Critical Period of Weed Control in Maize as Influenced by Soil Tillage Practices and Glyphosate Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Environmental Conditions
2.2. Experimental Design and Management Practices
2.3. Crop and Weed Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Weed Density and Biomass Accumulation
3.2. Maize Growth Parameters
3.3. Critical Timing for Weed Removal and the Critical Weed-Free Period
4. Conclusions and Management Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Petit, S.; Munier-Jolain, N.; Bretagnolle, V.; Bockstaller, C.; Gaba, S.; Cordeau, S.; Lechenet, M.; Mézière, D.; Colbach, N. Ecological intensification through pesticide reduction: Weed control, weed biodiversity and sustainability in arable farming. Environ. Manag. 2015, 56, 1078–1090. [Google Scholar] [CrossRef] [PubMed]
- Storkey, J.; Meyer, S.; Still, K.S.; Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. Biol. Sci. 2011, 279, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Rosenbom, A.E.; Olsen, P.; Plauborg, F.; Grant, R.; Juhler, R.K.; Brüsch, W.; Kjær, J. Pesticide leaching through sandy and loamy fields—Long-term lessons learnt from the Danish pesticide leaching assessment programme. Environ. Pollut. 2015, 201, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Vasileiadis, V.P.; Otto, S.; Van Dijk, W.; Urek, G.; Leskovšek, R.; Verschwele, A.; Furlan, L.; Sattin, M. On-farm evaluation of integrated weed management tools for maize production in three different agro-environments in Europe: Agronomic efficacy, herbicide use reduction, and economic sustainability. Eur. J. Agron. 2015, 63, 71–78. [Google Scholar] [CrossRef]
- Riemens, M.; Sønderskov, M.; Moonen, A.C.; Storkey, J.; Kudsk, P. An integrated weed management framework: A pan-European perspective. Eur. J. Agron. 2022, 133, 126443. [Google Scholar] [CrossRef]
- Moss, S. Integrated weed management (IWM): Why are farmers reluctant to adopt non-chemical alternatives to herbicides? Pest. Manag. Sci. 2019, 75, 1205–1211. [Google Scholar] [CrossRef]
- Kudsk, P.; Streibig, J.C. Herbicides—A two-edged sword. Weed Res. 2003, 43, 90–102. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Devos, Y.; Beckie, H.J.; Owen, M.D.; Tillie, P.; Messéan, A.; Kudsk, P. Integrated weed management systems with herbicide-tolerant crops in the European Union: Lessons learnt from home and abroad. Crit. Rev. Biotechnol. 2017, 37, 459–475. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Evans, S.P.; Blankenship, E.E.; Van Acker, R.C.; Lindquist, J.L. Critical period for weed control: The concept and data analysis. Weed Sci. 2002, 50, 773–786. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Soltani, N.; Dille, J.A.; Burke, I.C.; Everman, W.J.; VanGessel, M.J.; Davis, V.M.; Sikkema, P.H. Potential corn yield losses from weeds in North America. Weed Technol. 2016, 30, 979–984. [Google Scholar] [CrossRef]
- Hall, M.R.; Swanton, C.J.; Anderson, G.W. The critical period of weed control in grain corn (Zea mays). Weed Sci. 1992, 40, 441–447. [Google Scholar] [CrossRef]
- Isik, D.; Mennan, H.; Bukun, B.; Oz, A.; Ngouajio, M. The critical period for weed control in corn in Turkey. Weed Technol. 2006, 20, 867–872. [Google Scholar] [CrossRef]
- Gantoli, G.; Ayala, V.R.; Gerhards, R. Determination of the critical period for weed control in corn. Weed Technol. 2013, 27, 63–71. [Google Scholar] [CrossRef]
- Tursun, N.; Datta, A.; Sakinmaz, M.S.; Kantarci, Z.; Knezevic, S.Z.; Chauhan, B.S. The critical period for weed control in three corn (Zea mays L.) types. Crop Prot. 2016, 90, 59–65. [Google Scholar] [CrossRef]
- Ghosheh, H.Z.; Holshouser, D.L.; Chandler, J.M. The critical period of johnsongrass (Sorghum halepense) control in field corn (Zea mays). Weed Sci. 1996, 44, 944–947. [Google Scholar] [CrossRef]
- Evans, S.P.; Knezevic, S.Z.; Lindquist, J.L.; Shapiro, C.A.; Blankenship, E.E. Nitrogen application influences the critical period for weed control in corn. Weed Sci. 2003, 51, 408–417. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Oliveira, M.J. Comparison of the critical period for weed control in wide- and narrow-row corn. Weed Sci. 2004, 52, 802–807. [Google Scholar] [CrossRef]
- Price, A.J.; Korres, N.E.; Norsworthy, J.K.; Li, S. Influence of a cereal rye cover crop and conservation tillage on the critical period for weed control in cotton. Weed Technol. 2018, 32, 683–690. [Google Scholar] [CrossRef]
