WheatSM V5.0: A Python-Based Wheat Growth and Development Simulation Model with Cloud Services Integration to Enhance Agricultural Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Resources
2.2. Simulation Model of Wheat Growth and Development
2.2.1. Phenological Development
2.2.2. Photosynthetic Production and Matter Accumulation
2.2.3. Dry Matter Partitioning
2.2.4. Leaf Area Index
2.2.5. Root Growth
2.2.6. Yield Formation
2.2.7. Soil Water Dynamic Module
2.2.8. Soil Nitrogen Dynamic Module
2.3. Sensitivity Analysis of Parameters
2.4. Model Parameterization
2.5. AgroStudio Plantform
3. Results
3.1. Sensitivity Analysis of Parameters for WheatSM V5.0 Model
3.2. Model Validation of WheatSM V5.0
3.3. Embedded WheatSM V5.0 into the Agrostudio Platform
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, G.; Chang, X.; Wang, D.; Tao, Z.; Wang, Y.; Yang, Y.; Zhu, Y. General situation and development of wheat production. Crops 2018, 4, 1–7. [Google Scholar]
- Zhang, Y.; Wang, Z.; Zhou, S.; Wang, B.; Xue, Y.; Liu, Y.; Wang, C.; Xi, W. Current hotspots of international wheat research. Sci. Technol. Rev. 2014, 32, 64–69. [Google Scholar]
- Zhang, T.; van der Wiel, K.; Wei, T.; Screen, J.; Yue, Y.; Zheng, B.; Selten, F.; Bintanja, R.; Anderson, W.; Blackport, R.; et al. Increased wheat price spikes and larger economic inequality with 2 °C global warming. One Earth 2022, 5, 907–916. [Google Scholar] [CrossRef]
- Zhao, J.; Han, T.; Wang, C.; Jia, H.; Worqlul, A.W.; Norelli, N.; Zeng, Z.; Chu, Q. Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain. Agric. Water Manag. 2020, 240, 106298. [Google Scholar] [CrossRef]
- Li, Y.; Xue, C.; Yang, X.; Wang, J.; Liu, Y.; Wang, E. Reduction of yield risk of winter wheat by appropriate irrigation based on APSIM model. Trans. Chin. Soc. Agric. Eng. 2009, 25, 35–44. [Google Scholar]
- Xiao, L.; Liu, L.; Qiu, X.; Tang, L.; Cao, W.; Zhu, Y.; Liu, B. Testing the responses of low temperature stress routine to low temperature stress at jointing and booting in wheat. Sci. Agric. Sin. 2021, 54, 504–521. [Google Scholar]
- Wang, N.; Wang, J.; Feng, L.; Pan, X.; Yu, W. Modeling the impact of “double-delay” technology on yield of wheat-maize cropping system in the North China Plain. Chin. J. Agrometeorol. 2015, 36, 611–618. [Google Scholar]
- Moeller, C.; Pala, M.; Manschadi, A.M.; Meinke, H.; Sauerborn, J. Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation. Aust. J. Agric. Res. 2007, 58, 75–86. [Google Scholar] [CrossRef]
- Sun, S.; Yang, X.; Lin, X.; Sassenrath, G.F.; Li, K. Climate-smart management can further improve winter wheat yield in China. Agric. Syst. 2018, 162, 10–18. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Gao, Z.; Feng, Y.; Laraib, I.; Chen, F.; Chu, Q. Exploring wheat-based management strategies to balance agricultural production and environmental sustainability in a wheat-maize cropping system using the DNDC model. J. Environ. Manag. 2022, 307, 114445. [Google Scholar] [CrossRef]
- Feng, L. WheatSM-a Model to Simulate Wheat Growth and Development; Nanjing Agricultural University: Nanjing, China, 1995. [Google Scholar]
- Feng, L.; Gao, L.; Jin, Z.; Ma, X. Studies on the simulation model for wheat phenology. Acta Agron. Sin. 1997, 23, 414–428. [Google Scholar]
- Yao, J. Establishment of Wheat Growth Simulation Modules in Hourly Time Step; China Agricultural University: Beijing, China, 2012. [Google Scholar]
- Li, N. Software Design of Wheat Growth and Development Simulation Model (WheatSM) V4.0; China Agricultural University: Beijing, China, 2015. [Google Scholar]
- Jin, X.; Chen, X.; Gong, Z.; Feng, L. Parameter adjustment and optimization methods for the WheatSM. J. Agric. Big Data 2021, 3, 13–22. [Google Scholar]
- Gao, L.; Jin, Z.; Zheng, G.; Feng, L.; Zhang, L.; Shi, C.; Ge, D. Wheat cultivation simulation optimization decision system (WCSODS). Jiangsu J. Agric. Sci. 2000, 16, 65. [Google Scholar]
- Li, T.; Li, Y.; Tian, H.; Guo, Q. Simulation of growth and development of winter wheat in hebi area based on optimization of wheatsm model parameters. Meteorol. Environ. Sci. 2018, 41, 103–107. [Google Scholar]
