Limited Advantages of Green Manure Planting on Soil Nutrients and Productivity in Intensive Agriculture: A Case Study of Wheat–Maize–Sunflower Rotation in Hetao Irrigation District
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sampling and Analytical Procedures
2.3.1. Soil Nutrients Data Measurement
2.3.2. Yield Measurement
2.3.3. Economic Analyses
2.4. Statistical Analyses
3. Results
3.1. The Effects of Soil Nutrients
3.2. Grain Yield and Yield Components
3.3. Economic Analyses
4. Discussion
4.1. Effects of Green-Manure-Inclusive Diversified Rotation on Soil Nutrients
4.2. Effect of Green-Manure-Inclusive Diversified Rotation on Crop Yield
4.3. Effect of Green Manure Inclusive Diversified Rotation on Economic Return
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malezieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Chang. Biol 2021, 27, 4697–4710. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, Y.D.; Zhang, K.; Jeong, J.; Zeng, Z.H.; Zang, H.D. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Chai, Q.; Nemecek, T.; Liang, C.; Zhao, C.; Yu, A.; Coulter, J.A.; Wang, Y.; Hu, F.; Wang, L.; Siddique, K.H.M.; et al. Integrated farming with intercropping increases food production while reducing environmental footprint. Proc. Natl. Acad. Sci. USA 2021, 118, e2106382118. [Google Scholar] [CrossRef] [PubMed]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.-A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Melander, B.; Rasmussen, I.A.; Olesen, J.E. Legacy effects of leguminous green manure crops on the weed seed bank in organic crop rotations. Agric. Ecosyst. Environ. 2020, 302, 107078. [Google Scholar] [CrossRef]
- Hu, Q.; Thomas, B.W.; Powlson, D.; Hu, Y.; Zhang, Y.; Jun, X.; Shi, X.; Zhang, Y. Soil organic carbon fractions in response to soil, environmental and agronomic factors under cover cropping systems: A global meta-analysis. Agric. Ecosyst. Environ. 2023, 355, 108591. [Google Scholar] [CrossRef]
- Snapp, S.S.; Blackie, M.J.; Gilbert, R.A.; Bezner-Kerr, R.; Kanyama-Phiri, G.Y. Biodiversity can support a greener revolution in Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 20840–20845. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.; Li, Y.; Zhao, J.; Yang, Y.; Zang, H.; Zeng, Z. Peanut residue incorporation benefits crop yield, nitrogen yield, and water use efficiency of summer peanut–winter wheat systems. Field Crops Res. 2022, 279, 108463. [Google Scholar] [CrossRef]
- Wittwer, R.A.; Dorn, B.; Jossi, W.; van der Heijden, M.G.A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 2017, 7, 41911. [Google Scholar] [CrossRef]
- Wang, X.Q.; Yang, Y.D.; Pei, K.; Zhou, J.; Peixoto, L.; Gunina, A.; Zeng, Z.H.; Zang, H.D.; Rasmussen, J.; Kuzyakov, Y. Nitrogen rhizodeposition by legumes and its fate in agroecosystems: A field study and literature review. Land Degrad. Dev. 2021, 32, 410–419. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Beillouin, D.; Lambers, H.; Yang, Y.; Smith, P.; Zeng, Z.; Olesen, J.E.; Zang, H. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Commun. 2022, 13, 4926. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Ren, L. Assessing water productivity in the Hetao Irrigation District in Inner Mongolia by an agro-hydrological model. Irrig. Sci. 2017, 35, 357–382. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, P.; Pan, Z.; Duan, Y.; Li, H.; Wang, B.; Jing, Y.; Dong, Z. Determination of input threshold of nitrogen fertilizer based on environment-friendly agriculture and maize yield. Trans. Chin. Soc. Agric. Eng. 2016, 32, 136–143. [Google Scholar]
