Contribution to the Optimization of Methods for Vigor Seed Evaluation of Camelina sativa (L.) Crantz
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germination Assay
2.2. Vigor Assessments
2.3. Topographical Tetrazolium Test (TTZ)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brock, J.R.; Ritchey, M.M.; Olsen, M.K. Molecular and archaeological evidence on the geographical origin of domestication for Camelina sativa. Am. J. Bot. 2022, 109, 1177–1190. [Google Scholar] [CrossRef] [PubMed]
- Marjanović Jeromela, A.; Cvejić, S.; Mladenov, V.; Kuzmanović, B.; Adamović, B.; Stojanović, D.; Vollmann, J. Technological quality traits phenotyping of Camelina across multienvironment trials. Acta Agric. Scand. B Soil Plant Sci. 2021, 71, 667–673. [Google Scholar] [CrossRef]
- Brock, J.R.; Scott, T.; Lee, A.Y.; Mosyakin, L.S.; Olsen, M.K. Interactions between genetics and environment shape Camelina seed oil composition. BMC Plant Biol. 2020, 20, 423. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, F.; Alberghini, B.; Marjanović Jeromela, A.; Grahovac, N.; Rajković, D.; Kiprovski, B.; Monti, A. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agron. Sustain. Dev. 2021, 41, 2. [Google Scholar] [CrossRef]
- Ubeyitogullari, A.; Ciftci, O.N. Fabrication of bioaerogels from camelina seed mucilage for food applications. Food Hydrocoll. 2020, 102, 105597. [Google Scholar] [CrossRef]
- Moser, B.R. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol. 2010, 22, 270–273. [Google Scholar] [CrossRef]
- Berhow, M.A.; Polat, U.; Glinski, J.A.; Glensk, M.; Vaughn, S.F.; Isbell, T.; Ayala-Diaz, I.; Marek, L.; Gardner, C. Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Ind. Crops Prod. 2013, 43, 119–125. [Google Scholar] [CrossRef]
- Marcos-Filho, J. Seed vigor testing: An overview of the past, present and future perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef]
- Cvejić, S.; Jocić, S.; Mitrović, B.; Bekavac, G.; Mirosavljević, M.; Marjanović Jeromela, A.; Zorić, M.; Radanović, A.; Kondić-Špika, A.; Miladinović, D. Inovative approaches in breeding of climate-resilient crops. In Climate Change and Agriculture: Perspectives, Sustainability and Resilience; Benkeblia, N., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; Chapter 6; pp. 111–156. [Google Scholar]
- Vaughan, M.M.; Block, A.; Christensen, S.A.; Hartwell Allen, L.; Schmelz, E.A. The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochem. Rev. 2018, 17, 37–49. [Google Scholar] [CrossRef]
- Oliveira, G.M.D.; Silva, F.F.S.D.; Araujo, M.D.N.; Costa, D.C.C.D.; Gomes, S.E.V.; Matias, J.R.; Angelotti, F.; Cruz, C.R.P.; Seal, C.E.; Dantas, B.F. Environmental stress, future climate, and germination of Myracrodruon urundeuva seeds. J. Seed Sci. 2019, 41, 32–43. [Google Scholar] [CrossRef]
- Fos, M.; Alfonso, L.; Ferrer-Gallego, P.P.; Laguna, E. Effect of salinity, temperature and hypersaline conditions on the seed germination in Limonium mansanetianum an endemic and threatened Mediterranean species. Plant Biosyst. 2020, 155, 165–171. [Google Scholar] [CrossRef]
