Soil Habitats Are Affected by Fungal Waste Recycling on Farmland in Agro-Pastoral Ecotone in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Field Management
2.3. Collection and Determination of Soil Samples
- (1)
- SBD
- (2)
- SP
- (3)
- SWC
2.4. Data Calculations and Analysis
3. Results
3.1. Effects of Fungal Residue Return on Soil Physical Properties
3.2. Effects of Fungal Residue Return on Soil Chemical Properties
3.3. Effects of Returning Fungus Residue on Microbial Quantity
3.4. Effects of Returning Fungus Residue on Enzyme Activity
3.5. Relationship between Soil Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, Y.X.; Chun, L.L.; Xiao, S.; Hong, Y.R. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. Catena 2014, 123, 11–22. [Google Scholar] [CrossRef]
- Kamel, M. Ecotone classification according to its origin. Pak. J. Biol. Sci. 2003, 6, 1553–1563. [Google Scholar] [CrossRef]
- Pfeiffer, L.; Lin, C.Y.C. Does efficient irrigation technology lead to reduced groundwater extraction? empirical evidence. J. Environ. Econ. Manag. 2014, 67, 189–208. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chen, Y.; Lian, J.; Lu, Y.; Niu, Y.; Gong, X.; Yu, P. Temporal and spatial variation of extreme temperatures in an agro-pastoral ecotone of northern China from 1960 to 2016. Sci. Rep. 2018, 8, 8787. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Gao, J.X.; Lv, S.H.; Han, Y.W.; Nie, Y.H. Shifting farming-pastoral ecotone in China under climate and land use changes. J. Arid Environ. 2011, 75, 298–308. [Google Scholar] [CrossRef]
- Qi, Y.B.; Chang, Q.R.; Jia, K.L.; Liu, M.Y.; Liu, J.; Chen, T. Temporal–spatial variability of desertification in an agro-pastoral transitional zone of northern Shaanxi Province, China. Catena 2012, 88, 37–45. [Google Scholar] [CrossRef]
- Wang, X.M.; Chen, H.F.; Hasi, E. Desertification in China: An assessment. Earth-Sci. Rev. 2008, 88, 188–206. [Google Scholar] [CrossRef]
- Qiu, J.Q.; Yu, D.Y. Spatial patterns and influence factors of ecosystem services in the Agro-pastoral ecotone of northern China: Taking the central and western regions of Inner Monglia as an example. Acta Ecol. Sin. 2023, 43, 1–12. [Google Scholar] [CrossRef]
- Zhang, F.S.; Wang, J.Q.; Zhang, W.F.; Cui, Z.L.; Ma, W.Q.; Chen, X.P.; Jiang, R.F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol. Sinia 2008, 45, 916–924. [Google Scholar] [CrossRef]
- Ju, X.T. The concept and meanings of nitrogen fertilizer availability ratio—Discussing misunderstanding of traditional nitrogen use efficiency. Acta Pedol. Sinia 2014, 51, 921–933. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Ma, Y.T.; Ma, L.R. Utilization of straw in biomass energy in China. Renew. Sustain. Energy Rev. 2007, 11, 976–987. [Google Scholar] [CrossRef]
- Ma, C.Q.; Li, M.X. Effect of ratio and size added spent mushroom substrate on soil Properties and Growth of Fraxinus mandshurica Seedlings. J. Southwest For. Univ. 2022, 42, 80–87. [Google Scholar] [CrossRef]
- Hafifah, F.; Hanafi, M.; Rezania, S.; Mat, S.; Mohd, T.; Din, F. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): An overview. J. Mater. Cycles Waste Manag. 2018, 20, 1383–1396. [Google Scholar] [CrossRef]
- Liu, J.K.; Wu, S.Z.; Cheng, H.T.; Li, G.Y.; Li, Y.; Wang, J.C.; Li, Q.F. Advances in Utilization of Spent Mushroom Substrates Plant Growing Medium. Chin. J. Trop. Crops 2019, 41, 191–198. [Google Scholar] [CrossRef]
