Circular Regenerative Agricultural Practices in Africa: Techniques and Their Potential for Soil Restoration and Sustainable Food Production
Abstract
:1. Introduction
2. Indicators for Circular Regenerative Agricultural Practices in African Food Production Systems
3. Opportunities and Challenges in Embracing Circular Regenerative Agricultural Practices in Africa
4. Interlinkages Between Circular Agriculture, the Circular Economy and Sustainable Soil Management in Selected Countries
5. Restoration of Soil Health through Circular Regenerative Agricultural Practices: Selected Examples for Extensification in Africa
6. Conclusions and Recommendations for the Future of Africa’s Circular Agricultural Systems
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Selvan, T.; Panmei, L.; Murasing, K.K.; Guleria, V.; Ramesh, K.R.; Bhardwaj, D.R.; Thakur, C.L.; Kumar, D.; Sharma, P.; Umedsinh, R.D.; et al. Circular economy in agriculture: Unleashing the potential of integrated organic farming for food security and sustainable development. Frontiers in Sustainable. Food Syst. 2023, 7, 1170380. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. What Is a Circular Economy? Available online: https://ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview (accessed on 5 July 2024).
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; López-Felices, B.; Román-Sánchez, I.M. Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustain. Prod. Consum. 2022, 34, 257–270. [Google Scholar] [CrossRef]
- Evans, 2021. Feed Beets: An Economical Substitute for Grains. Progress Diary. Available online: https://www.agproud.com/articles/36009-feed-beets-an-economical-substitute-for-grains (accessed on 16 March 2024).
- Adie, A.; Bezabih, M.; Mekonnen, K.; Thorne, P. Fodder Beet (Beta vulgaris) for Livestock Feed. Available online: https://cgspace.cgiar.org/server/api/core/bitstreams/7fdcb57b-3d22-45f7-a2ce-9568c7650aba/content (accessed on 16 March 2024).
- EASAC. Regenerative Agriculture in Europe: A Critical Analysis of Contributions to European Union Farm to Fork and Biodiversity Strategies. 2022. Available online: https://easac.eu/fileadmin/PDF_s/reports_statements/Regenerative_Agriculture/EASAC_RegAgri_Web_290422.pdf (accessed on 13 August 2024).
- Rempelos, L.; Kabourakis, E.; Leifert, C. Innovative Organic and Regenerative Agricultural Production. Agronomy 2023, 13, 1344. [Google Scholar] [CrossRef]
- Helina, T.; Schmidt, E. A Spatial Assessment of Livestock Production Patterns in Ethiopia. ESSP Working Paper 44, “Spatial Analysis of Livestock Production Patterns in Ethiopia”. 2012. Available online: https://essp.ifpri.info/files/2011/04/ESSP2_WP44_SpatialAnalysisLivestockProduction.pdf (accessed on 20 July 2024).
- Mekuria, W.; Mekonnen, K. Determinants of crop–livestock diversification in the mixed farming systems: Evidence from central highlands of Ethiopia. Agric. Food Secur. 2018, 7, 60. [Google Scholar] [CrossRef]
- Wineman, A.; Jayne, T.S.; Isinika Modamba, E.; Kray, H. The Changing Face of Agriculture in Tanzania: Indicators of Transformation. Dev. Policy Rev. 2020, 38, 685–709. [Google Scholar] [CrossRef]
- Bahta, S.; Temoso, O.; Ng’ombe, J.N.; Rich, K.M.; Baker, D.; Kaitibie, S.; Malope, P. Productive efficiency of beef cattle production in Botswana: A latent class stochastic metafrontier analysis. Front. Sustain. Food Syst. 2023, 7, 1098642. [Google Scholar] [CrossRef]
- Mthembu, N.N.; Zwane, E.M. The adaptive capacity of smallholder mixed-farming systems to the impact of climate change: The case of KwaZulu-Natal in South Africa. Jàmbá: J. Disaster Risk Stud. 2017, 9, a469. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.A.; Asai, M.; Sarthou, J.P.; Duru, M.; Therond, O. Crop–livestock integration beyond the farm level: A review. Agron. Sustain. Dev. 2016, 36, 53. [Google Scholar] [CrossRef]
- FAO. Sub-Saharan Africa. Available online: https://www.fao.org//4/y1860E/y1860e04.htm (accessed on 13 May 2023).
