Effect of Vermicompost Application on the Soil Microbial Community Structure and Fruit Quality in Melon (Cucumis melo)
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description and Experimental Design
2.2. Sample Collection
2.3. Soil Chemical Properties Detection
2.4. Soil Enzyme Activity Determination
2.5. DNA Extraction, Amplification, and Sequencing
2.6. Sequencing Data and Analyses of Diversity
2.7. Determination of Photosynthetic Index and Chlorophyll Content of Melon Leaves
2.8. Determination of Quality of Melon
2.9. Statistical Analyses
3. Results
3.1. Soil Chemical Properties and Enzyme Activity
3.2. Soil Bacterial and Fungal Taxon Compositions and Diversity
3.3. Photosynthetic Index and Fruit Quality of Melon
3.4. Relationship Between Soil Microbes and Soil Chemical Properties
3.5. Relationship Between Soil Microbes and Melon Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, X.P.; Li, M.H.; Shen, Q.; Fan, Y.Y.; Fang, X.T.; Wang, C.; Liu, F.J. Analysis of nutritional components and comprehensive evaluation of quality of different varieties of. Sci. Technol. Food Ind. 2020, 42, 1–14, (In Chinese with English Abstract). [Google Scholar]
- De Wilde, W.J.J.O.; Duyfjes, B.E.E. A review of the subtribe Thladianthinae (Cucurbitaceae). Bot. Zhurn 2006, 91, 766–776. [Google Scholar]
- Wang, Y.L.; Gao, L.Y.; Yang, S.Y.; Xu, Y.B.; Zhu, H.Y.; Yang, L.M.; Li, Q.; Hu, J.B.; Sun, S.R.; Ma, C.S. Molecular diversity and population structure of oriental thin-skinned melons, Cucumis melo subsp. agrestis, revealed by a set of core SSR markers. Sci. Hortic. 2018, 229, 59–64. [Google Scholar] [CrossRef]
- Kerje, T.; Grum, M. The origin of melon, Cucumis melo: A review of the literature. Acta Hortic. 2000, 510, 37–44. [Google Scholar] [CrossRef]
- Vendruscolo, E.P.; Campos, L.F.C.; Seleguini, A.; Martins, A.P.B.; Lima, S.F. Economic viability of muskmelon cultivation in different planting spacing in Brazil central region. Rev. Fac. Nac. Agric. Medellín 2017, 70, 8319–8325. [Google Scholar] [CrossRef]
- Du, H.Y.; Liu, S.F.; Guo, S.; Yu, R.; Wang, Z.Q.; Guo, S.J.; Tian, M.; Dong, R. Development status and countermeasures of watermelon and muskmelon industry of Ningxia. N. Hortic. 2013, 19, 177–179, (In Chinese with English Abstract). [Google Scholar]
- Huang, B.X. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Ku, Y.L.; Li, W.Q.; Mei, X.L.; Yang, X.N.; Cao, C.L.; Zhang, H.M.; Cao, L.; Li, M.L. Biological control of melon continuous cropping obstacles: Weakening the negative effects of the vicious cycle in continuous cropping soil. Microbiol. Spectr. 2022, 10, 01776–01822. [Google Scholar] [CrossRef]
- Van, B.A.; Semenov, A.M. In search of biological indicators for soil health and disease suppression. Appl. Soil Ecol. 2000, 15, 13–24. [Google Scholar]
- She, S.; Niu, J.; Zhang, C.; Xiao, Y.; Chen, W.; Dai, L.; Liu, X.; Yin, H. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch. Microbiol. 2017, 199, 267–275. [Google Scholar] [CrossRef]
- Tian, M.; Liang, J.J.; Liu, S.F.; Yu, R.; Zhang, X.X. Effects of watermelon cropping management on soil bacteria and fungi biodiversity. Agriculture 2023, 13, 1010. [Google Scholar] [CrossRef]
- Everts, K.L.; Himmelstein, J.C. Fusarium wilt of watermelon: Towards sustainable management of a re-emerging plant disease. Crop Prot. 2015, 73, 93–99. [Google Scholar] [CrossRef]
- Cohen, R.; Tyutyunik, J.; Fallik, E.; Oka, Y.; Tadmor, Y.; Edlstein, M. Phytopathological evaluation of exotic watermelon germplasm as a basis for rootstock breeding. Sci. Horti-Amst. 2014, 165, 203–210. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Dong, C.X.; Yang, X.M.; Mei, X.L.; Ran, W.; Shen, Q.R.; Xu, Y.C. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl. Soil Ecol. 2011, 47, 67–75. [Google Scholar] [CrossRef]