- Baalbaki, R.; Elias, S.; Marcos-Filho, J.; McDonald, M.B. Seed Vigor Testing Handbook; Association of Official Seed Analyst: Ithaca, NY, USA, 2009. [Google Scholar]
- ISTA. International Rules for Seed Testing, 2022nd ed.; International Seed Testing Association: Wallisellen, Switzerland, 2022; Chapter 5; p. 15. [Google Scholar]
- Hampton, J.G.; TeKrony, D.M. (Eds.) . Handbook of Vigour Test Methods; International Seed Testing Association: Zurich, Switzerland, 1995. [Google Scholar]
- Abdul-Baki, B.A.A.; Anderson, J.D. Relationship between decarboxylation of glutamic acid and vigour in soybean seed. Crop Sci. 1973, 13, 222–226. [Google Scholar] [CrossRef]
- Hay, F.R.; Valdez, R.; Lee, J.S.; Sta Cruz, P.C. Seed longevity phenotyping: Recommendations on research methodology. J. Exp. Bot. 2019, 70, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Kong, Z.; Liao, X.; Liu, Y. Effects of Accelerated Aging on Physiological and Biochemical Characteristics of Waxy and Non-waxy Wheat Seeds. J. Northeast Agric. Univ. 2011, 18, 7–12. [Google Scholar] [CrossRef]
- Bijanzadeh, E.; Naderi, R.; Nosrati, K.; Egan, T.P. Effects of accelerated ageing on germination and biochemistry of eight rice cultivars. J. Plant Nutr. 2017, 40, 156–164. [Google Scholar] [CrossRef]
- Jovičić, D.; Popović, B.M.; Jeromela, A.M.; Nikolić, Z.; Ignjatov, M.; Milošević, D. The interaction between salinity stress and seed ageing during germination of Brassica napus seeds. Seed Sci. Technol. 2019, 47, 47–52. [Google Scholar] [CrossRef]
- Ebone, L.A.; Caverzan, A.; Tagliari, A.; Chiomento, J.L.T.; Silveira, D.C.; Chavarria, G. Soybean Seed Vigor: Uniformity and Growth as Key Factors to Improve Yield. Agronomy 2020, 10, 545. [Google Scholar] [CrossRef]
- Coelho, M.V.; Lima e Silva, I.M.H.; Silva, A.A.S.; Paz, R.B.O.; Rocha, D.I.; Machado, C.G.; Silva, G.Z. Accelerated aging test in the determination of safflower seeds vigor. Biosci. J. 2022, 38, e38003. [Google Scholar] [CrossRef]
- Tian, X.; Song, S.; Lei, Y. Cell death and reactive oxygen species metabolism during accelerated ageing of soybean axes. Russ. J. Plant Physiol. 2008, 55, 33–40. [Google Scholar] [CrossRef]
- McDonald, M.B. Seed deterioration: Physiology, repair and assessment. Seed Sci. Technol. 1999, 27, 177–237. [Google Scholar]
- Jovičić, D.; Štajner, D.; Popović, B.M.; Marjanović-Jeromela, A.; Nikolić, Z.; Petrović, G.; Zdero-Pavlović, R. Salt-induced changes in the antioxidant system and viability of oilseed rape. Zemdirbyste 2017, 104, 249–258. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Luo, X.; Dai, Y.; Yang, Y.; Zheng, C.; Yang, W.; Shu, K. A matter of life and death: Molecular, physiological, and environmental regulation of seed longevity. Plant Cell Environ. 2020, 43, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Liu, L.; Gao, F.; Rampitsch, C.; Reinecke, D.M.; Ozga, J.A.; Ayele, T.B. Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea. J. Plant Physiol. 2012, 169, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