- Acevedo-Siaca, L.; Goldsmith, P.D. Soy-Maize Crop Rotations in Sub-Saharan Africa: A Literature Review. Int. J. Agron. 2020, 2020, 8833872. [Google Scholar] [CrossRef]
- Sauerborn, J.; Sprich, H.; Mercer-Quarshie, H. Crop Rotation to Improve Agricultural Production in Sub-Saharan Africa. J. Agron. Crop Sci. 2000, 184, 67–72. [Google Scholar] [CrossRef]
- Tufa, A.H.; Kanyamuka, J.S.; Alene, A.; Ngoma, H.; Marenya, P.P.; Thierfelder, C.; Banda, H.; Chikoye, D. Analysis of adoption of conservation agriculture practices in southern Africa: Mixed-methods approach. Front. Sustain. Food Syst. 2023, 7, 1151876. [Google Scholar] [CrossRef]
- Jama, B.; Zeila, A. Agroforestry in the Drylands of Eastern Africa: A Call to Action; ICRAF Working Paper—No. 1; World Agroforestry Centre: Nairobi, Kenya, 2005. [Google Scholar]
- Kuyah, S.; Sileshi, G.W.; Luedeling, E.; Akinnifesi, F.K.; Whitney, C.W.; Bayala, J.; Kuntashula, E.; Dimobe, K.; Mafongoya, P.L. Potential of Agroforestry to Enhance Livelihood Security in Africa. In Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges; Dagar, J.C., Gupta, S.R., Teketay, D., Eds.; Springer: Singapore, 2020; Volume 1. [Google Scholar] [CrossRef]
- Muthuri, C.W.; Kuyah, S.; Njenga, M.; Kuria, A.; Öborn, I.; Noordwijk, M. Agroforestry’s contribution to livelihoods and carbon sequestration in East Africa: A systematic review. Trees For. People 2023, 14, 100432. [Google Scholar] [CrossRef]
- UNEP-UNCTAD. Organic Agriculture and Food Security in Africa. 2008. Available online: https://unctad.org//system/files/official-document/ditcted200715_en.pdf (accessed on 5 May 2024).
- Galal, S. Countries with the Highest Organic Share of Agricultural Land in Africa 2019. Available online: https://www.statista.com/statistics/1284936/countries-with-the-largest-organic-agricultural-area-in-africa/ (accessed on 5 May 2024).
- FAO. Solar Energy and Agricultural Development in West Africa: FAO Shares Its Achievements. 2024. Available online: https://www.fao.org//africa/news/detail-news/en/c/1628340/ (accessed on 7 May 2024).
- World Economic Forum (WEFORUM). Combining Crops and Solar Panels Allowing Kenya to “Harvest the Sun Twice”. Available online: https://www.weforum.org/agenda/2022/03/solar-energy-security-farm-africa/ (accessed on 1 July 2022).
- The International Water Management Institute (IWMI). How Solar-Based Innovations are Helping Farmers in Africa to Become Water and Food Secure. 2024. Available online: https://www.iwmi.cgiar.org/success-stories/how-solar-based-innovations-are-helping-farmers-in-africa-become-water-and-food-secure/ (accessed on 7 May 2024).
- African Development Bank (AfDB). Solar Technology Helps Women Farmers in Tanzania Cut Post-Harvest Losses. 2023. Available online: https://www.afdb.org//en/news-and-events/solar-technology-helps-women-farmers-tanzania-cut-post-harvest-losses-42485 (accessed on 27 July 2024).