- Hua, L.Q.; Yang, S.Q.; Xia, Z.F.; Zeng, H. Application of Sophora alopecuroides organic fertilizer changes the rhizosphere microbial community structure of melon plants and increases the fruit sugar content. J. Sci. Food Agr. 2023, 103, 164–175. [Google Scholar] [CrossRef]
- Chen, W.; Teng, Y.; Li, Z.G.; Liu, W.X.; Ren, W.J.; Luo, Y.M.; Christie, O. Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of south China. Appl. Soil Ecol. 2018, 128, 23–34. [Google Scholar] [CrossRef]
- Zhong, W.H.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.G.; Huang, Q.R.; Shen, W.S. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 2010, 326, 511–522. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Bei, S.K.; Li, B.S.; Zhang, J.L.; Christie, P.; Li, X.L. Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Appl. Soil Ecology 2019, 136, 67–79. [Google Scholar] [CrossRef]
- Wu, J.J.; Cheng, X.L.; Liu, G.H. Increased soil organic carbon response to fertilization is associated with increasing microbial carbon use efficiency: Data synthesis. Soil Biol. Biochem. 2022, 171, 108731. [Google Scholar] [CrossRef]
- Gorji, Z.; Mehrparvar, M.; Mansouri, S.M. Cascading effects of soil organic and inorganic fertilizers on tri-trophic interactions: Plant-aphid-parasitoid wasp as a study system. J. Appl. Entomol. 2023, 147, 126–139. [Google Scholar] [CrossRef]
- de Souza, J.R.M.; Artur, A.G.; Taniguchi, C.A.K.; Pinheiro, J.I. Yellow melon yield in response to mineral or organic fertilization. J. Plant Nutr. 2018, 41, 1197–1204. [Google Scholar] [CrossRef]
- Artur, A.G.; de Souza, J.R.M.; Queiroz, H.M.; Natale, W.; Pinheiro, J.I.; Martins, T.D.; Taniguchi, C.A.K. Mineralization of nitrogen forms in soil cultivated with yellow melon under organic and mineral fertilization. Commun. Soil Sci. Plan. 2021, 52, 1706–1719. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef]
- Syed, S.; Wang, X.X.; Prasad, T.N.V.K.V.; Lian, B. Bio-organic mineral fertilizer for sustainable agriculture: Current trends and future perspectives. Minerals 2021, 11, 1336. [Google Scholar] [CrossRef]
- Ghosh, P.; Dey, A. Vermicompost application improves growth and yield of rice. J. Soil Sci. Plant Nutr. 2020, 20, 1228–1237. [Google Scholar]
- Zhao, J.; Zhang, R.; Xue, C.; Xun, W.B.; Sun, L.; Xu, Y.C.; Shen, Q.R. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol. 2014, 67, 443–453. [Google Scholar] [CrossRef]
- Nozaki, O.; Ji, X.; Kricka, L.J. New enhancers for the chemiluminescent peroxidase catalysed chemiluminescent oxidation of pyrogallol and purpurogallin. J. Biolum. Chemilum. 1995, 10, 151–156. [Google Scholar] [CrossRef]
- Johansson, L.H.; Borg, L.A.H. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils. 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Gao, M.; Song, W.; Zhou, Q.; Ma, X.; Chen, X. Interactive effect of oxytetracycline and lead on soil enzymatic activity andmicrobial biomas. Environ. Toxicol. Phar. 2013, 36, 667–674. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Wang, J.; Zhang, X.; Shen, Z.; Shi, L.; Chen, Y. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus. Sylvestris. Sci. Total Environ. 2020, 719, 137475. [Google Scholar] [CrossRef]
- Xia, C.; Christensen, M.J.; Zhang, X.X.; Nan, Z.B. Effect of Epichloë gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit. Plant Soil 2018, 424, 1–17. [Google Scholar] [CrossRef]
- Ye, W.; Hu, S.; Wu, L.; Ge, C.; Cui, Y.; Chen, P.; Xu, J.; Dong, G.; Guo, L.; Qian, Q. Fine mapping a major QTL qFCC7L for chlorophyll 730 content in rice (Oryza sativa L) cv. PA64s. Plant Growth Regul. 2017, 81, 81–90. [Google Scholar] [CrossRef]
- Llamas, N.E.; Di Nezio, M.S.; Band, B.S.F. Flow-injection spectrophotometric method with on-line photodegradation for determination of ascorbic acid and total sugars in fruit juices. J. Food Compos. Anal. 2011, 24, 127–130. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Cavaletto, C.G.; Gautz, L.D.; Paull, R. Non-destructive determination of soluble solids in papayas using near infrared spectroscopy. J. Near Infrared Spec. 1999, 7, 223–228. [Google Scholar] [CrossRef]
