Effects of a Novel Weeding and Fertilization Scheme on Yield and Quality of Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site and Materials
2.2. Test Method
2.3. Test Measurement Indicators and Methods
2.3.1. Stem and Tiller Dynamics and Spike Rate
2.3.2. Yield and Its Components
2.3.3. Rice Quality
2.4. Statistical Analysis
3. Results
3.1. Yield and Its Components
3.2. Stem and Tiller Dynamics and Spike Rate
3.3. Processing Quality
3.4. Appearance Quality
3.5. Nutritional Quality
3.6. Cooking Quality
4. Discussion
4.1. Effect of Mechanical Weeding Combined with Slow-Release Fertilizer One-Time Reduction and Deep Application on Yield of Rice Yield
4.2. Effect of Mechanical Weeding Combined with Slow-Release Fertilizer One-Time Reduction and Deep Application on Rice Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Cheng, Y.; Hu, R.; Yu, Z.; Yuan, M.; Geng, W.; Sun, Y. Current situation and technical demand of rice fertilization in Anhui province. Soil Fertil. Sci. China 2021, 4, 162–171. [Google Scholar] [CrossRef]
- Wang, J.; Yan, W.; Liu, W.; Cao, R.; Yang, M.; Sun, K.; Wang, X. The current situation, existing problems, and improvement measures of rice cultivation in China. World Trop. Agric. Inf. 2021, 7, 33–34. [Google Scholar] [CrossRef]
- Yu, Q. Problems and Countermeasures in High Quality and High Yield Cultivation of Rice. Rural. Sci. Technol. 2021, 12, 54–58. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Raczkowski, C.W.; Kissel, D.E.; Vigil, M.F.; Cabrera, M.L. Fertilizer placement to maximize nitrogen use by fescue. J. Plant Nutr. 2016, 39, 581–587. [Google Scholar] [CrossRef]
- Bastiaans, L.; Kropff, M.J.; Goudriaan, J.; van Laar, H.H. Design of weed management systems with a reduced reliance on herbicides poses new challenges and prerequisites for modeling crop–weed interactions. Field Crops Res. 2000, 67, 161–179. [Google Scholar] [CrossRef]
- Bidlack, J.E.; Middick, A.; Shantz, D.; MacKown, C.T.; Williams, R.D.; Rao, S.C. Weed control in a pigeon pea–wheat cropping system. Field Crops Res. 2005, 96, 63–70. [Google Scholar] [CrossRef]
- Zhou, Z.; Yuan, W.; Cheng, S. Current status and future directions of rice plant protection machinery in China. Guangdong Agric. Sci. 2014, 41, 178–183. [Google Scholar] [CrossRef]
- Jiao, Y.; Xue, X.; Ding, S. Research status and prospects of spraying performance of spray nozzles. J. Chin. Agric. Mech. 2021, 42, 44–50+56. [Google Scholar] [CrossRef]
- Mansour, S.; Dattatray, K.B.; Latif, A.-E.; Al-waleed, S.M. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 2020, 6, e05224. [Google Scholar] [CrossRef]
- Modupe, S.A.; Bartholomew, S.A.; Saheed, A.A.; Chris, A.F.; Uswat, T.A.; Lanre, A.G.; Richard, K.O.; Remilekun, M.J.; Qudus, O.U.; Olubukola, O.B. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Song, W.; Luo, J.; Liu, W.; Zhang, D.; Li, Y.; Lu, B. Effects of one-time side deep application with controlled-release fertilizer on rice growth, nitrogen utilization and yield. J. Huazhong Agric. Univ. 2023, 42, 99–107. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, X.; Xie, G.; Liu, Q.; Rong, X.; Zhang, Y.; Tan, L.; Peng, J. Effects of Controlled-release Urea Application on Dynamics and Loss of Nitrogen in Runoff and Yield in Double-rice Cropping Field. J. Soil Water Conserv. 2018, 32, 21–28. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Tian, H.; Mo, Z.; Ashraf, U.; Duan, M.; Wang, Z.; Wang, S.; Tang, X.; Pan, S. Roles of Nitrogen Deep Placement on Grain Yield, Nitrogen Use Efficiency, and Antioxidant Enzyme Activities in Mechanical Pot-Seedling Transplanting Rice. Agronomy 2020, 10, 1252. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, H.; Huo, Z.; Lin, Z.; Dai, Q.; Xu, K.; Zhang, J. Effects of Nitrogen Application Regi mes on Yield Quality and Nitrogen Use Efficiency of Super Japonica Hybrid Rice. Acta Agron. Sin. 2007, 2, 175–182. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Lu, D.; Zhou, J.; Chen, Z.; Zhu, D. Effects and Principle of Root-plot One-time N Fertilization on Enhancing Rice (Oryza sativa L.) N Use Efficiency. Soils 2017, 49, 868–875. [Google Scholar] [CrossRef]
- An, N.; Wei, W.; Qiao, L.; Zhang, F.; Christie, P.; Jiang, R.; Dobermann, A.; Goulding, K.W.T.; Fan, J.; Fan, M. Agronomic and environmental causes of yield and nitrogen use efficiency gaps in Chinese rice farming systems. Eur. J. Agron. 2018, 93, 40–49. [Google Scholar] [CrossRef]
- Yang, J. Effects of Fertilizer Types and Rates on Yield and Nitrogen Use Efficiency of Mechanical Direct Seeding Rice under Lateral Deep Fertilization; Hunan Agricultural University: Hunan, China, 2020. [Google Scholar] [CrossRef]
- Qi, L.; Liu, C.; Jiang, Y. Present status and intelligent development prospects of mechanical weeding technology and equipment for rice. J. South China Agric. Univ. 2020, 41, 29–36. [Google Scholar] [CrossRef]
- Toru, U.; Ryosuke, T.; Kazumi, S.; Mizuhiko, N.; Toyoaki, L.; Masanori, S. Rice yields and the effect of weed management in an organic production system with winter flooding. Plant Prod. Sci. 2021, 24, 405–417. [Google Scholar] [CrossRef]
- Vijay, P.; Verma, S.K.; Dass, A. Weed growth, nutrient removal and yield of direct-seeded rice as influenced by establishment methods and chemical-cum-mechanical weed management practices. Crop Prot. 2023, 163, 106100. [Google Scholar] [CrossRef]
- Liu, C.; Yang, K.; Chen, Y.; Gong, H.; Feng, X.; Tang, Z.; Fu, D.; Qi, L. Benefits of mechanical weeding for weed control, rice growth characteristics and yield in paddy fields. Field Crops Res. 2023, 293, 108852. [Google Scholar] [CrossRef]
- Asih, M.M.; Valensi, K.; Oki, B.P.; Munyaka, K.S.; Torita, R.; Murayama, H.; Nuryani, H.U.S.; Heru, P.B.; Cheng, W. Weeding Frequencies Decreased Rice–Weed Competition and Increased Rice N Uptake in Organic Paddy Field. Agronomy 2021, 11, 1904. [Google Scholar] [CrossRef]
- Sun, X.; Guo, J.; Guo, S.; Guo, H.; Hu, S. Divergent Responses of Leaf N:P: K Stoichiometry to Nitrogen Fertilization in Rice and Weeds. Weed Sci. 2019, 67, 339–345. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Tang, J.; Chen, X. Effects of weed management practices on orchard soil biological and fertility properties in southeastern China. Soil Tillage Res. 2007, 93, 179–185. [Google Scholar] [CrossRef]
- Helfrich, M.; Nicolay, G.; Well, R.; Buchen-Tschiskale, C.; Dechow, R.; Fuß, R.; Gensior, A.; Marten, P.H.; Berendonk, C.; Flessa, H. Effect of chemical and mechanical grassland conversion to cropland on soil mineral N dynamics and N2O emission. Agric. Ecosyst. Environ. 2020, 298, 106975. [Google Scholar] [CrossRef]
- GB/T17891-2017; High Quality Paddy. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- NYT83-2017; Determination of Rice Quality. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2017.