- Ogbonna, J.C.; Nomura, N.; Aoyagi, H. Bioenergy production and food security in Africa. Afr. J. Biotechnol. 2013, 12, 7147–7157. [Google Scholar]
- Lynd, L.R.; Sow, M.; Chimphango, A.F.; AB Cortez, L.; Cruz, C.H.B.; Elmissiry, M.; Laser, M.; A Mayaki, I.; Moraes, M.A.; Nogueira, L.A.; et al. Bioenergy and African transformation. Biotechnol Biofuels 2015, 8, 18. [Google Scholar] [CrossRef]
- Kizito, F. Automated Irrigation as a Game-Changer for Farming in Sub-Saharan Africa: Is It Enough? ASA-CSSA-SSSA International Annual Meeting in San Antonio, TX, USA, 2019. Available online: https://cgspace.cgiar.org/items/a95153a4-252e-4202-9f0f-4af3ff3f80ab (accessed on 24 July 2024).
- Malabo Montpellier Panel. Water-Wise: Smart Irrigation Strategies for Africa, Dakar. 2018. Available online: https://www.mamopanel.org/media/uploads/files/Irrigation_report_FINAL_ONLINE.pdf (accessed on 3 July 2024).
- AGRA. Irrigation Doubles African Food Production. Available online: https://agra.org/news/irrigation-doubles-african-food-production/#:~:text=Water-Wise%3A%20Smart%20Irrigation%20Strategies,and%20better%20prospects%20for%20farmers (accessed on 3 July 2024).
- Ait-Mouheb, N.; Bahri, A.; Ben Thayer, B.; Benyahia, B.; Bourrié, G.; Cherki, B.; Condom, N.; Declercq, R.; Gunes, A.; Heran, M.; et al. The reuse of reclaimed water for irrigation around the Mediterranean Rim: A step towards a more virtuous cycle? Environ. Chang. 2018, 18, 693–705. [Google Scholar] [CrossRef]
- Jimenez, B. Irrigation in Developing Countries Using Wastewater. Int. Rev. Environ. Strateg. 2006, 6, 229–250. [Google Scholar]
- Hoogendijk, K.; Myburgh, P.; Howell, C.; Hoffman, J. Irrigation of Agricultural Crops with Municipal Wastewater—A Review. S. Afr. J. Enol. Vitic. 2023, 44, 31–54. [Google Scholar] [CrossRef]
- Dugbazah, J.; Glove, B.; Mbuli, B.; Kungade, C. Safeguarding Food Security through Composting Waste Materials into Organic Fertiliser in Africa, 2022. Available online: https://www.nepad.org/blog/safeguarding-food-security-through-composting-waste-materials-organic-fertiliser-africa (accessed on 5 August 2024).
- Esipisu, I. For Kenyan Farmers, Organic Fertilizer Bokashi Brings the Land Back to Life. Available online: https://news.mongabay.com/2021/11/bokashi-fast-decomposing-bio-fertilizer-proves-effective-for-organic-farmers-in-kenya/ (accessed on 10 August 2024).
- Anon. Ghana Turns Sugarcane Farming Waste into Organic Fertilizer. DW. 12 November 2021. Available online: https://www.dw.com/en/ghana-turns-sugarcane-farming-waste-into-organic-fertilizer/a-59730966 (accessed on 10 August 2024).
- Magoum, I. Gambia: Kanifing to Convert Organic Waste into Fertiliser and Biomass. Afrik 21. 29 July 2021. Available online: https://www.afrik21.africa/en/gambia-kanifing-to-convert-organic-waste-into-fertiliser-and-biomass/ (accessed on 10 August 2024).
- Magoum, I. Morocco: Compost Systems to Turn Agricultural Waste into Fertilizer. Afrik 21. 17 November 2021. Available online: https://www.afrik21.africa/en/morocco-compost-systems-to-turn-agricultural-waste-into-fertilizer/ (accessed on 10 August 2024).