- Guo, Q.; Li, Y.; Tian, H. Parameter optimization and validation of the WheatSM model for growth and development of wheat. J. Triticeae Crops 2017, 37, 1571–1580. [Google Scholar]
- Hou, Y.; He, L.; Jin, N.; Zheng, C.; Liu, W.; Zhang, L. Establishment and application of crop growth simulating and monitoring system in China. Trans. Chin. Soc. Agric. Eng. 2018, 34, 165–175. [Google Scholar]
- Sun, L.; Feng, L. Assessing the climate risk to crop yield of winter wheat using crop growth models. Trans. Chin. Soc. Agric. Eng. 2005, 21, 106–110. [Google Scholar]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S.; et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 2014, 54, 2052–2067. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Cavalcanti, L.F.L.; Fonseca, M.A.; Herrero, M.; Thornton, P.K. The evolution and evaluation of dairy cattle models for predicting milk production: An agricultural model intercomparison and improvement project (AgMIP) for livestock. Anim. Prod. Sci. 2012, 170, 166–182. [Google Scholar] [CrossRef]
- Bassu, S.; Brisson, N.; Durand, J.L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How do various maize crop models vary in their responses to climate change factors? Global Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef]
- Holzworth, D.; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 2018, 103, 43–51. [Google Scholar] [CrossRef]
- Midingoyi, C.A.; Pradal, C.; Enders, A.; Fumagalli, D.; Raynal, H.; Donatelli, M.; Athanasiadis, I.N.; Porter, C.; Hoogenboom, G.; Holzworth, D.; et al. Crop2ML: An open-source multi-language modeling framework for the exchange and reuse of crop model components. Environ. Model. Softw. 2021, 142, 105055. [Google Scholar] [CrossRef]
- de Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.; van der Wijngaart, R.; van Diepen, K. 25 years of the WOFOST cropping systems model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Rodriguez, A.V.C.; Ober, E.S. AquaCropR: Crop growth model for R. Agronomy 2019, 9, 7. [Google Scholar] [CrossRef]
- Chen, X.; Feng, L.; Bai, H.; Yu, W. Comparison of three water stress algorithms based on the integration platform of wheat model algorithms. Trans. Chin. Soc. Agric. Eng. 2021, 37, 47–57. [Google Scholar]
- Chen, X.; Feng, L.; Bai, H.; Wang, C.; Wang, J.; Yu, W. Establishment of wheat model algorithms integration platform and algorithm comparison. Trans. Chin. Soc. Agric. Eng. 2022, 53, 237–249. [Google Scholar]
- Wang, B. Characteristics of Yield Formation and Water-Nitrogen Use in Extremely-Late Sown Winter Wheat under Limited Irrigation; China Agricultural University: Beijing, China, 2016. [Google Scholar]
- Xu, X. Performance and Coordination of Source and Sink System in Winter Wheat under Water-Saving and High-Yielding Irrigation Patterns; China Agricultural University: Beijing, China, 2018. [Google Scholar]
- Li, J. Improving Grain Yield and Resource Use Efficiency by Optimizing Water and Nitrogen Interaction with Micro-Irrigation in Winter Wheat; China Agricultural University: Beijing, China, 2019. [Google Scholar]
- Ma, F.; Li, D.; Cai, J.; Jiang, D.; Cao, W.; Dai, T. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chin. J. Appl. Ecol. 2012, 23, 724–730. [Google Scholar]
- Asseng, S.; Richter, C.; Wessolek, G. Modelling root growth of wheat as the linkage between crop and soil. Plant Soil 1997, 190, 267–277. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Shi, X.; Liang, H.; Zhou, F.; Hu, K. Sensitivity analysis and parameter estimation for soil-rice system model. Trans. Chin. Soc. Agric. Eng. 2020, 51, 252–271. [Google Scholar]
- Liu, J.; Chu, Q.; Wang, G.; Chen, F.; Zhang, Y. Simulating yield gap of winter wheat in response to nitrogen management in North China Plain based on DSSAT model. Trans. Chin. Soc. Agric. Eng. 2013, 29, 124–129. [Google Scholar]
- Chen, H.; Li, Y.; Tian, H.; Zhang, F.; Li, T.; Guo, Q. Improvement of regional-scale winter wheat growth modeling with sub-pixel information. Chin. J. Ecol. 2018, 37, 2221–2228. [Google Scholar]