- Cheng, S.; Li, S.; Tian, J.; Xing, Z.; Hu, Y.; Guo, B.; Wei, H.; Gao, H.; Zhang, H. Effects of one-time nitrogen basal application on the yield and quality of different direct-seeded rice crops by machine. Trans. Chin. Soc. Agric. Eng. 2020, 36, 1–10. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Shen, W.; Duan, Z. Effect of the Slow-Release Nitrogen Fertilizer Oxamide on Ammonia Volatilization and Nitrogen Use Efficiency in Paddy Soil. Agronomy 2018, 8, 53. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Li, G.; Jiang, Y.; Hou, P.; Xue, L.; Yang, L.; Bing, Y. Lower dose of controlled/slow release fertilizer with higher rice yield and N utilization in paddies: Evidence from a meta-analysis. Field Crops Res. 2023, 294, 108879. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Wang, R. Effects of Slow-release Compound Fertilizer Management on Nitrogen Use Efficiency and Yield of Yixiangyou 2115. Hybrid Rice 2022, 37, 104–108. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, X.; Fei, J.; Huang, Y.; Wang, G.; Kang, X.; Hu, W.; Zhang, H.; Rong, X.; Peng, J. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 2021, 306, 107183. [Google Scholar] [CrossRef]
- Li, W.; Deng, F.; Hu, H.; Zhao, M.; Liao, S.; Pu, S.; Ren, W. Effect of Controlled-release Nitrogen Fertilizer on Grain Quality of Machine-transplanted Hybrid Rice. J. Nucl. Agric. Sci. 2018, 32, 779–787. [Google Scholar] [CrossRef]
- Wei, H.; Chen, Z.; Xing, Z.; Zhou, L.; Liu, Q.; Zhang, Z.; Jiang, Y.; Hu, Y.; Zhu, J.; Cui, P.; et al. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice. J. Integr. Agric. 2018, 17, 2222–2234. [Google Scholar] [CrossRef]
- Gu, J.; Chen, J.; Lu, C.; Wang, Z.; Zhang, H.; Yang, J. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop J. 2015, 3, 285–297. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, P.; Li, L.; Tian, H.; Ashraf, U.; Mo, Z.; Duan, M.; Wu, Q.; Zhang, Z.; Tang, X.; et al. Straw Incorporation Coupled with Deep Placement of Nitrogen Fertilizer Improved Grain Yield and Nitrogen Use Efficiency in Direct-Seeded Rice. J. Soil Sci. Plant Nutr. 2020, 20, 2338–2347. [Google Scholar] [CrossRef]
- Lin, D.; Li, Y.; Sun, Y.; Zhen, J.; Lu, T.; Sun, Z.; Lu, X.; Liu, Y.; Guo, C.; Sun, Y.; et al. Effects of straw returning and nitrogen application on yield and quality of hybrid indica rice under different rotation patterns. Chin. J. Eco-Agric. 2020, 28, 1581–1590. [Google Scholar] [CrossRef]