- Ndambi, O.A.; Pelster, D.E.; Owino, J.O.; de Buisonjé, F.; Vellinga, T. Manure Management Practices and Policies in Sub-Saharan Africa: Implications on Manure Quality as a Fertilizer. Front. Sustain. Food Syst. 2019, 3, 29. [Google Scholar] [CrossRef]
- Okorogbona, A.O.M.; Adebisi, L.O. Animal Manure for Smallholder Agriculture in South Africa. In Farming for Food and Water Security; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2012; Volume 10. [Google Scholar] [CrossRef]
- Phiri, J.U.; Msaky, J.J.; Mrema, J.; Kanyama-Phiri, G.Y.; Msanya, B.M. Effect of Pigeon Pea-Groundnut Inter cropping System on Selected Soil Properties. Int. J. Plant Soil Sci. 2014, 3, 397–407. [Google Scholar] [CrossRef]
- Aremu-Dele, O.; Adesanya, K.A.; Olorundare, B.O.; Asunbo, O.; Odeyemi, E.F. Intercrop practices in cashew production. World J. Adv. Res. Rev. 2021, 10, 281–288. [Google Scholar] [CrossRef]
- Saiz, G.; Wandera, F.M.; Pelster, D.E.; Ngetich, W.; Okalebo, J.R.; Rufino, M.C.; Butterbach-Bahl, K. Long-term assessment of soil and water conservation measures (Fanya-juu terraces) on soil organic matter in South Eastern Kenya. Geoderma 2016, 247, 1–9. [Google Scholar] [CrossRef]
- Ziyadi, M.; Dahbi, A.; Aitlhaj, A.; El Ouahrani, A.; El Ouahidi, A.; Achtak, H. Terraced Agroforestry Systems in West Anti-Atlas (Morocco): Incidence of Climate Change and Prospects for Sustainable Development. In Climate Change-Resilient Agriculture and Agroforestry; Sustainability of Agricultural Environment in Egypt: Part II; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Abebe, H.; Asfaw, Z. Review on Contribution of Home Garden Agroforestry on Woody Species Biodiversity Conservation and their Livelihood Improvement in Ethiopia. Int. J. For. Hortic. 2023, 9, 1–10. [Google Scholar] [CrossRef]
- Lunderstedt, K.; James Gambiza, J.; Kahinda, J.M. Home Garden Agroforestry and Conservation Agriculture Promotes Food Security in Rural South Africa. Available online: https://www.undp.org/south-africa/news/home-garden-agroforestry-and-conservation-agriculture-promotes-food-security-rural-south-africa (accessed on 1 May 2024).
- Mehari, A.B.; Abera, M.W. Opportunities and challenges of adopting home garden agroforestry practices in Ethiopia: A review. Cogent Food Agric. 2019, 5, 1618522. [Google Scholar] [CrossRef]
- Hansen, L.; Sorgho, R.; Mank, I.; Schwerdtle, P.N.; Agure, E.; Bärnighausen, T.; Danquah, I. Home gardening in sub-Saharan Africa: A scoping review on practices and nutrition outcomes in rural Burkina Faso and Kenya. Food Energy Secur. 2022, 11, e388. [Google Scholar] [CrossRef]
- Mekonnen, K.; Glatzel, G.; Sieghardt, M. Indigenous Tree and Shrub Species for Soil Fertility Improvement in Galessa and Jeldu Areas, Western Shewa, Ethiopia. Available online: http://austriaca.at//0xc1aa5576%200x001a288c.pdf (accessed on 15 July 2024).
- Sileshi, G.W.; Mafongoya, P.L.; Akinnifesi, F.K.; Phiri, E.; Chirwa, P.; Beedy, T.; Jiri, O. Agroforestry: Fertilizer Trees. Encycl. Agric. Food Syst. 2014, 1, 222–234. [Google Scholar] [CrossRef]
- Ribeiro-Barros, A.I.; Silva, M.J.; Moura, I.; Ramalho, J.C.; Máguas-Hanson, C.; Ribeiro, N.S. The Potential of Tree and Shrub Legumes in Agroforestry Systems. In Nitrogen in Agriculture—Updates; InTech: Houston, TX, USA, 2018. [Google Scholar] [CrossRef]
- Oyelami, B.A.; Osikabor, B. Adoption of Silvopastoral Agroforestry System for a Sustainable Cattle Production in Nigeria. J. Appl. Sci. Environ. Manag. 2022, 26, 1397–1402. [Google Scholar] [CrossRef]
- Chamshama, S.A.O.; Monela, G.C.; Sekiete, K.E.A.; Persson, A. Suitability of the taungya system at North Kilimanjaro Forest Plantation, Tanzania. Agroforest Syst. 1992, 17, 1–11. [Google Scholar] [CrossRef]
- Matusso, J.M.M.; Mugwe, J.N.; Mucheru-Muna, M. Potential Role of Cereal-Legume Intercropping Systems in Integrated Soil Fertility Management in Smallholder Farming Systems of Sub-Saharan Africa. 2012. Available online: https://www.fao.org/family-farming/detail/en/c/329086/ (accessed on 1 July 2024).