- Kurek, K.; Plitta-Michalak, B.; Ratajczak, E. Reactive oxygen species as potential drivers of the seed aging process. Plants 2019, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.D.; Vieira, R.D.; Santos, J.M. Influência do envelhecimento acelerado na anatomia da testa de sementes de soja, cv. Monsoy 8400. Rev. Bras. Sementes 2008, 30, 91–99. [Google Scholar] [CrossRef]
- Datura, A.S.; Medeiros-Filho, S. Teste de deterioração controlada na determinação do vigor em sementes de algodão. Brazilian J. Seeds 2008, 30, 19–23. Available online: http://www.scielo.br/pdf/rbs/v30n1/a03 (accessed on 20 December 2023). [CrossRef]
- Awan, S.; Footitt, S.; Finch-Savage, W.E. Interaction of maternal environment and allelic differences in seed vigour genes determines seed performance in Brassica oleracea. Plant J. 2018, 94, 1098–1108. [Google Scholar] [CrossRef]
- Zakaria, M.S.; Ashraf, H.F.; Seragm, E.Y. Direct and residual effects of nitrogen fertilization, foliar application of potassium and plant growth retardant on Egyptian cotton growth, seed yield, seed viability and seedling vigour. Acta Ecol. Sin. 2009, 29, 116–123. [Google Scholar] [CrossRef]
- Moyo, R.; Ndlovu, E.; Moyo, N.; Kudita, S.; Maphosa, M. Physiological parameters of seed vigour in ex-situ stored sorghum germplasm. J. Cereals Oilseeds 2015, 6, 31–38. [Google Scholar] [CrossRef]
- Rodrigues, M.; Gomes-Junior, G.F.; Marcos-Filho, J. Vigor-S: System for Automated Analysis of Soybean Seed Vigor. J. Seed Sci. 2020, 42, e202042039. [Google Scholar] [CrossRef]
- Franca-Neto, J.B.; Krzyzanowski, F.C. Metodologia Do Teste de Tetrazólio em Sementes de Soja; Embrapa CNPS: Londrina, Brazil, 2018; 109p, Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/193315/1/Doc-406-OL.pdf (accessed on 20 December 2023).
- Franca-Neto, J.B.; Krzyzanowski, F.C. Tetrazolium: An important test for physiological seed quality evaluation. J. Seed Sci. 2019, 41, 359–366. [Google Scholar] [CrossRef]
- Merritt, D.J.; Martyn, A.J.; Ainsley, P.; Young, R.E.; Seed, L.U.; Thorpe, M.; Hay, F.R.; Commander, L.E.; Shackelford, N.; Offord, C.A. A continental -scale study of seed lifespan in experimental storage examining seed, plant, and environmental traits associated with longevity. Biodivers. Conserv. 2014, 23, 1081–1104. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Xiang, Y.; Zhang, S.; Wang, J.; Sun, Q. Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239, 118488. [Google Scholar] [CrossRef] [PubMed]
- Still, D.W.; Bradford, K.J. Using hydrotime and ABA-time models to quantify seed quality of Brassicas during development. J. Am. Soc. Hortic. Sci. 1998, 123, 692–699. [Google Scholar] [CrossRef]
- Bedi, S.; Kaur, R.; Sital, J.S.; Kaur, J. Artificial ageing of Brassica seeds of different maturity levels. Seed Sci. Res. 2006, 34, 287–296. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; pp. 341–376. [Google Scholar]
- Harper, J.L.; Benton, R.A. The behavior of seeds in soil: II. The germination of seeds on the surface of a water supplying substrate. J. Ecol. 1996, 54, 151–166. [Google Scholar] [CrossRef]
- Cui, J.; Jiang, W.; Sun, Q.; Sun, B. Drought resistance of Camelina sativa (L.) Crantz seeds in germination. Chin. Sci. Bull. 2006, 10, 203–205. [Google Scholar]