Year | Weeding Treatment | Fertilization Treatment | No. of Grains Per Panicle | Seed-Setting Rate (%) | Panicle Number (×104 ha−1) | Thousand-Grain Weight (g) | Yield (t ha−1) |
---|---|---|---|---|---|---|---|
2018 | CW | CK | 132.06 ± 1.35 a | 86.61 ± 0.50 cd | 319.93 ± 6.97 a | 28.33 ± 0.02 a | 10.05 ± 0.12 a |
LCK | 119.39 ± 2.23 cd | 86.12 ± 1.02 d | 307.24 ± 7.32 cd | 27.76 ± 0.02 bc | 8.72 ± 0.15 cd | ||
SR | 130.04 ± 4.35 ab | 87.03 ± 0.67 c | 318.14 ± 6.36 ab | 28.14 ± 0.01 a | 9.86 ± 0.21 a | ||
LSR | 127.03 ± 1.07 b | 86.56 ± 2.21 cd | 314.97 ± 9.03 b | 28.21 ± 0.02 a | 9.65 ± 0.10 ab | ||
MW | CK | 128.72 ± 1.26 ab | 88.94 ± 0.75 ab | 310.92 ± 10.25 c | 28.06 ± 0.03 ab | 9.80 ± 0.28 a | |
LCK | 116.35 ± 2.29 d | 88.28 ± 1.65 b | 298.56 ± 4.38 e | 27.62 ± 0.02 c | 8.40 ± 0.11 d | ||
SR | 127.62 ± 2.11 b | 89.11 ± 0.97 a | 308.02 ± 11.02 cd | 27.94 ± 0.03 abc | 9.65 ± 0.17 ab | ||
LSR | 121.84 ± 1.89 c | 89.24 ± 0.43 a | 305.48 ± 3.56 d | 28.05 ± 0.02 ab | 9.20 ± 0.24 bc | ||
2019 | CW | CK | 133.52 ± 3.27 a | 86.76 ± 1.03 c | 320.55 ± 8.67 a | 28.12 ± 0.02 a | 10.27 ± 0.31 a |
LCK | 120.26 ± 2.46 cd | 86.17 ± 0.39 c | 307.80 ± 10.96 cd | 27.44 ± 0.01 b | 8.86 ± 0.12 cd | ||
SR | 131.23 ± 1.18 ab | 87.05 ± 0,98 bc | 318.90 ± 6.54 a | 28.03 ± 0.01 a | 10.02 ± 0.18 ab | ||
LSR | 127.89 ± 3.21 b | 87.04 ± 1.24 bc | 315.65 ± 11.12 ab | 28.02 ± 0.02 a | 9.74 ± 0.09 ab | ||
MW | CK | 129.46 ± 4.32 b | 88.92 ± 1.28 a | 311.65 ± 7.17 bc | 27.84 ± 0.02 ab | 9.93 ± 0.14 ab | |
LCK | 117.17 ± 3.96 d | 88.26 ± 0.69 ab | 299.51 ± 9.06 e | 27.46 ± 0.01 b | 8.46 ± 0.13 d | ||
SR | 128.36 ± 1.37 b | 89.03 ± 0.79 a | 308.46 ± 4.27 cd | 27.93 ± 0.01 a | 9.81 ± 0.29 ab | ||
LSR | 122.75 ± 3.35 c | 89.11 ± 1.13 a | 305.85 ± 5.38 d | 27.82 ± 0.03 ab | 9.36 ± 0.16 bc |
Year | Weeding Method | Fertilization Treatment | No. of Stems and Tillers (×104 ha−1) | Spike Rate (%) | ||
---|---|---|---|---|---|---|
Jointing | Heading | Maturity | ||||
2018 | CW | CK | 471.45 ± 6.38 c | 321.37 ± 3.45 a | 319.90 ± 10.33 a | 67.86 ± 0.12 c |
LCK | 434.64 ± 11.19 e | 309.01 ± 5.66 e | 307.20 ± 6.75 cd | 70.68 ± 0.06 b | ||
SR | 531.89 ± 8.37 a | 319.16 ± 4.71 ab | 318.10 ± 9.12 ab | 59.81 ± 0.37 e | ||