- Wenda-Piesik, A.; Synowiek, A. A productive and ecological aspect of mixed cropping system. Agriculture 2021, 11, 395. [Google Scholar] [CrossRef]
- Nzila, C.; Dewulf, J.; Spanjers, H.; Kiriamiti, H.; van Langenhove, H. Biowaste energy potential in Kenya. Renew. Energy 2010, 35, 2698–2704. [Google Scholar] [CrossRef]
- Kaifa, J.; Parawira, W. A Study of the Current State of Biogas Production in Zimbabwe: Lessons for Southern Africa. Adv. Biotechnol. Microbiol. 2019, 13, 555865. [Google Scholar] [CrossRef]
- Reuters. Africa’s First Grid-Connected Biogas Plant Powers Up. Available online: https://www.reuters.com/article/kenya-energy-biogas/africas-first-grid-connected-biogas-plant-powers-up-idUSL5N1EZ1KL (accessed on 29 June 2024).
- Söderberg, S.S.M. Small-Scale Biogas Production in Kenya. Available online: http://www.diva-portal.se/ (accessed on 30 July 2024).
- The World Bank. Solar Energy Brings Water to Niger Farms. Available online: https://www.worldbank.org/en/news/feature/2023/03/16/solar-energy-brings-water-to-niger-farms (accessed on 2 July 2024).
- IKEA Foundation. Unlocking Solar Energy to Power Farms and Businesses in Africa. Available online: https://ikeafoundation.org/stories/unlocking-solar-energy-to-power-farms-and-businesses-in-africa/ (accessed on 2 July 2024).
- Kemausuor, F.; Adaramola, M.S.; Morken, J. A Review of Commercial Biogas Systems and Lessons for Africa. Energies 2018, 11, 2984. [Google Scholar] [CrossRef]
- Moreroa, M.; Motshekga, S.C. The feasibility of using biogas generated from livestock manure as an alternative energy source: A South African perspective. J. Energy S. Afr. 2024, 34, 1–16. [Google Scholar] [CrossRef]
- Tamagnone, P.; Luis Cea, L.; Comino, E.; Rosso, M. Rainwater Harvesting Techniques to Face Water Scarcity in African Drylands: Hydrological Efficiency Assessment. Water 2020, 12, 2646. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M. Agriculture: Increase water harvesting in Africa. Nature 2015, 519, 283–285. [Google Scholar] [CrossRef]
- Reetsch, A.; Kimaro, D.; Feger, K.H.; Schwärzel, K. Traditional and Adapted Composting Practices Applied in Smallholder Banana-Coffee-Based Farming Systems: Case Studies from Kagera and Morogoro Regions, Tanzania. In Organic Waste Composting through Nexus Thinking; Hettiarachchi, H., Caucci, S., Schwärzel, K., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Oueriemmi, H.; Kidd, P.; Trasar-Cepeda, C.; Rodríguez-Garrido, B.; Zoghlami, R.; Ardhaoui, K.; Moussa, M. Evaluation of Composted Organic Wastes and Farmyard Manure for Improving Fertility of Poor Sandy Soils in Arid Regions. Agriculture 2021, 11, 415. [Google Scholar] [CrossRef]
- Constantine, J.; Shitindi, M.J.; Sibuga, K.P.; Hilbeck, A. Soil quality Change Following Compost and Farmyard Manure Application in Maize and Cassava based Agro-ecosystems of Mvomero and Masasi—Tanzania. J. Agric. Crops 2023, 9, 472–482. [Google Scholar] [CrossRef]
- Lekasi, J.K.; Tanner, J.C.; Kimani, S.K.; Harris, P.J.C. Manure Management in the Kenya Highlands: Practices and Potential. Available online: https://gardenorganic-assets.s3.eu-west-2.amazonaws.com/documents/Manure_management.pdf (accessed on 11 August 2024).