- Wang, X.; Zhang, H.; Zhang, Z.; Zhang, C.; Zhang, K.; Pang, H.; Bell, S.M.; Li, Y.; Chen, J. Reinforced soil salinization with distance along the river: A case study of the Yellow River Basin. Agric. Water Manag. 2023, 279, 108184. [Google Scholar] [CrossRef]
- Couedel, A.; Alletto, L.; Tribouillois, H.; Justes, E. Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agric. Ecosyst. Environ. 2018, 254, 50–59. [Google Scholar] [CrossRef]
- Alletto, L.; Cassigneul, A.; Duchalais, A.; Giuliano, S.; Brechemier, J.; Justes, E. Cover crops maintain or improve agronomic performances of maize monoculture during the transition period from conventional to no-tillage. Field Crops Res. 2022, 283, 108540. [Google Scholar] [CrossRef]
- Snapp, S.S.; Cox, C.M.; Peter, B.G. Multipurpose legumes for smallholders in sub-Saharan Africa: Identification of promising ‘scale out’ options. Glob. Food Secur. 2019, 23, 22–32. [Google Scholar] [CrossRef]
- Amede, T.; Legesse, G.; Agegnehu, G.; Gashaw, T.; Degefu, T.; Desta, G.; Mekonnen, K.; Schulz, S.; Thorne, P. Short term fallow and partitioning effects of green manures on wheat systems in East African highlands. Field Crops Res. 2021, 269, 108175. [Google Scholar] [CrossRef]
- Rose, T.J.; Parvin, S.; Han, E.; Condon, J.; Flohr, B.M.; Schefe, C.; Rose, M.T.; Kirkegaard, J.A. Prospects for summer cover crops in southern Australian semi-arid cropping systems. Agr. Syst. 2022, 200, 103415. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Prasad, P.V.V. Water storage and use efficiencies of rainfed winter wheat-summer green manure systems of the US Southern Great Plains. Eur. J. Agron. 2023, 146, 126818. [Google Scholar] [CrossRef]
- Zhu, B.; Yi, L.X.; Guo, L.M.; Chen, G.; Hu, Y.G.; Tang, H.M.; Xiao, C.F.; Xiao, X.P.; Yang, G.L.; Acharya, S.N.; et al. Performance of two winter cover crops and their impacts on soil properties and two subsequent rice crops in Dongting Lake Plain, Hunan, China. Soil Tillage Res. 2012, 124, 95–101. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, J.; Jing, Y.; Wang, B.; Hao, Y.; Zhao, N. NPK absorption, fertilizing effect of wheat /silage rape multiple cropping in Hetao irrigation area. Chin. J. Oil Crop Sci. 2017, 39, 848–854. [Google Scholar]
- Li, H.; Fan, Z.; Wang, Q.; Wang, G.; Yin, W.; Zhao, C.; Yu, A.; Cao, W.; Chai, Q.; Hu, F. Green manure and maize intercropping with reduced chemical N enhances productivity and carbon mitigation of farmland in arid areas. Eur. J. Agron. 2023, 145, 126788. [Google Scholar] [CrossRef]
