashraf, M.; et al. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicol. Environ. Saf. 2021, 216, 112195. [Google Scholar] [CrossRef]
- Hu, W.; Jiang, N.; Yang, J.S.; Meng, Y.L.; Wang, Y.H.; Chen, B.L.; Zhao, W.Q.; Oosterhuis Derrick, M.; Zhou, Z.G. Potassium (K) supply affects K accumulation and photosynthetic physiology in two cotton (Gossypium hirsutum L.) cultivars with different K sensitivities. Field Crops Res. 2016, 196, 51–63. [Google Scholar] [CrossRef]
- Hu, W.; Lu, Z.; Gu, H.; Ye, X.; Li, X.; Cong, R.; Ren, T.; Lu, J. Potassium availability influences the mesophyll structure to coordinate the conductance of CO2 and H2O during leaf expansion. Plant Cell Environ. 2022, 45, 2987–3000. [Google Scholar] [CrossRef]
- Wang, D.R.; Wolfrum, E.J.; Virk, P.; Ismail, A.; Greenberg, A.J.; McCouch, S.R. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice. J. Exp. Bot. 2016, 67, 6125–6138. [Google Scholar] [CrossRef]
- Qi, W.-Z.; Liu, H.-H.; Liu, P.; Dong, S.-T.; Zhao, B.-Q.; So, H.B.; Li, G.; Liu, H.-D.; Zhang, J.-W.; Zhao, B. Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. Eur. J. Agron. 2012, 38, 54–63. [Google Scholar] [CrossRef]
- Fan, P.; Ming, B.; Evers, J.B.; Li, Y.; Li, S.; Xie, R.; Anten, N.P. Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crop. Res. 2023, 297, 108927. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, H.; Mu, X.; Zhao, G.; Gao, P.; Sun, W. Effects of Different Fertilization Regimes on Crop Yield and Soil Water Use Efficiency of Millet and Soybean. Sustainability 2020, 12, 4125. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Q.; Li, G.; Liu, G.; Geissen, V.; Ritsema, C.J.; Xue, S. Impact of nitrogen addition on plant-soil-enzyme C–N–P stoichiometry and microbial nutrient limitation. Soil Biol. Biochem. 2022, 170, 108714. [Google Scholar] [CrossRef]
- Bahrami, M.; Talebnejad, R.; Sepaskhah, A.R.; Bazile, D. Irrigation Regimes and Nitrogen Rates as the Contributing Factors in Quinoa Yield to Increase Water and Nitrogen Efficiencies. Plants 2022, 11, 2048. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hua, H.; Eneji, A.E.; Li, Z.; Duan, L.; Tian, X. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J. Photochem. Photobiol. B Biol. 2012, 110, 1–8. [Google Scholar] [CrossRef]
- Li, Y.H.; Cao, M.L.; Du, H.L.; Guo, P.Y.; Zhang, H.Y.; Guo, M.J.; Yuan, X.Y. Effects of fertilization location and amount on dry matter accumulation, translocation and yield of hybrid millet. Sci. Agric. Sin. 2019, 52, 4177–4190. [Google Scholar]
- Li, Y.; Yin, M.; Li, L.; Zheng, J.; Yuan, X.; Wen, Y. Optimized potassium application rate increases foxtail millet grain yield by improving photosynthetic carbohydrate metabolism. Front. Plant Sci. 2022, 13, 1044065. [Google Scholar] [CrossRef]
- Singh, P.; Agrawal, V.K.; Singh, Y.V. Effect of potassium and FYM on growth parameters, yield and mineral composition of wheat (Triticum aestivum L.) in alluvial soil. J. Pharmacogn. Phytochem. 2019, 8, 24–27. [Google Scholar]
- Ye, T.; Xue, X.; Lu, J.; Hou, W.; Ren, T.; Cong, R.; Li, X. Yield and potassium uptake of rice as affected by potassium rate in the middle reaches of the Yangtze River, China. Agron. J. 2020, 112, 1318–1329. [Google Scholar] [CrossRef]