- Onduru, D.D.; Gachini, G.N.; de Jager, A.; Diop, J.-M. Participatory Research on Compost and Liquid Manure in Kenya. Available online: https://www.iied.org/sites/default/files/pdfs/migrate/7409IIED.pdf (accessed on 11 August 2024).
- Bayu, W.; Rethman, N.F.G.; Hammes, P.S.; Alemu, G. Effects of Farmyard Manure and Inorganic Fertilizers on Sorghum Growth, Yield, and Nitrogen Use in a Semi-Arid Area of Ethiopia. J. Plant Nutr. 2006, 29, 391–407. [Google Scholar] [CrossRef]
- Laub, M.; Corbeels, M.; Ndungu, S.M.; Mucheru-Muna, M.W.; Mugendi, D.; Necpalova, M.; Van de Broek, M.; Waswa, W.; Vanlauwe, B.; Johan Six, J. Combining manure with mineral N fertilizer maintains maize yields: Evidence from four long-term experiments in Kenya. Field Crops Res. 2023, 291, 108788. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Der Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Overview booklet, License: Creative Commons Attribution CC BY 3.0 IGO; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Khan, I.; Chowdhury, S.; Techato, K. Waste to Energy in Developing Countries—A Rapid Review: Opportunities, Challenges, and Policies in Selected Countries of Sub-Saharan Africa and South Asia towards Sustainability. Sustainability 2022, 14, 3740. [Google Scholar] [CrossRef]
- Omari, A.M.; Kichonge, B.N.; John, G.R.; Njau, K.N.; Mtui, P.L. Potential of municipal solid waste, as renewable energy source—A case study of Arusha. Tanzan. Int. J. Renew. Energy Technol. Res. 2014, 3, 1–9. [Google Scholar]
- Tahiru, A.-W.; Cobbina, S.J.; Asare, W.; Takal, S.U. Unlocking Energy from Waste: A Comprehensive Analysis of Municipal Solid Waste Recovery Potential in Ghana. World 2024, 5, 192–218. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Harijan, K.; Khan, M.W.A.; Mengal, A.; Shaikh, F.; Memon, Z.A.; Mirjat, N.H.; Kumar, L. Long-term optimal power generation pathways for Pakistan. Energy Sci. Eng. 2021, 9, 2252–2267. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Liang, X.; O’Callaghan, E.; Goh, H.; Othman, M.H.D.; Avtar, R.; Kusworo, T.D. Transformation of solid waste management in China: Moving towards sustainability through digitalization-based circular economy. Sustainability 2022, 14, 2374. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). CTCN Knowledge Brief Series. Harnessing Technology in the CE for Climate Action in Africa. 2022. Available online: https://www.ctc-n.org/sites/default/files/CTCN_Circular_Economy_Africa_Fin.pdf (accessed on 5 July 2024).
- United Nations Environment Programme (UNEP). Sustainable Consumption and Production Policies. 2021. Available online: https://www.unep.org/explore-topics/resource-efficiency/what-we-do/sustainable-consumption-and-production-policies (accessed on 7 July 2024).
- International Labor Organization (ILO). Transforming Food Waste into Animal Feeds in Tanzania. Available online: https://www.ilo.org/resource/article/transforming-food-waste-animal-feeds-tanzania (accessed on 8 July 2024).
- Finca Tanzania. FINCA Ventures: Supporting Innovative Approaches to Sustainable Waste Management in East Africa. Available online: https://finca.org/blogs/supporting-sustainable-waste-management (accessed on 5 July 2024).
- Intellecap. Black Soldier Fly Could Offer a Revolution for Farming and Waste Management. Available online: https://www.intellecap.com/black-soldier-fly-could-offer-a-revolution-for-farming-and-waste-management/ (accessed on 8 July 2024).