- Kuai, J.; Du, X.; Hu, M.; Zeng, J.; Zuo, Q.; Wu, J.; Zhou, G. Effect of symbiotic periods and plant densities on growth and yield of rapeseed Intercropping Cotton. Acta Agron. Sin. 2016, 42, 591–599. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, H.; Chang, F.; Song, J.; Wang, J.; Wang, X.; Kan, Z.; Zhao, N.; Li, X.; Ma, J.; et al. Mixed sowing of Feed rape and Vicia villosa can substitute nitrogen fertilizer to improve soil multifunctionality in the Hetao irrigation District. Catena 2024, 235, 107617. [Google Scholar] [CrossRef]
- Bao, S. Soil Agro-Chemistrical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Tang, Q.Y.; Zhang, C.X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef]
- Wood, S.A.; Bowman, M. Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators. Nat. Food 2021, 2, 97–103. [Google Scholar] [CrossRef]
- Ozbolat, O.; Sanchez-Navarro, V.; Zornoza, R.; Egea-Cortines, M.; Cuartero, J.; Ros, M.; Pascual, J.A.; Boix-Fayos, C.; Almagro, M.; de Vente, J.; et al. Long-term adoption of reduced tillage and green manure improves soil physicochemical properties and increases the abundance of beneficial bacteria in a Mediterranean rainfed almond orchard. Geoderma 2023, 429, 116218. [Google Scholar] [CrossRef]
- Ma, D.; Yin, L.; Ju, W.; Li, X.; Liu, X.; Deng, X.; Wang, S. Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Res. 2021, 266, 108146. [Google Scholar] [CrossRef]
- Kuehling, I.; Mikuszies, P.; Helfrich, M.; Flessa, H.; Schlathoelter, M.; Sieling, K.; Kage, H. Effects of winter cover crops from different functional groups on soil-plant nitrogen dynamics and silage maize yield. Eur. J. Agron. 2023, 148, 126878. [Google Scholar] [CrossRef]
- De Notaris, C.; Rasmussen, J.; Sorensen, P.; Melander, B.; Olesen, J.E. Manipulating cover crop growth by adjusting sowing time and cereal inter-row spacing to enhance residual nitrogen effects. Field Crops Res. 2019, 234, 15–25. [Google Scholar] [CrossRef]
- Fan, F.; van der Werf, W.; Makowski, D.; Lamichhane, J.R.; Huang, W.; Li, C.; Zhang, C.; Cong, W.-F.; Zhang, F. Cover crops promote primary crop yield in China: A meta-regression of factors affecting yield gain. Field Crops Res. 2021, 271, 108237. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, C.; Ren, H.; Xu, Q.; Yao, Z.; Yuan, Y.; Yao, P.; Zhao, N.; Li, Y.; Zhang, S.; et al. Trade-offs between winter wheat production and soil water consumption via leguminous green manures in the Loess Plateau of China. Field Crops Res. 2021, 272, 108278. [Google Scholar] [CrossRef]
- Clark, A.J.; Decker, A.M.; Meisinger, J.J.; McIntosh, M.S. Kill date of vetch, rye, and a vetch-rye mixture: I. Cover crop and corn nitrogen. Agron. J. 1997, 89, 427–434. [Google Scholar] [CrossRef]
- Ladan, S.; Jacinthe, P.-A. Nitrogen availability and early corn growth on plowed and no-till soils amended with different types of cover crops. J. Soil Sci. Plant Nutr. 2017, 17, 74–90. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shrestha, A.; Horwath, W.R.; Southard, R.J.; Madden, N.; Veenstra, J.; Munk, D.S. Tillage and cover cropping affect crop yields and soil carbon in the San Joaquin Valley, California. Agron. J. 2015, 107, 588–596. [Google Scholar] [CrossRef]
- Li, X.-F.; Wang, Z.-G.; Bao, X.-G.; Sun, J.-H.; Yang, S.-C.; Wang, P.; Wang, C.-B.; Wu, J.-P.; Liu, X.-R.; Tian, X.-L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Miguez, F.E.; Bollero, G.A. Review of corn yield response under winter cover cropping systems using meta-analytic methods. Crop Sci. 2005, 45, 2318–2329. [Google Scholar] [CrossRef]