- Ramesh, K. Weed problems, ecology, and management options in conservation agriculture: Issues and perspectives. Adv. Agron. 2015, 131, 251–303. [Google Scholar] [CrossRef]
- Mhazo, N.; Chivenge, P.; Chaplot, V. Tillage impact on soil erosion by water: Discrepancies due to climate and soil characteristics. Agric. Ecosyst. Environ. 2016, 230, 231–241. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2013, 187, 87–105. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Van Groenigen, K.J.; Lee, J.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Gill, G.; Preston, C. Seedling recruitment pattern and depth of recruitment of 10 weed species in minimum tillage and no-till seeding systems. Weed Sci. 2006, 54, 658–668. [Google Scholar] [CrossRef]
- Travlos, I.; Gazoulis, I.; Kanatas, P.; Tsekoura, A.; Zannopoulos, S.; Papastylianou, P. Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Front. Agron. 2020, 2, 1. [Google Scholar] [CrossRef]
- Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Tørresen, K.S.; Skuterud, R.; Tandsæther, H.J.; Hagemo, M.B. Long-term experiments with reduced tillage in spring cereals. I. Effects on weed flora, weed seedbank and grain yield. Crop Prot. 2003, 22, 185–200. [Google Scholar] [CrossRef]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 2018, 6, 11. [Google Scholar] [CrossRef]
- Derrouch, D.; Dessaint, F.; Fried, G.; Chauvel, B. Weed community diversity in conservation agriculture: Post-adoption changes. Agric. Ecosyst. Environ. 2021, 312, 107351. [Google Scholar] [CrossRef]
- Reimer, M.; Ringselle, B.; Bergkvist, G.; Westaway, S.; Wittwer, R.; Baresel, J.P.; Van Der Heijden, M.G.A.; Mangerud, K.; Finckh, M.R.; Brandsæter, L.O. Interactive effects of subsidiary crops and weed pressure in the transition period to non-inversion tillage, a case study of six sites across Northern and Central Europe. Agronomy 2019, 9, 495. [Google Scholar] [CrossRef]
- Sanyal, D.; Bhowmik, P.C.; Anderson, R.L.; Shrestha, A. Revisiting the perspective and progress of integrated weed management. Weed Sci. 2008, 56, 161–167. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Datta, A. The critical period for weed control: Revisiting data analysis. Weed Sci. 2015, 63, 188–202. [Google Scholar] [CrossRef]
- San Martín, C.; Andújar, D.; Barroso, J.; Fernández-Quintanilla, C.; Dorado, J. Weed decision threshold as a key factor for herbicide reductions in site-specific weed management. Weed Technol. 2016, 30, 888–897. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Everman, W.J.; Clewis, S.B.; Thomas, W.E.; Burke, I.C.; Wilcut, J.W. Critical period of weed interference in peanut. Weed Technol. 2008, 22, 63–67. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Evans, S.P.; Mainz, M. Row spacing influences the critical timing for weed removal in soybean (Glycine max). Weed Technol. 2003, 17, 666–673. [Google Scholar] [CrossRef]
- Santner, J.; Mannel, M.; Burrell, L.D.; Hoefer, C.; Kreuzeder, A.; Wenzel, W.W. Phosphorus uptake by Zea mays L. is quantitatively predicted by infinite sink extraction of soil P. Plant Soil 2015, 386, 371–383. [Google Scholar] [CrossRef]
- Hanway, J.J. Growth stages of corn (Zea mays, L.). Agron. J. 1963, 55, 487–492. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono and Dicotyledonous Plants; BBCH Monograph, Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001. [Google Scholar]
- Gilmore, E.C.; Rogers, J.S. Heat units as a method of measuring maturity in corn. Agron. J. 1958, 50, 611–615. [Google Scholar] [CrossRef]
- Cousens, R. Aspects of the design and interpretation of competition (interference) experiments. Weed Technol. 1991, 5, 664–673. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Knezevic, S.Z.; Jens, C.S.; Christian, R. Utilizing R software package for dose-response studies: The concept and data analysis. Weed Technol. 2007, 21, 840–848. [Google Scholar] [CrossRef]
- Bilalis, D.; Papastylianou, P.; Konstantas, A.; Patsiali, S.; Karkanis, A.; Efthimiadou, A. Weed-suppressive effects of maize–legume intercropping in organic farming. Int. J. Pest Manag. 2010, 56, 173–181. [Google Scholar] [CrossRef]
- Agostinho, F.H.; Gravena, R.; Alves, P.L.C.A.; Salgado, T.P.; Mattos, E.D. The effect of cultivar on critical periods of weed control in peanuts. Peanut Sci. 2006, 33, 29–35. [Google Scholar] [CrossRef]