- Čanak, P.; Jeromela, A.M.; Vujošević, B.; Kiprovski, B.; Mitrović, B.; Alberghini, B.; Facciolla, E.; Monti, A.; Zanetti, F. Is Drought Stress Tolerance Affected by Biotypes and Seed Size in the Emerging Oilseed Crop Camelina? Agronomy 2020, 10, 1856. [Google Scholar] [CrossRef]
Test | Genotypes | Germination (%) | Atypical Seedlings (%) | Shoot Length (mm) | Root Length (mm) | SVI |
---|---|---|---|---|---|---|
Standard germination test | NS Slatka | 91 a ± 1.26 | 2 d ± 0.00 | 34.75 ab ± 3.69 | 42.13 a ± 1.93 | 69.78 a |
NS Zlatka | 89 b ± 1.71 | 2 d ± 1.29 | 35.125 ab ± 1.03 | 40.00 abc ± 2.68 | 66.71 ab | |
Accelerate ageing test 1 | NS Slatka | 89 b ± 1.41 | 3 cd ± 1.29 | 35.75 ab ± 1.50 | 40.50 ab ± 3.06 | 67.83 ab |
NS Zlatka | 87 c ± 2.37 | 2 d ± 0.50 | 35.5 ab ± 1.47 | 40.88 ab ± 1.65 | 66.65 ab | |
Accelerate ageing test 2 | NS Slatka | 85 cde ± 1.41 | 7 a ± 1.29 | 33.38 ab ± 1.80 | 38.00 bc ± 3.34 | 60.66 d |
NS Zlatka | 85 cde ± 2.88 | 6 ab ± 0.50 | 34.25 ab ± 3.07 | 36.25 c ± 2.47 | 60.05 d | |
Hiltner test | NS Slatka | 86 cde ± 2.08 | 7 a ± 1.89 | 32.25 ab ± 2.90 | 39.75 abc ± 3.52 | 61.50 cd |
NS Zlatka | 88 bc ± 2.08 | 7 a ± 1.89 | 31.38 b ± 1.43 | 38.75 abc ± 2.78 | 61.35 cd | |
Cold test | NS Slatka | 84 ef ± 2.22 | 8 a ± 2.06 | 33.38 ab ± 3.04 | 37.13 bc ± 3.07 | 59.41 d |
NS Zlatka | 82 f ± 1.83 | 8 a ± 2.16 | 33.13 ab ± 1.65 | 37.50 bc ± 1.35 | 57.90 d | |
Controlled deterioration test | NS Slatka | 85 def ± 1.26 | 7 a ± 1.25 | 32.25 ab ± 0.29 | 37.00 bc ± 0.41 | 58.44 d |
NS Zlatka | 84 ef ± 1.29 | 6 ab ± 0.96 | 34.00 ab ± 0.41 | 36.00 c ± 0.01 | 58.69 d | |
Standard germination test after 1 year | NS Slatka | 87 cde ± 1.73 | 3 cd ± 0.96 | 34.25 ab ± 3.30 | 40.63 ab ± 2.87 | 64.75 bc |
NS Zlatka | 86 cde ± 1.71 | 4 bc ± 2.16 | 33.75 ab ± 2.72 | 38.25 abc ± 0.65 | 61.72 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovičić, D.; Marjanović Jeromela, A.M.; Zanetti, F.; Nikolić, Z.; Mastroberardino, R.; Tamindžić, G.; Rajković, D. Contribution to the Optimization of Methods for Vigor Seed Evaluation of Camelina sativa (L.) Crantz. Agronomy 2024, 14, 178. https://doi.org/10.3390/agronomy14010178
Jovičić D, Marjanović Jeromela AM, Zanetti F, Nikolić Z, Mastroberardino R, Tamindžić G, Rajković D. Contribution to the Optimization of Methods for Vigor Seed Evaluation of Camelina sativa (L.) Crantz. Agronomy. 2024; 14(1):178. https://doi.org/10.3390/agronomy14010178
Chicago/Turabian StyleJovičić, Dušica, Ana M. Marjanović Jeromela, Federica Zanetti, Zorica Nikolić, Rossella Mastroberardino, Gordana Tamindžić, and Dragana Rajković. 2024. "Contribution to the Optimization of Methods for Vigor Seed Evaluation of Camelina sativa (L.) Crantz" Agronomy 14, no. 1: 178. https://doi.org/10.3390/agronomy14010178
APA StyleJovičić, D., Marjanović Jeromela, A. M., Zanetti, F., Nikolić, Z., Mastroberardino, R., Tamindžić, G., & Rajković, D. (2024). Contribution to the Optimization of Methods for Vigor Seed Evaluation of Camelina sativa (L.) Crantz. Agronomy, 14(1), 178. https://doi.org/10.3390/agronomy14010178