- Meng, X.; Liu, B.; Xi, C.; Luo, X.; Yuan, X.; Wang, X.; Zhu, W.; Wang, H.; Cui, Z. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour. Technol. 2018, 251, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.C. Fertilizer efficiency test of waste after mushroom cultivation. Edible Mushroom 1985, 42–45. [Google Scholar]
- He, R.F. Comprehensive utilization of edible fungi and biological resources. Amino Acids Biol. Resour. 1998, 20, 50–53. [Google Scholar]
- Shen, J.W.; Shen, A.Z.; Yu, T.; Huo, Y.F. Effects of different organic fertilizers on soil labile organic matter and enzyme activity. Plant Nutr. Fertil. Sci. 2007, 13, 631–636. [Google Scholar]
- Mannipieri, P.; Ascher, J.; Ceccherini, L.L.; Pietramellara, G.; Renella, G. Microbialdiversity and soil functions. Eur. J. Soil Sci. 2003, 54, 665–670. [Google Scholar] [CrossRef]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential ofsiderophore-producing bacteria for improving heavy meta lphytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Hong, Q.; Zhao, Y.; Chen, M.J.; Huang, J.C.; Feng, Z.Y.; Chen, H.; Zhang, J.J. Effects of in situ return of mushroom residue on soil organic matter, enzyme activities and bacterial diversity. J. Edible Fungi 2022, 29, 27–35. [Google Scholar] [CrossRef]
- Hu, L.J.; Li, Y.; Tian, S.B.; Wei, J.Y.; Liao, D.X.; Feng, M.Y.; Zhang, H.; Zou, M.; Hang, X.N. Effects of returning bacterial residue on physical and chemical properties, microbial and enzyme activities of vegetable soil. Chin. Agric. Sci. Bull. 2020, 36, 98–104. [Google Scholar]
- Teng, Q.; Zeng, M.F.; Lin, H.F.; Xie, Y.Q. Effects of returning bacterial residue on growth, soil nutrients and enzyme activities of lettuce. Chin. Agric. Sci. Bull. 2020, 36, 30–36. [Google Scholar]
- Li, X.J.; Hai, C.X.; Liu, G.T. Spring soil erodibility for different land use patterns in the north piedmont of the Yinshan Mountains. Arid Land Geogr. 2007, 30, 926–932. [Google Scholar] [CrossRef]
- Jia, Z.F.; Zhou, Q.P.; Lei, C.S.; Liu, W.H.; Liang, G.L.; Wei, X.X.; Liu, Y.; Ji, Y.J.; Liu, Y.C. Naked oats Qingyou No.3 variety standard. Chin. Qinghai J. Anim. Vet. Sci. 2014, 44, 59. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Lin, X.G. Principleand Methods of Soil Microbiology Research; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Li, Z.G.; Luo, Y.M.; Teng, Y. Soil and Environmental Microbial Research Method; Science Press: Beijing, China, 2008. [Google Scholar]
- Zhang, M.K.; Fang, L.P. Effect of tillage, fertilizer and green manure cropping on soil quality at an abandoned brick making site. Soil Till. Res. 2007, 93, 87–93. [Google Scholar] [CrossRef]
- Stewart, D.P.C.; Cameron, K.C.; Cornforth, I.S.; Sedcole, J.R. Effects of spent mushroom substrate on soil physical conditions and plant growth in an intensive horticultural system. Soil Res. 1998, 36, 899–912. [Google Scholar] [CrossRef]
- Gong, C.; Wang, X.D.; Ni, X.; Le, T.T.; Zeng, S.Y.; Ye, Z.Q. Effects of long-term application of edible fungus residue and chemical fertilizers on fractions of labile organic carbon and available nutrients in rice field soils. J. Zhejiang A F Univ. 2018, 35, 252–260. [Google Scholar] [CrossRef]
- Mu, P.; Zhang, E.H.; Wang, H.N.; Fang, Y.F. Effects of Continuous Returning Straw to Maize Tilth Soil on Chemical Character and Microbial Biomass. J. Soil Water Conserv. 2011, 25, 81–85. [Google Scholar]
- Gregorich, E.G.; Janzen, H.; Ellert, B.H.; Helgason, B.L.; Qian, B.; Zebarth, B.J.; Angers, D.A.; Beyaert, R.P.; Drury, C.F.; Duguid, S.D.; et al. Litter decay controlled by temperature, not soil properties, affecting future soil carbon. Glob. Chang. Biol. 2017, 23, 1725–1734. [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Bustamante, M.A.; Moral, R.; Moreno-Caselles, J. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 2012, 173, 152–161. [Google Scholar] [CrossRef]