LSR | 500.49 ± 10.21 b | 316.39 ± 7.39 bc | 314.95 ± 10.62 b | 62.93 ± 0.21 d | ||
MW | CK | 443.13 ± 14.36 e | 313.36 ± 6.44 cd | 310.95 ± 11.15 c | 70.18 ± 0.77 b | |
LCK | 403.17 ± 8.23 f | 300.79 ± 4.77 f | 298.55 ± 10.28 e | 74.07 ± 0.50 a | ||
SR | 489.85 ± 10.78 b | 309.79 ± 8.29 de | 308.00 ± 4.14 cd | 62.88 ± 0.26 d | ||
LSR | 459.54 ± 4.07 d | 307.19 ± 10.51 e | 305.45 ± 7.16 d | 66.48 ± 0.28 c | ||
2019 | CW | CK | 477.98 ± 5.39 bc | 321.89 ± 7.32 a | 320.55 ± 2.03 a | 67.07 ± 0.35 c |
LCK | 435.92 ± 11.65 d | 310.48 ± 13.26 c | 307.80 ± 5.20 cd | 70.61 ± 0.16 b | ||
SR | 517.66 ± 6.44 a | 320.49 ± 6.22 ab | 318.90 ± 11.09 a | 61.61 ± 0.09 e | ||
LSR | 484.41 ± 8.24b | 318.59 ± 2.47 ab | 315.65 ± 8.18 ab | 65.17 ± 0.27 d | ||
MW | CK | 455.35 ± 7.32 cd | 313.55 ± 9.94 bc | 311.65 ± 6.31 bc | 68.44 ± 0.15 c | |
LCK | 403.64 ± 14.01 e | 301.24 ± 13.36 d | 299.50 ± 11.26 e | 74.21 ± 0.30 a | ||
SR | 484.93 ± 7.21 b | 309.71 ± 5.17 c | 308.45 ± 7.70 cd | 63.61 ± 0.41 d | ||
LSR | 454.05 ± 9.33 d | 308.33 ± 6.79 cd | 305.85 ± 8.53 d | 67.47 ± 0.26 c |
Year | Weeding Method | Fertilization Treatment | BRR (%) | MRR (%) | HMRR (%) | CR (%) | CD (%) |
---|---|---|---|---|---|---|---|
2018 | CW | CK | 79.15 ± 3.23 bc | 70.82 ± 4.38 cd | 66.18 ± 8.53 cd | 29.08 ± 1.02 a | 7.95 ± 0.32 a |
LCK | 78.00 ± 6.19 c | 69.88 ± 7.79 d | 65.03 ± 5.44 d | 25.88 ± 2.44 cd | 6.80 ± 0.58 b | ||
SR | 83.65 ± 4.01 a | 75.61 ± 2.17 ab | 70.55 ± 9.76 b | 28.06 ± 0.85 ab | 7.86 ± 0.76 a | ||
LSR | 83.32 ± 8.33 a | 74.95 ± 7.34 b | 70.17 ± 3.39 b | 25.12 ± 4.33 de | 6.59 ± 0.24 b | ||
MW | CK | 80.82 ± 2.89 b | 71.85 ± 6.52 c | 66.96 ± 2.59 c | 27.16 ± 2.45 bc | 6.51 ± 0.53 b | |
LCK | 79.27 ± 7.27 bc | 70.69 ± 3.01 cd | 66.00 ± 3.40 cd | 24.10 ± 2.01 ef | 5.37 ± 0.47 c | ||
SR | 84.66 ± 1.06 a | 76.62 ± 9.33 a | 71.94 ± 6.14 a | 26.36 ± 3.36 cd | 6.29 ± 0.94 b | ||
LSR | 84.15 ± 3.52 a | 75.96 ± 6.16 ab | 71.18 ± 3.42 ab | 23.17 ± 1.28 f | 5.14 ± 0.25 c | ||
2019 | CW | CK | 79.21 ± 10.84 c | 71.07 ± 3.29 b | 66.58 ± 5.90 c | 28.83 ± 0.74 a | 8.06 ± 0.52 a |
LCK | 78.24 ± 3.75 c | 70.17 ± 5.10 b | 65.27 ± 6.44 c | 25.89 ± 3.86 d | 6.91 ± 0.23 b | ||
SR | 83.87 ± 9.22 a | 75.82 ± 4.54 a | 70.75 ± 3.71 ab | 27.81 ± 4.32 b | 7.95 ± 0.41 a | ||
LSR | 83.89 ± 2.04 a | 75.81 ± 10.03 a | 70.32 ± 7.67 ab | 25.61 ± 2.31 e | 6.74 ± 0.62b | ||