- Marcillo, G.S.; Miguez, F.E. Corn yield response to winter cover crops: An updated meta-analysis. J. Soil Water Conserv. 2017, 72, 226–239. [Google Scholar] [CrossRef]
- Li, C.; Stomph, T.-J.; Makowski, D.; Li, H.; Zhang, C.; Zhang, F.; van der Werf, W. The productive performance of intercropping. Proc. Natl. Acad. Sci. USA 2023, 120, e2201886120. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhang, Y.; Zhai, L.; Liu, J.; Wang, H.; Liu, H. The environmental benefit and farmer adoption of winter cover crops in the North China Plain. Pedosphere 2023, 33. [Google Scholar]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
Soil Depth (cm) | SOM (g/kg) | AN (mg/kg) | AP (mg/kg) | EK (mg/kg) | TN (g/kg) | TP (g/kg) | TK (g/kg) | WS (g/kg) | pH |
---|---|---|---|---|---|---|---|---|---|
0−20 | 13.0 | 73 | 26.2 | 130 | 0.80 | 0.40 | 20.0 | 0.58 | 8.8 |
20−40 | 9.3 | 36 | 11.5 | 63 | 0.73 | 0.56 | 17.5 | 0.52 | 8.9 |
Treatment | Cycle 1 (2015–2017) | Cycle 2 (2018–2020) | Two-Way ANOVA | ||||
---|---|---|---|---|---|---|---|
Without GM | With GM | Without GM | With GM | C | G | C × G | |
Spring wheat (2015 and 2018) | |||||||
Spike number (m−2) | 720 ± 3 | 726 ± 5 | 728 ± 4 | 723 ± 5 | ns | ns | ns |
Grain number (spike−1) | 34.7 ± 1.2 | 36.8 ± 2.2 | 36.4 ± 1.9 | 32.2 ± 2.4 | ns | ns | ns |
1000-grain weight (g) | 53.9 ± 1.8 | 50.5 ± 0.9 | 50.1 ± 3.1 | 47.5 ± 0.8 | ns | ns | ns |
AGB (Mg ha−1) | 13.3 ± 0.3 | 13.2 ± 0.1 | 13.6 ± 0.4 | 13.9 ± 0.3 | ns | ns | ns |
HI | 0.51 ± 0.00 | 0.51 ± 0.01 | 0.48 ± 0.01 | 0.48 ± 0.01 | ** | ns | ns |
Maize (2016 and 2019) | |||||||
Ear number (m−2) | 7.40 ± 0.26 | 7.33 ± 0.04 | 7.20 ± 0.30 | 7.20 ± 0.36 | ns | ns | ns |
Kernel number (ear−1) | 654 ± 29 | 670 ± 29 | 634 ± 19 | 667 ± 13 | ns | ns | ns |
100-kernel weight (g) | 35.1 ± 0.7 | 35.3 ± 0.7 | 33.4 ± 0.2 b | 36.6 ± 1.3 a | ns | ns | ns |
AGB (Mg ha−1) | 30.4 ± 0.9 | 33.3 ± 0.1 | 29.2 ± 0.9 b | 32.3 ± 1.6 a | ns | * | ns |
HI | 0.50 ± 0.01 a | 0.47 ± 0.01 b | 0.52 ± 0.02 a | 0.47 ± 0.02 b | ns | * | ns |
Sunflower (2017 and 2020) | |||||||
Head number (m−2) | 3.05 ± 0.06 | 3.08 ± 0.07 | 3.00 ± 0.12 | 2.86 ± 0.02 | ** | ns | ns |
Seed number (head−1) | 970 ± 93 | 1128 ± 99 | 1253 ± 151 | 1467 ± 30 | ns | ns | ns |
Seed setting rate (%) | 88.7 ± 3.4 | 88.5 ± 1 | 83.6 ± 0.5 | 86.3 ± 2.3 | ns | ns | ns |
100-seed weight (g) | 17.7 ± 0.9 | 18.8 ± 0.8 | 23.4 ± 1.2 b | 26.6 ± 1.3 a | * | ns | ns |
AGB (Mg ha−1) | 12.7 ± 0.2 | 13.2 ± 0.1 | 11.3 ± 0.5 | 11.7 ± 0.1 | ns | ns | ns |
HI | 0.29 ± 0.00 | 0.28 ± 0.00 | 0.33 ± 0.01 b | 0.35 ± 0.01 a | * | * | ** |
Wheat Yield (2015 and 2018) | Maize Yield (2016 and 2019) | Sunflower Yield (2017 and 2020) | |||
---|---|---|---|---|---|
Spike number | −0.17 | Ear number | 0.67 * | Head number | −0.68 * |
Grain number | −0.04 | Kernel number | 0.14 | Seed number | 0.57 |
1000-grain weight | 0.25 | 100–kernel weight | −0.35 | 100–seed weight | 0.03 |
AGB | 0.53 | AGB | 0.65 * | AGB | 0.58 * |
HI | 0.42 | HI | 0.60 * | HI | −0.08 |
Seed setting rate | 0.03 |
Item | Spring Wheat | Maize | Sunflower | Price | |||