- Najwa, R.F.; Azrina, A. Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods. Int. Food Res. J. 2017, 24, 726–733. [Google Scholar]
- Ma, B.Q.; Ding, Y.D.; Li, C.Y.; Li, M.; Ma, F.; Yuan, Y. Comparative proteomic analysis reveals key proteins linked to the accumulation of soluble sugars and organic acids in the mature fruits of the wild malus species. Plants 2019, 8, 488. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.; Lajolo, F.; Cordenunsi, B. Evolution of soluble sugars during ripening of papaya fruit and its relation to sweet taste. J. Food Sci. 2002, 67, 4420447. [Google Scholar] [CrossRef]
- Abbott, L.K.; Johnson, N.C. Introduction: Perspectives on mycorrhizas and soil fertility. In Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage; Johnson, N.C., Gehring, C., Jansa, J., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands, 2017; pp. 93–105. [Google Scholar]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Till Res. 2016, 160, 1–13. [Google Scholar] [CrossRef]
- Liu, J.A.; Shu, A.P.; Song, W.F.; Shi, W.C.; Li, M.C.; Zhang, W.X.; Li, Z.Z.; Liu, G.R.; Yuan, F.S.; Zhang, S.X.; et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- Azarmi, R.; Giglou, M.T.; Taleshmikail, R.D. Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr. J. Biotechnol. 2008, 7, 2397–2401. [Google Scholar]
- Sonmez, S.; Asri, F.Ö. Importance of vermicompost in tomato plant cultivation and improvement of some soil properties. Compos. Sci. Util. 2021, 29, 44–56. [Google Scholar] [CrossRef]
- Ju, J.; Gu, Q.; Zhou, H.W.; Zhang, H.; Mao, W.; Yang, H.J.; Mi, W.H.; Zhao, H.T. Effects of organic fertilizer combined with chemical fertilizer on nutrients, enzyme activities, and rice yield in reclaimed soil. Commun. Soil Sci. Plan. 2022, 53, 3060–3071. [Google Scholar] [CrossRef]
- Chen, D.; Wang, M.; Wang, G.; Zhou, Y.J.; Yang, X.E.; Li, J.Z.; Zhang, C.P.; Dai, K. Functional organic fertilizers can alleviate tobacco (Nicotiana tabacum L.) continuous cropping obstacle via ameliorating soil physicochemical properties and bacterial community structure. Front. Bioeng. Biotech. 2022, 10, 1023693. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.Y.; Yu, Z.X.; Xu, L.; Zhao, Y.L.; Yi, S.Q.; Shen, C.; Wang, Y.M.; Li, Y.L.; Zuo, W.G.; Gu, C.H.; et al. Effects of vermicompost application on growth and heavy metal uptake of barley grown in mudflat salt-affected soils. Agronomy 2022, 12, 1007. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Metzger, J.D.; Lucht, C. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia 2005, 49, 297–306. [Google Scholar] [CrossRef]
- Pramanik, P.; Ghosh, G.K.; Chung, Y.R. Changes in nutrient content, enzymatic activities and microbial properties of lateritic soil due to application of different vermicomposts: A comparative study of ergosterol and chitin to determine fungal biomass in soil. Soil Use Manag. 2010, 26, 508–515. [Google Scholar] [CrossRef]
- Guan, S.Y.; De, S.Z.; Zhi, M.Z. Soil Enzyme and Its Research Methods; Agricultural: Beijing, China, 1986; pp. 97–274. [Google Scholar]
- Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amézaga, I.; Garbisu, C. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health. 2003, 18, 65–73. [Google Scholar] [CrossRef]
- KravkazKuscu, I.S.; Cetin, M.; Yigit, N.; Savaci, G.; Sevik, H. Relationship between enzyme activity (urease-catalase) and nutrient element in soil use. Pol. J. Environ. Stud. 2018, 27, 5. [Google Scholar]
- Hernandez, O.L.; Calderín, A.; Huelva, R.; Martínez-Balmori, D.; Guridi, F.; Aguiar, N.O.; Fábio, L.O.; Olivares, F.L. Humic substances from vermicompost enhance urban lettuce production. Agron. Sustain. Dev. 2015, 35, 225–232. [Google Scholar] [CrossRef]