- Lambers, H.; Cong, W.F. Challenges providing multiple ecosystem benefits for sustainable managed systems. Front. Agric. Sci. Eng. 2022, 9, 170–176. [Google Scholar]
- Smith, J.L.; Collins, H.P.; Bailey, V.L. The significance of soil microbial diversity for agriculture: A review. Appl. Soil Ecol. 2020, 156, 103706. [Google Scholar] [CrossRef]
- Gerke, J. The central role of soil organic matter in soil fertility and carbon storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Pečkytė, J.; Tumaseviciute, R.; Dias-Ferreira, C.; Vaz, J. Compost Quality from Biowaste Treatment in West Africa. WASTES: Solutions, Treatments and Opportunities—3rd International Conference at: Viana do Castelo—Portuga. 2015. Available online: https://www.researchgate.net/publication/282604895 (accessed on 20 August 2024).
- Ouédraogo, E. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric. Ecosyst. Environ. 2001, 84, 259–266. [Google Scholar] [CrossRef]
- Kinyua, M.W.; Kihara JBekunda, M.; Bolo, P.; Mairura, F.S.; Fischer, G.; Mucheru-Muna, M.W. Agronomic and economic performance of legume-legume and cereal-legume intercropping systems in Northern Tanzania. Agric. Syst. 2023, 205, 103589. [Google Scholar] [CrossRef]
- Stein-Bachinerxy, K.; Werner, W. Effect of manure on crop yield and quality in an organic agricultural system. Biol. Agric. Hortic. 1997, 14, 221–235. [Google Scholar] [CrossRef]
- Busari, M.A.; Salako, F.K.; Adetunji, M.T. Soil chemical properties and maize yield after application of organic and inorganic amendments to an acidic soil in Southwestern Nigeria. Span. J. Agric. Res. 2008, 6, 691–699. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Naqvi, S.M.Z.A.; Li, L.; Ahmed, S.; Wei, W.; Rui, S.; Li, B.; Li, C.; Zhang, Y.; Feng, Y.; et al. Soil Fertility Management: Issues and Challenges in Tropical Areas of Nigeria. In Ecosystem Services, Types, Management and Benefits; Jatav, H.S., Rajput, V.D., Eds.; Nova Science Publishers: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Maerere, A.P.; Kimbi, G.G.; Nonga, L.M. Comparative effectiveness of animal manures on soil chemical properties, yield and root growth of Amaranthus amaranthus (Amaranthus cruentus L.). Aust. J. Sci. Technol. 2001, 1, 14–21. [Google Scholar] [CrossRef]
- Golia EEAslanidis, P.C.; Papadimou, S.G.; Kantzou, O.-D.; Chartodiplomenou, M.-A.; Lakiotis, K.; Androudi, M.; Tsiropoulos, N.G. Assessment of remediation of soils, moderately contaminated by potentially toxic metals, using different forms of carbon (charcoal, biochar, activated carbon). Impacts on contamination, metals availability and soil indices. Sustain. Chem. Pharm. 2022, 28, 100724. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Mukome, F.N.; Machado, S.; Nyamasoka, B. Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. J. Environ. Manag. 2015, 150, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Zanli, B.L.G.L.; Gbossou, K.C.; Tang, W.; Kamoto, M.; Chen, J. A review of biochar potential in Cote d’Ivoire in light of the challenges facing Sub-Saharan Africa. Biomass Bioenergy 2022, 165, 106581. [Google Scholar] [CrossRef]
- Tindwa, H.; Singh, B. Potential of Calabash (Lagenaria siceraria) and Sweet Potato (Solanum tuberosum) for the Remediation of Dichlorodiphenyltrichloroethane-Contaminated Soils in Tanzania. Soil Syst. 2024, 8, 1. [Google Scholar] [CrossRef]