- Colbach, N.; Adeux, G.; Cordeau, S.; Moreau, D. Weed-induced yield loss through resource competition cannot be sidelined. Trends Plant Sci. 2023, 28, 1329–1330. [Google Scholar] [CrossRef] [PubMed]
- Ahmadvand, G.; Mondani, F.; Golzardi, F. Effect of crop plant density on critical period of weed competition in potato. Sci. Hortic. 2009, 121, 249–254. [Google Scholar] [CrossRef]
- Amuri, N.; Brye, K.R.; Gbur, E.E.; Oliver, D.; Kelley, J. Weed populations as affected by residue management practices in a wheat-soybean double-crop production system. Weed Sci. 2010, 58, 234–243. [Google Scholar] [CrossRef]
- Djaman, K.; Allen, S.; Djaman, D.S.; Koudahe, K.; Irmak, S.; Puppala, N.; Darapuneni, M.K.; Angadi, S.V. Planting date and plant density effects on maize growth, yield and water use efficiency. Environ. Chall. 2022, 6, 100417. [Google Scholar] [CrossRef]
- Lasisi, D.; Aluko, O.B. Effects of tillage methods on soybean growth and yield in a tropical sandy loam soil. Int. Agrophysics 2009, 23, 147–153. [Google Scholar]
- Kombiok, J.M.; Buah, S.S.J. Tillage depth effects on nodulation, nitrogen fixation and yield of three soybean varieties in the Northern Savanna zone of Ghana. Afr. J. Agric. Res. 2013, 8, 2340–2345. [Google Scholar] [CrossRef]
- El-Sadek, A.N.; Abd El-Ghany, F.I.; Shaalan, A.M. Simulating the effect of tillage practices on the yield production of wheat and barley under dryland conditions. Agron. Res. 2020, 18, 2374–2390. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Andrade, D.D.S.; Chueire, L.M.D.O.; Takemura, S.M.; Hungria, M. Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol. Biochem. 2000, 32, 627–637. [Google Scholar] [CrossRef]
- Dogan, M.N.; Ünay, A.; Boz, O.; Albay, F. Determination of optimum weed control timing in maize (Zea mays L.). Turk. J. Agric. For. 2004, 28, 349–354. [Google Scholar]
- Teasdale, J.R. Influence of narrow row/high population corn (Zea mays) on weed control and light transmittance. Weed Technol. 1995, 9, 113–118. [Google Scholar] [CrossRef]
- Halford, C.; Hamill, A.S.; Zhang, J.; Doucet, C. Critical period of weed control in no-till soybean (Glycine max) and corn (Zea mays). Weed Technol. 2001, 15, 737–744. [Google Scholar] [CrossRef]
- Uremis, I.; Uludag, A.; Ulger, A.; Cakir, B. Determination of critical period for weed control in the second crop corn under Mediterranean conditions. Afr. J. Biotechnol. 2009, 8, 4475–4480. [Google Scholar]
GDD (±SE) | CGS | DAE | |||||
---|---|---|---|---|---|---|---|
Tillage Practice | AYL (%) | CTWR a | CWFP a | CTWR a | CWFP a | CTWR a | CWFP a |
CN | 2.5 | 124 (34) | 928 (115) | V3 | R1 | 39 | 104 |
5 | 125 (12) | 823 (83) | V2 | R1 | 39 | 96 | |
10 | 148 (37) | 804 (45) | V3 | R1 | 42 | 95 | |
CS | 2.5 | 35 (40) | 731 (23) | VE | V15 | 17 | 89 |
5 | 66 (6) | 633 (102) | V2 | V12 | 23 | 81 | |
10 | 118 (33) | 568 (48) | V3 | V12 | 38 | 76 | |
NT | 2.5 | 95 (14) | 745 (21) | V2 | R1 | 33 | 90 |
5 | 133 (10) | 615 (31) | V3 | V12 | 40 | 79 | |
10 | 171 (11) | 489 (46) | V3 | V9 | 44 | 70 |
Regression Parameters (±SE) | ||||
---|---|---|---|---|
Tillage Practice | Treatment | B | C | I50 |
Conventional | Weedy | 8.5 (3.3) | 75.4 (1.4) | 153 (16) |
Weed-free | −10.1 (1.1) | 78.9 (5.5) | 830 (17) | |
Conservation | Weedy | 1.8 (0.6) | 78.5 (1.9) | 116 (21) |
Weed-free | −6.7 (14.7) | 78.3 (7.4) | 541 (25) | |
No-tillage | Weedy | 3.1 (0.3) | 70.2 (0.6) | 209 (7) |
Weed-free | −2.8 (4.7) | 79.5 (7.1) | 598 (40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamič Zamljen, S.; Leskovšek, R. Critical Period of Weed Control in Maize as Influenced by Soil Tillage Practices and Glyphosate Application. Agronomy 2024, 14, 93. https://doi.org/10.3390/agronomy14010093
Adamič Zamljen S, Leskovšek R. Critical Period of Weed Control in Maize as Influenced by Soil Tillage Practices and Glyphosate Application. Agronomy. 2024; 14(1):93. https://doi.org/10.3390/agronomy14010093
Chicago/Turabian StyleAdamič Zamljen, Sergeja, and Robert Leskovšek. 2024. "Critical Period of Weed Control in Maize as Influenced by Soil Tillage Practices and Glyphosate Application" Agronomy 14, no. 1: 93. https://doi.org/10.3390/agronomy14010093
APA StyleAdamič Zamljen, S., & Leskovšek, R. (2024). Critical Period of Weed Control in Maize as Influenced by Soil Tillage Practices and Glyphosate Application. Agronomy, 14(1), 93. https://doi.org/10.3390/agronomy14010093