- Rawal, N.; Pande, K.R.; Shrestha, R.; Vista, S.P. Nutrient Concentration and Its Uptake in Various Stages of Wheat (Triticum aestivum L.) as Influenced by Nitrogen, Phosphorus, and Potassium Fertilization. Commun. Soil Sci. Plant Anal. 2023, 54, 1151–1166. [Google Scholar] [CrossRef]
- Zhan, A.; Zou, C.; Ye, Y.; Liu, Z.; Cui, Z.; Chen, X. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Field Crop. Res. 2016, 191, 13–19. [Google Scholar] [CrossRef]
- Hou, W.; Xue, X.; Li, X.; Khan, M.R.; Yan, J.; Ren, T.; Cong, R.; Lu, J. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crop. Res. 2019, 236, 14–23. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Tu, B.; Li, Y.; Liu, X.; Zhang, Q.; Herbert, S.J. Dry matter partitioning and K distribution of vegetable soybean genotypes with higher potassium efficiency. Arch. Agron. Soil Sci. 2019, 66, 717–729. [Google Scholar] [CrossRef]
- Damon, P.M.; Rengel, Z. Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust. J. Agric. Res. 2007, 58, 816–825. [Google Scholar] [CrossRef]
- White, P.J.; Bell, M.J.; Djalovic, I.; Hinsinger, P.; Rengel, Z. Potassium use efficiency of plants. In Improving Potassium Recommendations for Agricultural Crops; Murrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., Thompson, M.L., Eds.; Springer: Cham, Switzerland; Singapore, 2021. [Google Scholar]
- Chuan, L.; He, P.; Jin, J.; Li, S.; Grant, C.; Xu, X.; Qiu, S.; Zhao, S.; Zhou, W. Estimating nutrient uptake requirements for wheat in China. Field Crop. Res. 2013, 146, 96–104. [Google Scholar] [CrossRef]
- He, B.; Xue, C.; Sun, Z.; Ji, Q.; Wei, J.; Ma, W. Effect of Different Long-Term Potassium Dosages on Crop Yield and Potassium Use Efficiency in the Maize–Wheat Rotation System. Agronomy 2022, 12, 2565. [Google Scholar] [CrossRef]
- Kumar, S.; Dhar, S.; Kumar, A.; Kumar, D. Yield and nutrient uptake of maize (Zea mays)-wheat (Triticum aestivum) cropping system as influenced by integrated potassium management. Indian J. Agron. 2016, 60, 511–515. [Google Scholar]
- Du, M.; Zhang, W.Z.; Gao, J.P.; Liu, M.Q.; Zhou, Y.; He, D.W.; Zhao, Y.Z.; Liu, S.M. Improvement of root characteristics due to nitrogen, phosphorus, and potassium interactions increases rice (Oryza sativa L.) yield and nitrogen use efficiency. Agronomy 2021, 12, 23. [Google Scholar] [CrossRef]
- Li, Z.L.; Liu, Z.G.; Zhang, M.; Li, C.L.; Li YC, C.; Wan, Y.S.; Martin, C.G. Long-term effects of controlled-released potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Tillage Res. 2020, 196, 104438. [Google Scholar] [CrossRef]
- Latifmanesh, H.; Deng, A.; Nawaz, M.M.; Li, L.; Chen, Z.; Zheng, Y.; Wang, P.; Song, Z.; Zhang, J.; Zheng, C.; et al. Integrative impacts of rotational tillage on wheat yield and dry matter accumulation under corn-wheat cropping system. Soil Tillage Res. 2018, 184, 100–108. [Google Scholar] [CrossRef]
- Xue, X.X.; Li, X.K. Effects of potassium application levels on the characteristics of dry matter accumulation and potassium uptake in rice. Acta Agric. Univ. Jiangxiensis 2018, 40, 905–913. [Google Scholar]
- Ning, P.; Li, S.; Yu, P.; Zhang, Y.; Li, C. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crop. Res. 2013, 144, 19–27. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, Q.; Song, Z.; Yin, Y.; Wang, G.; Li, Y. Increasing the yield of drip-irrigated rice by improving photosynthetic performance and enhancing nitrogen metabolism through optimizing water and nitrogen management. Front. Plant Sci. 2023, 14, 1075625. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tian, Z.; Qi, Z.; Han, J.; Zhao, X.; Xue, J. Effect of Nitrogen Application Rate on Grain Yield, Dry Matter and Nitrogen Accumulation and Remobilization in a Winter Wheat-Fresh Maize Cropping System. J. Food Nutr. Res.-Slov. 2023, 11, 176–184. [Google Scholar] [CrossRef]