---|---|---|---|---|---|---|---|
Without GM | With GM | Without GM | With GM | Without GM | With GM | ||
Average inputs | |||||||
Seed (kg ha−1) | 375 | 375 | 45 | 45 | 30 | 30 | 5, 20, and 40 CNY kg−1 for wheat, maize, and sunflower, respectively |
Green manure seed (kg ha−1) | 0 | 50 | 0 | 30 | 0 | 30 | 30 CNY kg−1 |
Urea (kg ha−1) | 387 | 387 | 485 | 485 | 485 | 485 | 4 CNY kg−1 |
Diammonium phosphate (kg ha−1) | 261 | 261 | 261 | 261 | 261 | 261 | 3.7 CNY kg−1 |
Potassium sulfate (kg ha−1) | 180 | 180 | 180 | 180 | 180 | 180 | 3.3 CNY kg−1 |
Herbicide (bottle ha−1) | 15 | 15 | 22.5 | 22.5 | 22.5 | 22.5 | 20 CNY bottle−1 |
Irrigation (m3 ha−1) | 1875 | 1875 | 2250 | 2250 | 1125 | 1125 | 0.8 CNY m−3 |
Plastic film mulching (kg ha−1) | 0 | 0 | 50 | 50 | 37.5 | 37.5 | 12 CNY kg−1 |
Labor (No. ha−1) | 0 | 0 | 0 | 0 | 5 | 5 | 150 CNY laborer−1 |
Machinery (times year−1) | |||||||
Rotary tillage | 1 | 2 | 1 | 2 | 1 | 2 | 675 CNY ha−1 |
Soil rolling | 1 | 2 | 1 | 1 | 1 | 1 | 150 CNY ha−1 |
Sowing | 1 | 2 | 1 | 2 | 1 | 2 | 750 CNY ha−1 |
Harvest | 1 | 1 | 1 | 1 | 1 | 1 | 750 CNY ha−1 |
Plough tillage | 1 | 1 | 1 | 1 | 1 | 1 | 750 CNY ha−1 |
Total (CNY hm−2) | 9858 | 12933 | 10325 | 12650 | 10325 | 12650 | |
Average outputs, crop yield (Mg ha−1, 13%, 14% of wheat, maize moisture content) | |||||||
Cycle 1 (2015–2017) | 6.8 | 6.8 | 15.2 | 15.5 | 3.7 | 3.8 | 3200, 2100, and 6000 CNY mg−1 for wheat, maize, and sunflower, respectively |
Cycle 2 (2018–2020) | 6.6 | 6.7 | 15.1 | 15.3 | 3.7 | 4.1 | 3200, 2400, and 6400 CNY mg−1 for wheat, maize, and sunflower, respectively |
Net income (CNY hm−2) | |||||||
Cycle1 (2015–2017) | 11,902 | 8827 | 21,595 | 19,900 | 11,875 | 10,150 | |
Cycle 2 (2018–2020) | 11,262 | 8507 | 25,915 | 24,070 | 13,355 | 13,590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Zhang, J.; Li, X.; Ma, J.; Cao, J.; Liu, H.; Wang, X.; Bai, L.; Wang, Z. Limited Advantages of Green Manure Planting on Soil Nutrients and Productivity in Intensive Agriculture: A Case Study of Wheat–Maize–Sunflower Rotation in Hetao Irrigation District. Agronomy 2024, 14, 100. https://doi.org/10.3390/agronomy14010100
Zhao N, Zhang J, Li X, Ma J, Cao J, Liu H, Wang X, Bai L, Wang Z. Limited Advantages of Green Manure Planting on Soil Nutrients and Productivity in Intensive Agriculture: A Case Study of Wheat–Maize–Sunflower Rotation in Hetao Irrigation District. Agronomy. 2024; 14(1):100. https://doi.org/10.3390/agronomy14010100
Chicago/Turabian StyleZhao, Na, Jun Zhang, Xiaohong Li, Jun Ma, Jufeng Cao, Hanjiang Liu, Xiquan Wang, Lanfang Bai, and Zhigang Wang. 2024. "Limited Advantages of Green Manure Planting on Soil Nutrients and Productivity in Intensive Agriculture: A Case Study of Wheat–Maize–Sunflower Rotation in Hetao Irrigation District" Agronomy 14, no. 1: 100. https://doi.org/10.3390/agronomy14010100
APA StyleZhao, N., Zhang, J., Li, X., Ma, J., Cao, J., Liu, H., Wang, X., Bai, L., & Wang, Z. (2024). Limited Advantages of Green Manure Planting on Soil Nutrients and Productivity in Intensive Agriculture: A Case Study of Wheat–Maize–Sunflower Rotation in Hetao Irrigation District. Agronomy, 14(1), 100. https://doi.org/10.3390/agronomy14010100