- Calderon, J.L.; Kaunda, R.B.; Sinkala, T.; Workman, C.F.; Bazilian, M.D.; Clough, G.; Lee, J. Phytoremediation and phytoextraction in Sub-Saharan Africa: Addressing economic and social challenges. Ecotoxicol. Environ. Saf. 2021, 226, 112864. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Moshood, A.Y.; Li, L.; Taiwo, L.B.; Oyedele, A.O.; Ezaka, E.; Chen, H.; Farooque, A.A.; Raghavan, V.; Hu, J. Reactivating the Potential of Lima Bean (Phaseolus lunatus) for Enhancing Soil Quality and Sustainable Soil Ecosystem Stability. Agriculture 2024, 14, 976. [Google Scholar] [CrossRef]
S/N | Category of Practice | Name of Practice | Countries/Regions Where Commonly Practiced | References |
---|---|---|---|---|
1 | Agronomic practices | Mixed farming | East Africa, West Africa, South Africa | [14] |
Horn of Africa (Ethiopia) | [9] | |||
Crop rotation | Nigeria, Malawi, Zimbabwe, Ghana, Cameroon, Kenya, Benin, Burkina Faso, Mozambique, South Africa | [15,16,17] | ||
Agroforestry | Tanzania, Kenya, Uganda, Ethiopia, Malawi, Madagascar, Nigeria, Ghana, Niger, Zambia, Zimbabwe, Burkina Faso, Mali, Senegal, Burundi, Rwanda | [18,19,20] | ||
Certified organic agriculture | Tanzania, Burundi, Kenya, Egypt, South Africa, Ethiopia, Tunisia, Sierra Leone, Congo, Burkina Faso | [21,22] | ||
2 | Renewable energy harvest and use practices | Solar power | Mali, Gambia, Burkina Faso, Niger, Senegal, Kenya, Ghana, Tanzania | [23,24,25,26] |
Bioenergy for agriculture | Kenya, Tanzania, Ethiopia, Uganda | [27,28] | ||
3 | Smart irrigation options | Rainwater harvesting | East Africa (Kenya, Uganda, Tanzania); West Africa (Mali and Ghana); and South Africa | [29,30,31] |
Wastewater recycling/sewage sludge | North Africa (Tunisia, Egypt) | [32,33] | ||
South Africa | [33,34] | |||
4 | Waste into fertilizer | Composting | West Africa, East Africa, South Africa | [35,36,37,38,39] |
Manure from livestock | West Africa, East Africa, South Africa | [40,41] |
Agroforestry Practice/Technology | Region/Country Most Reported/Documented | Functional Role in Circular Agriculture | Selected References | ||
---|---|---|---|---|---|
Food/Fuel Production | Nutrient Cycling | Other Ecosystem Functions | |||
Relay and mixed intercropping | East Africa, Tanzania, Uganda, Malawi | √ | √ | [42,43] | |
Terracing agroforestry | East Africa, South Africa, West Africa—Morroco | √ | √ | √ | [44,45] |
Home garden agroforestry | North East and Horn of Africa, South Africa, West Africa, East Africa | √ | √ | √ | [46,47,48,49] |
Shrub/fertility tree agroforestry | South Africa, East Africa | √ | √ | [50,51,52] | |
Silvopastoral agroforestry | East Africa, South Africa, North and Horn of Africa | √ | √ | [53] | |
Taungya system | East Africa, West Africa, South Africa | √ | √ | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tindwa, H.J.; Semu, E.W.; Singh, B.R. Circular Regenerative Agricultural Practices in Africa: Techniques and Their Potential for Soil Restoration and Sustainable Food Production. Agronomy 2024, 14, 2423. https://doi.org/10.3390/agronomy14102423
Tindwa HJ, Semu EW, Singh BR. Circular Regenerative Agricultural Practices in Africa: Techniques and Their Potential for Soil Restoration and Sustainable Food Production. Agronomy. 2024; 14(10):2423. https://doi.org/10.3390/agronomy14102423
Chicago/Turabian StyleTindwa, Hamisi J., Ernest W. Semu, and Bal Ram Singh. 2024. "Circular Regenerative Agricultural Practices in Africa: Techniques and Their Potential for Soil Restoration and Sustainable Food Production" Agronomy 14, no. 10: 2423. https://doi.org/10.3390/agronomy14102423
APA StyleTindwa, H. J., Semu, E. W., & Singh, B. R. (2024). Circular Regenerative Agricultural Practices in Africa: Techniques and Their Potential for Soil Restoration and Sustainable Food Production. Agronomy, 14(10), 2423. https://doi.org/10.3390/agronomy14102423