MW | CK | 80.04 ± 3.95 bc | 72.99 ± 8.47 ab | 67.57 ± 7.35 bc | 26.64 ± 3.01 c | 6.41 ± 0.35 c | |
LCK | 78.94 ± 5.38 c | 71.31 ± 5.36 b | 66.04 ± 4.21 c | 23.80 ± 1.89 f | 5.29 ± 0.33 d | ||
SR | 84.76 ± 7.47 a | 76.74 ± 1.72 a | 72.44 ± 3.39 a | 25.55 ± 2.54 de | 6.26 ± 0.61 c | ||
LSR | 84.33 ± 2.65 a | 76.28 ± 4.61 a | 71.43 ± 2.83 a | 22.92 ± 1.77 g | 5.09 ± 0.42 d |
Year | Weeding Method | Fertilization Treatment | PC (%) | AC (%) | GC (%) |
---|---|---|---|---|---|
2018 | CW | CK | 7.80 ± 0.06 d | 9.57 ± 0.62 d | 88 ± 2 ab |
LCK | 7.51 ± 0.45 f | 9.73 ± 0.45 c | 92 ± 1 a | ||
SR | 8.05 ± 0.26 b | 9.07 ± 0.20 h | 87 ± 1 ab | ||
LSR | 7.78 ± 0.72 d | 9.23 ± 0.51 g | 91 ± 3 ab | ||
MW | CK | 7.91 ± 0.36 c | 9.77 ± 0.14 b | 86 ± 1 b | |
LCK | 7.61 ± 0.18 e | 9.93 ± 0.66 a | 91 ± 1 ab | ||
SR | 8.15 ± 0.49 a | 9.27 ± 0.32 f | 86 ± 2 b | ||
LSR | 7.89 ± 0.23 c | 9.43 ± 0.55 e | 90 ± 1 ab | ||
2019 | CW | CK | 7.91 ± 0.16 cd | 9.74 ± 0.21 d | 89 ± 2 ab |
LCK | 7.68 ± 0.55 f | 9.91 ± 0.14 c | 92 ± 1 a | ||
SR | 8.17 ± 0.34 a | 9.26 ± 0.56 h | 87 ± 1 b | ||
LSR | 7.86 ± 0.27 de | 9.40 ± 0.48 g | 91 ± 3 a | ||
MW | CK | 8.01 ± 0.40 b | 9.96 ± 0.73 b | 87 ± 2 b | |
LCK | 7.77 ± 0.17 e | 10.02 ± 0.29 a | 91 ± 2 a | ||
SR | 8.25 ± 0.62 a | 9.47 ± 0.40 f | 87 ± 1 b | ||
LSR | 8.00 ± 0.14 bc | 9.63 ± 0.57 e | 90 ± 1 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Cheng, X.; Xi, X.; Weng, W.; Zhang, B.; Zhang, J.; Zhang, R. Effects of a Novel Weeding and Fertilization Scheme on Yield and Quality of Rice. Agronomy 2023, 13, 2269. https://doi.org/10.3390/agronomy13092269
Shi Y, Cheng X, Xi X, Weng W, Zhang B, Zhang J, Zhang R. Effects of a Novel Weeding and Fertilization Scheme on Yield and Quality of Rice. Agronomy. 2023; 13(9):2269. https://doi.org/10.3390/agronomy13092269
Chicago/Turabian StyleShi, Yangjie, Xinhui Cheng, Xiaobo Xi, Wenan Weng, Baofeng Zhang, Jianfeng Zhang, and Ruihong Zhang. 2023. "Effects of a Novel Weeding and Fertilization Scheme on Yield and Quality of Rice" Agronomy 13, no. 9: 2269. https://doi.org/10.3390/agronomy13092269
APA StyleShi, Y., Cheng, X., Xi, X., Weng, W., Zhang, B., Zhang, J., & Zhang, R. (2023). Effects of a Novel Weeding and Fertilization Scheme on Yield and Quality of Rice. Agronomy, 13(9), 2269. https://doi.org/10.3390/agronomy13092269