- Chun, J.H.; Kim, S.; Arasu, M.V.; Al-Dhabi, N.A.; Chung, D.Y.; Kim, S.J. Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill.). Saudi J. Biol. Sci. 2017, 24, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Han, X.Z.; Hou, X.Y. Impact of Long-Term Fertilization on Nitrogen Mineralization and Nitrificati on in Black Soil. J. Soil Water Conserv. 2008, 22, 170–173. [Google Scholar]
- Meng, X.; Liu, B.; Zhang, H.; Wu, J.; Yuan, X.; Cui, Z. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment. Bioresour. Technol. 2019, 276, 281–287. [Google Scholar] [CrossRef]
- Yao, J.W.; Ai, S.Y.; Wang, Y.H.; Li, M.J.; Tang, M.D.; Zen, Z.B. Effect of urea, ammonium bicarbonate and their combined application with organic fertilizer on successive plantation of leafy vegetables. Chin. Agric. Sci. Bull. 2009, 25, 241–244. (In Chinese) [Google Scholar]
- Parham, J.A.; Deng, S.P.; Raun, W.R.; Johnson, G.V. Long-term cattle manure application in soil, I. Effect on soil phosphorus levels, microbial biomass C, and deshydrogenase and phosphatase activities. Biol. Fertil. Soil 2002, 35, 328–337. [Google Scholar]
- Lin, X.G.; Hu, J.L. The scientific connotation of soil microbial diversity and its ecological service function. Acta Pedol. Since 2008, 45, 892–900. [Google Scholar]
- Wu, J.F.; Lin, X.G. The role of soil microorganisms in promoting plant growth. Soil 2003, 1, 18–21. [Google Scholar]
- Cheng, M.; Xie, W.Y.; Yang, Z.X.; Zhou, H.P. Effects of long-term straw return on corn yield, soil nutrient contents and enzyme activities in dryland of the Loess Plateau, China. Chin. J. Eco-Agric. 2019, 27, 1528–1536. [Google Scholar] [CrossRef]
- Doran, J.W.; Sarrantonin, M.; Liebig, M.A. Soil health and sustainability. Adv. Agron. 1996, 56, 1–54. [Google Scholar] [CrossRef]
- Shi, S.B.; Wang, X.D.; Ye, Z.Q.; Chen, W.B.; Li, T.; Chen, J.H.; Li, J.W. Effect of the combined application of fungal residue and chemical fertilizers on the mineralization of soil organic carbon in paddy fields. Environ. Sci. Pollut. Res. 2019, 26, 1–13. [Google Scholar] [CrossRef]
- Dick, R.P.; Rasmussen, P.E.; Kerle, E.A. Influence of long-term residue management on soil enzyme activity in relation to soil chemical properties of a wheat–fallow system. Soil Biol. Biochem. 1988, 6, l59–l64. [Google Scholar] [CrossRef]
- Martens, D.A.; Johanson, J.B.; Frankeberger, W.T., Jr. Production and persistence of soil enzymes with repeated additions of organic residues. Soil Sci. 1992, 153, 53–61. [Google Scholar] [CrossRef]
- Yang, L.J.; Li, T.L.; Li, F.S.; Lemcoff, J.H.; Cohen, S. Fertilization regulates soil enzymatic activity and fertility dynamics in a cucumber field. Sci. Hortic. 2008, 116, 21–26. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Wang, P.; Li, J.L.; Chen, Y.R.; Ying, X.Z.; Liu, S.Y. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Liu, J.X. Correlative research on the activity of enzyme and soil nutrient in the different types of farmland. Chin. J. Soil Sci. 2004, 35, 20–23. (In Chinese) [Google Scholar]
- Liu, E.K.; Zhao, B.Q.; Li, X.Y.; Jiang, R.B.; Li, Y.T.; Hwat, B.S. Biological properties and enzymatic activity of arable soils affected by long-term different fertilization systems. J. Plant Ecol. 2008, 32, 176–182. (In Chinese) [Google Scholar]