- Li, Y.; Chen, H.; Tian, H.; Yu, W. Estimation of winter wheat yield based on coupling remote sensing information and WheatSM model. Chin. J. Ecol. 2019, 38, 2258–2264. [Google Scholar]
- Wu, L.; Feng, L.; Zhang, Y.; Gao, J.; Wang, J. Comparison of five wheat models simulating phenology under different sowing dates and varieties. Agron. J. 2017, 109, 1280–1293. [Google Scholar] [CrossRef]
- Tao, F.; Huang, Y.; Hungate, B.A.; Manzoni, S.; Frey, S.D.; Schmidt, M.W.I.; Reichstein, M.; Carvalhais, N.; Ciais, P.; Jiang, L.; et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 2023, 618, 981–985. [Google Scholar] [CrossRef] [PubMed]
Experiment | Year | Cultivar | Treatment | Source |
---|---|---|---|---|
I | 2011–2014 | Jimai_22 | Four sowing date × Three irrigation | Wang [30] |
II | 2013–2016 | Jimai_22 | Twelve irrigation | Xu [31] |
III | 2016–2018 | Jimai_22 | Four irrigation × Three nitrogen | Li [32] |
IV | 2017–2019 | Jimai_22 | Six sowing date | Field experiment [29] |
V | 2017–2019 | Jimai_22 | Seven nitrogen | Field experiment [28] |
Experiment | Calibration Group (Year) | Validation Group (Year) |
---|---|---|
I | 2011–2013 | 2013–2014 |
II | 2013–2015 | 2015–2016 |
III | 2016–2017 | 2017–2018 |
IV | 2017–2018 | 2018–2019 |
V | 2017–2018 | 2018–2019 |
Modual | Parameter Name | Definition | Unit | Range of Value for Parameter | Value |
---|---|---|---|---|---|
Growth period | k1 | The basic development coefficient in sowing to emergence stage | - | −2.0~−1.0 | −1.07 |
p1 | The temperature coefficient in sowing to emergence stage | - | 0.1~1.5 | 0.550 | |
k21 | The basic development coefficient in vernalization phase | - | −3.5~−2.5 | −3.05 | |
p21 | The temperature coefficient in vernalization phase | - | 0.1~1.5 | 0.962 | |
k22 | The basic development coefficient in photoperiod phase | - | −3.5~−2.5 | −2.854 | |
p22 | The temperature coefficient in photoperiod phase | - | 0.1~1.5 | 0.390 | |
q2 | The genetic photoperiod coefficient in photoperiod phase | - | 0.10~1.0 | 0.840 | |
k3 | The basic development coefficient in jointing to anthesis stage | - | −3.5~−2.5 | −2.90 | |
p3 | The temperature coefficient in jointing to anthesis stage | - | −0.1~1.5 | 1.330 | |
k4 | The basic development coefficient in anthesis to maturity stage | - | −3.5~−2.5 | −3.476 | |
p4 | The temperature coefficient in anthesis to maturity stage | - | 0.1~1.5 | 1.18 | |
Biomass | pa | Initial slope of the optical-response curve | g MJ−1 | 11~20 | 19.5 |
pmax | The maximum photosynthetic intensity at light saturation point | g m−2 h−1 | 3.0~7.5 | 6.570 | |
slamax | Maximum specific leaf area | m2 g−1 | 0.02~0.04 | 0.021 | |
slamin | Minimum specific leaf area | m2 g−1 | 0.01~0.02 | 0.017 | |
Yield | tr1 | The transfer rate of photosynthate to grain before heading | kg kg−1 | 0.15~0.35 | 0.210 |
tr2 | The transfer rate of photosynthate to grain after heading | kg kg−1 | 0.7~1.0 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Bai, H.; Xue, Q.; Zhao, J.; Zhao, C.; Feng, L. WheatSM V5.0: A Python-Based Wheat Growth and Development Simulation Model with Cloud Services Integration to Enhance Agricultural Applications. Agronomy 2023, 13, 2411. https://doi.org/10.3390/agronomy13092411
Chen X, Bai H, Xue Q, Zhao J, Zhao C, Feng L. WheatSM V5.0: A Python-Based Wheat Growth and Development Simulation Model with Cloud Services Integration to Enhance Agricultural Applications. Agronomy. 2023; 13(9):2411. https://doi.org/10.3390/agronomy13092411
Chicago/Turabian StyleChen, Xianguan, Huiqing Bai, Qingyu Xue, Jin Zhao, Chuang Zhao, and Liping Feng. 2023. "WheatSM V5.0: A Python-Based Wheat Growth and Development Simulation Model with Cloud Services Integration to Enhance Agricultural Applications" Agronomy 13, no. 9: 2411. https://doi.org/10.3390/agronomy13092411
APA StyleChen, X., Bai, H., Xue, Q., Zhao, J., Zhao, C., & Feng, L. (2023). WheatSM V5.0: A Python-Based Wheat Growth and Development Simulation Model with Cloud Services Integration to Enhance Agricultural Applications. Agronomy, 13(9), 2411. https://doi.org/10.3390/agronomy13092411