Year | Variety | K Rates kg/hm2 | Logistic Equalization | R2 | W0 kg/hm2 | T1 d | T2 d | ΔT d | Tmax d | Vmax kg/hm2·d |
---|---|---|---|---|---|---|---|---|---|---|
2020 | JG21 | K0 | W = 18,844/(1 + 754e−0.077t) | 0.968 ** | 18,844 | 69.0 | 103.3 | 34.3 | 86.2 | 348.2 |
K60 | W = 20,730/(1 + 871e−0.078t) | 0.973 ** | 20,730 | 69.9 | 103.7 | 33.8 | 86.8 | 383.9 | ||
K120 | W = 21,736/(1 + 782e−0.079t) | 0.964 ** | 21,736 | 67.6 | 101.0 | 33.3 | 84.3 | 422.3 | ||
K180 | W = 21,843/(1 + 721e−0.077t) | 0.980 *** | 21,843 | 68.5 | 102.7 | 34.3 | 85.6 | 407.0 | ||
K240 | W = 20,501(1 + 595e−0.073t) | 0.960 ** | 20,501 | 69.9 | 106.2 | 36.3 | 88.0 | 348.8 | ||
ZZ10 | K0 | W = 15,675/(1 + 313e−0.070t) | 0.944 * | 15,675 | 62.9 | 100.3 | 37.4 | 81.6 | 275.8 | |
K60 | W = 16,538/(1 + 298e−0.068t) | 0.962 ** | 16,538 | 64.1 | 102.7 | 38.6 | 83.4 | 280.4 | ||
K120 | W = 17,509/(1 + 245e−0.068t) | 0.961 ** | 17,509 | 61.3 | 99.9 | 38.6 | 80.6 | 298.8 | ||
K180 | W = 16,870/(1 + 270e−0.071t) | 0.939 * | 16,870 | 59.9 | 96.7 | 36.8 | 78.3 | 298.7 | ||
K240 | W = 17,148/(1 + 292e−0.070t) | 0.942 * | 17,148 | 61.9 | 99.3 | 37.4 | 80.6 | 301.8 | ||
2021 | JG21 | K0 | W = 13,710/(1 + 1083e−0.082t) | 0.965 *** | 13,710 | 68.9 | 100.9 | 32.0 | 84.9 | 282.1 |
K60 | W = 15,129/(1 + 1074e−0.081t) | 0.965 *** | 15,129 | 69.7 | 102.2 | 32.4 | 85.9 | 306.7 | ||
K120 | W = 15,711/(1 + 896e−0.082t) | 0.957 *** | 15,711 | 66.6 | 98.6 | 32.0 | 82.6 | 320.1 | ||
K180 | W = 16,658/(1 + 950e−0.083t) | 0.956 *** | 16,658 | 66.4 | 98.0 | 31.6 | 82.2 | 342.6 | ||
K240 | W = 14,048/(1 + 801e−0.080t) | 0.965 *** | 14,048 | 67.0 | 99.9 | 32.9 | 83.4 | 280.3 | ||
ZZ10 | K0 | W = 16,255/(1 + 992e−0.081t) | 0.977 *** | 16,255 | 68.7 | 101.2 | 32.4 | 85.0 | 330.0 | |
K60 | W = 16,122/(1 + 887e−0.081t) | 0.964 *** | 16,122 | 67.4 | 99.8 | 32.4 | 83.6 | 326.2 | ||
K120 | W = 18,162/(1 + 854e−0.081t) | 0.954 *** | 18,162 | 66.9 | 99.3 | 32.4 | 83.1 | 366.6 | ||
K180 | W = 19,238/(1 + 885e−0.082t) | 0.952 *** | 19,238 | 66.5 | 98.5 | 32.0 | 82.5 | 391.5 | ||
K240 | W = 17,958/(1 + 898e−0.082t) | 0.962 *** | 17,958 | 66.6 | 98.6 | 32.0 | 82.6 | 366.0 |
Year | Variety | K rates kg/hm2 | Yield (kg/hm2) | KAE (kg/kg) | NAE (kg/kg) | KHI (%) | NHI (%) | AURK (%) | AEK (kg/kg) |
---|---|---|---|---|---|---|---|---|---|
2020 | JG21 | K0 | 5950 A c | —— | 1.13 A d | 11.40 B d | 86.53 A a | —— | —— |
K60 | 6190 A bc | 2.08 A a | 1.28 A c | 13.06 B b | 83.32 A ab | 26.97 A b | 4.00 A ab | ||
K120 | 6607 A b | 1.29 A b | 1.51 A ab | 12.18 B cd | 81.44 A b | 38.72 A a | 5.47 A ab | ||
K180 | 7258 A a | 0.90 A c | 1.60 A a | 14.06 A a | 83.28 A ab | 29.41 A b | 7.27 A a | ||
K240 | 6500 A bc | 0.57 A d | 1.41 A bc | 12.61 A bc | 81.59 B b | 11.90 B c | 2.29 A b | ||
ZZ10 | K0 | 4372 B c | —— | 0.96 A b | 14.84 A ab | 87.01 A a | —— | —— | |
K60 | 4575 B c | 1.64 B a | 1.07 B b | 15.71 A ab | 85.10 A ab | 20.56 A c | 3.39 A b | ||