- Fan, J.; Hao, M.D. Study on long-term orientation of dryland rotation and fertilization in the loess plateauⅡ. Soil enzyme activity and soil fertility. Plant Nutr. Fertil. Sci. 2003, 9, 146–150. (In Chinese) [Google Scholar]
- Deng, O.P.; Xie, T.; Li, Y.; Deng, L.J. Effect of Different Residue Covering Mode on Soil Enzyme Activity Under Rice-wheat Rotation. J. Agro-Environ. Sci. 2013, 2, 2027–2034. [Google Scholar]
Soil Depth (cm) | SOM (g/kg) | AN (mg/g) | AP (mg/g) | AK (mg/g) | TN (g/kg) | TP (g/Kg) | TK (g/Kg) |
---|---|---|---|---|---|---|---|
0–10 | 14.98 | 58.12 | 4.51 | 110.13 | 0.89 | 0.42 | 36.77 |
10–20 | 14.72 | 56.03 | 3.62 | 96.25 | 0.91 | 0.26 | 37.83 |
20–30 | 14.91 | 48.17 | 2.73 | 96.45 | 0.76 | 0.34 | 30.66 |
Treatment | Value (kg/40 m2) |
---|---|
CK | 0 |
R3 | 90 |
R5 | 150 |
R7 | 210 |
R9 | 270 |
R11 | 330 |
Treatment | Soil Bulk Density (g/cm3) | Soil Porosity (%) | Soil Water Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
0–10 (cm) | 10–20 (cm) | 20–30 (cm) | 0–10 (cm) | 10–20 (cm) | 20–30 (cm) | 0–10 (cm) | 10–20 (cm) | 20–30 (cm) | |
CK | 1.51 ± 0.02 a | 1.58 ± 0.06 a | 1.59 ± 0.03 a | 41.13 ± 1.30 a | 40.21 ± 1.38 a | 39.60 ± 0.90 a | 2.97 ± 0.06 a | 3.08 ± 0.06 a | 3.23 ± 0.04 a |
R3 | 1.50 ± 0.02 a | 1.52 ± 0.04 a | 1.58 ± 0.04 a | 41.53 ± 0.80 a | 41.27 ± 0.61 a | 39.50 ± 0.89 a | 3.01 ± 0.02 a | 3.15 ± 0.08 a | 3.27 ± 0.02 a |
R5 | 1.47 ± 0.05 a | 1.47 ± 0.03 b | 1.52 ± 0.05 a | 41.67 ± 0.90 a | 41.36 ± 0.60 a | 39.73 ± 1.06 a | 3.18 ± 0.01 b | 3.28 ± 0.03 b | 3.28 ± 0.02 a |
R7 | 1.35 ± 0.11 b | 1.48 ± 0.03 b | 1.50 ± 0.02 b | 42.37 ± 0.88 a | 41.97 ± 0.87 a | 40.17 ± 1.44 a | 3.35 ± 0.04 b | 3.52 ± 0.03 b | 3.24 ± 0.11 a |
R9 | 1.23 ± 0.04 b | 1.46 ± 0.01 b | 1.46 ± 0.06 b | 43.63 ± 1.17 b | 42.63 ± 1.07 b | 41.60 ± 0.90 a | 3.45 ± 0.04 b | 3.74 ± 0.10 b | 3.22 ± 0.07 a |
R11 | 1.12 ± 0.05 b | 1.45 ± 0.03 b | 1.42 ± 0.03 b | 45.67 ± 1.50 b | 43.29 ± 1.50 b | 44.40 ± 1.97 b | 3.75 ± 0.05 b | 3.81 ± 0.06 b | 3.24 ± 0.03 a |
Treatment | Number of Bacteria (×105 cfu/g) | Proportion (%) | Number of Fungi (×103 cfu/g) | Proportion (%) | Number of Actinomycetes (×105 cfu/g) | Proportion (%) | Total Microorganisms (×105 cfu/g) |
---|---|---|---|---|---|---|---|
CK | 64 | 58.13% | 110 | 1.00% | 45 | 40.87% | 110.10 |
R3 | 68 | 58.55% | 114 | 0.98% | 47 | 40.47% | 116.14 |
R5 | 95 | 59.26% | 131 | 0.82% | 64 | 39.92% | 160.31 |
R7 | 111 | 59.53% | 145 | 0.78% | 74 | 39.69% | 186.45 |
R9 | 126 | 61.00% | 155 | 0.75% | 79 | 38.25% | 206.55 |
R11 | 125 | 61.39% | 160 | 0.79% | 77 | 37.82% | 203.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Shi, S.; Meng, R.; Ma, Z.; Meng, Z. Soil Habitats Are Affected by Fungal Waste Recycling on Farmland in Agro-Pastoral Ecotone in Northern China. Agronomy 2023, 13, 2432. https://doi.org/10.3390/agronomy13092432
Zhao F, Shi S, Meng R, Ma Z, Meng Z. Soil Habitats Are Affected by Fungal Waste Recycling on Farmland in Agro-Pastoral Ecotone in Northern China. Agronomy. 2023; 13(9):2432. https://doi.org/10.3390/agronomy13092432
Chicago/Turabian StyleZhao, Feiyan, Shiling Shi, Ruibing Meng, Ze Ma, and Zhongju Meng. 2023. "Soil Habitats Are Affected by Fungal Waste Recycling on Farmland in Agro-Pastoral Ecotone in Northern China" Agronomy 13, no. 9: 2432. https://doi.org/10.3390/agronomy13092432
APA StyleZhao, F., Shi, S., Meng, R., Ma, Z., & Meng, Z. (2023). Soil Habitats Are Affected by Fungal Waste Recycling on Farmland in Agro-Pastoral Ecotone in Northern China. Agronomy, 13(9), 2432. https://doi.org/10.3390/agronomy13092432