K120 | 5280 B ab | 1.04 B b | 1.33 B a | 16.29 A a | 85.44 A ab | 32.08 A a | 7.57 A a | ||
K180 | 5747 B a | 0.75 B c | 1.39 A a | 16.47 A a | 84.84 A ab | 26.80 A b | 7.64 A a | ||
K240 | 4932 B bc | 0.54 A d | 1.27 B a | 13.86 A b | 83.52 A b | 18.50 A c | 2.33 A b | ||
2021 | JG21 | K0 | 3681 A b | —— | 0.71 A d | 9.33 B a | 69.57 B abc | —— | —— |
K60 | 4025 A b | 1.48 A a | 0.84 A c | 9.39 B a | 66.63 B bc | 28.6 A ab | 5.75 A b | ||
K120 | 4603 A a | 0.94 A b | 1.01 A ab | 9.26 B a | 71.25 B a | 34.33 A a | 7.69 A a | ||
K180 | 5073 A a | 0.69 A c | 1.10 A a | 8.58 B b | 65.76 B c | 29.35 A ab | 7.74 A a | ||
K240 | 4733 A a | 0.45 A d | 0.94 A bc | 8.36 B b | 69.90 B ab | 14.92 A b | 4.39 A b | ||
ZZ10 | K0 | 3478 A d | —— | 0.97 B c | 16.78 A a | 83.64 A a | —— | —— | |
K60 | 3761 A cd | 1.43 A a | 1.10 B bc | 13.30 A c | 80.73 A ab | 25.35 A ab | 4.72 A a | ||
K120 | 4097 B bc | 0.91 A b | 1.26 A ab | 14.70 A b | 77.15 A c | 31.96 A a | 5.16 B a | ||
K180 | 4575 A a | 0.68 A c | 1.43 B a | 16.11 A a | 77.06 A c | 28.47 A a | 6.10 A a | ||
K240 | 4221 A ab | 0.47 A d | 1.26 B ab | 13.77 A bc | 78.15 A bc | 17.39 A b | 3.10 A a | ||
ANOVA | Variety (V) | *** | *** | * | *** | *** | ns | ns | |
K rates (K) | *** | *** | *** | *** | *** | *** | *** | ||
V × K | ns | * | ns | *** | ns | ns | ns |
Leaf K Concentration | Leaf N Concentration | NR | GS | Shoot K Accumulation | Shoot N Accumulation | Shoot Dry Matter | Yield | |
---|---|---|---|---|---|---|---|---|
Leaf K concentration | 1 | |||||||
Leaf N concentration | 0.424 * | 1 | ||||||
NR | 0.395 * | 0.760 ** | 1 | |||||
GS | 0.237 | 0.485 ** | 0.659 ** | 1 | ||||
Shoot K accumulation | 0.641 ** | 0.772 ** | 0.769 ** | 0.613 ** | 1 | |||
Shoot N accumulation | 0.718 ** | 0.549 ** | 0.534 ** | 0.178 | 0.726 ** | 1 | ||
Shoot dry matter | 0.667 ** | 0.357 | 0.413 * | 0.029 | 0.646 ** | 0.949 ** | 1 | |
Yield | 0.291 | 0.652 ** | 0.684 ** | 0.682 ** | 0.739 ** | 0.673 ** | 0.265 | 1 |
Action Factor | Correlation Coefficient | Direct Action | Indirect Action | |||
---|---|---|---|---|---|---|
X2 | X3 | X4 | X7 | |||
X2 | 0.771 | 0.438 | 0.144 | 0.025 | 0.164 | |
X3 | 0.596 | 0.179 | 0.352 | 0.062 | 0.003 | |
X4 | −0.188 | −0.292 | −0.037 | −0.038 | 0.179 | |
X7 | 0.636 | 0.603 | 0.119 | 0.001 | −0.087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, M.; Li, Y.; Hu, Q.; Yu, X.; Huang, M.; Zhao, J.; Dong, S.; Yuan, X.; Wen, Y. Potassium Increases Nitrogen and Potassium Utilization Efficiency and Yield in Foxtail Millet. Agronomy 2023, 13, 2200. https://doi.org/10.3390/agronomy13092200
Yin M, Li Y, Hu Q, Yu X, Huang M, Zhao J, Dong S, Yuan X, Wen Y. Potassium Increases Nitrogen and Potassium Utilization Efficiency and Yield in Foxtail Millet. Agronomy. 2023; 13(9):2200. https://doi.org/10.3390/agronomy13092200
Chicago/Turabian StyleYin, Meiqiang, Yanfen Li, Qilin Hu, Xiangjun Yu, Mingjing Huang, Juan Zhao, Shuqi Dong, Xiangyang Yuan, and Yinyuan Wen. 2023. "Potassium Increases Nitrogen and Potassium Utilization Efficiency and Yield in Foxtail Millet" Agronomy 13, no. 9: 2200. https://doi.org/10.3390/agronomy13092200
APA StyleYin, M., Li, Y., Hu, Q., Yu, X., Huang, M., Zhao, J., Dong, S., Yuan, X., & Wen, Y. (2023). Potassium Increases Nitrogen and Potassium Utilization Efficiency and Yield in Foxtail Millet. Agronomy, 13(9), 2200. https://doi.org/10.3390/agronomy13092200