- Guo, L.C.; Qiao, J.L.; Zhou, D.X.; Qin, D.; Huo, J.W. Effect of vermicompost on fruit quality, growth, and rhizosphere soil enzyme activities of blue honeysuckle (Lonicera caerulea L.). J. Soil Sci. Plant Nut. 2023, 23, 3797–3805. [Google Scholar] [CrossRef]
- Jia, D.X.; Li, S.; Wang, F.D.; Wang, M.Y. Effects of vermicompost on biological characteristics and microbial activity in rhizosphere soil of cowpea. Acta Agric. Zhejiangensis 2016, 28, 318–323, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.; Wang, Y. Effects of vermicompost on soil properties and enzyme activities. Appl. Soil Ecol. 2018, 126, 1–8. [Google Scholar] [CrossRef]
- Cuartero, J.; Pascual, J.A.; Vivo, J.M.; Özbolat, O.; Sánchez-Navarro, V.; Egea-Cortines, M.; Zornoza, R.; Mena, M.M.; Garcia, E.; Ros, M. A first-year melon/cowpea intercropping system improves soil nutrients and changes the soil microbial community. Agr. Ecosyst. Environ. 2022, 328, 107856. [Google Scholar] [CrossRef]
- Hernandez, T.; Berlanga, J.G.; Tormos, I.; Garcia, C. Organic versus inorganic fertilizers: Response of soil properties and crop yield. AIMS GeoSci. 2021, 7, 415–439. [Google Scholar] [CrossRef]
- Mao, X.X.; Yang, Y.; Guan, P.B.; Geng, L.P.; Ma, L.; Di, H.J.; Liu, W.J.; Li, B.W. Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities. Ecotox. Environ. Safe. 2022, 239, 113616. [Google Scholar] [CrossRef]
- Lin, Y.P.; Lin, C.M.; Mukhtar, H.; Lo, H.F.; Ko, M.C.; Wang, S.J. Temporal variability in the rhizosphere bacterial and fungal community structure in the melon crop grown in a closed hydroponic system. Agronomy 2021, 11, 719. [Google Scholar] [CrossRef]
- Oo, A.N.; Iwai, C.B.; Saenjan, P. Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad. Dev. 2015, 26, 300–310. [Google Scholar] [CrossRef]
- Shen, C.; Xiong, J.B.; Zhang, H.Y.; Feng, Y.Z.; Lin, X.G.; Li, X.Y.; Liang, W.; Chu, H. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 2013, 57, 204–211. [Google Scholar] [CrossRef]
- Dimitriu, P.A.; Grayston, S.J. Relationship between soil properties and patterns of bacterial beta-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 2010, 59, 563–573. [Google Scholar] [CrossRef]
- Meyer, A.; Focks, A.; Radl, V.; Keil, D.; Welzl, G.; Schöning, I.; Boch, S.; Marhan, S.; Kandeler, E.; Schloter, M. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 2013, 8, e73536. [Google Scholar] [CrossRef]
- Nie, Y.X.; Wang, M.C.; Zhang, W.; Ni, Z.; Hashidoko, Y.; Shen, W.J. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci. Total Environ. 2018, 624, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Jin, L.; Jin, N.; Xie, J.M.; Xiao, X.M.; Hu, L.L.; Tang, Z.Q.; Wu, Y.; Niu, L.J.; Yu, J.H. Effects of different vegetable rotations on fungal community structure in continuous tomato cropping matrix in greenhouse. Front. Microbiol. 2020, 11, 829. [Google Scholar] [CrossRef]
- Van Aarle, I.M.V.; Olsson, P.A.; Söderström, B. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol. 2002, 155, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Najar, I.A.; Anisa, B.K.; Abdul, H. Effect of macrophyte vermicompost on growth and productivity of brinjal (Solanum melongena) under field conditions. Int. J. Recyl. Org. Waste Agric. 2015, 4, 73–83. [Google Scholar] [CrossRef]
- Amooaghaie, R.; Golmohammadi, S. Effect of vermicompost on growth, essential oil, and health of Thymus Vulgaris. Compos. Sci. Util. 2017, 25, 166–177. [Google Scholar] [CrossRef]
- Zuo, Y.N.; Zhang, J.; Zhao, R.; Dai, H.; Zhang, Z. Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Sci. Hortic. 2018, 233, 132–140. [Google Scholar] [CrossRef]
- Vo, H.M.; Wang, C.H. Physicochemical properties of vermicompost-based substrate mixtures and their effects on the nutrient uptake and growth of muskmelon (Cucumis melo L.) seedlings. Biol. Agric. Hortic. 2014, 30, 153–163. [Google Scholar] [CrossRef]
- Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The plant microbiota: Systems level insights and perspectives. Annu. Rev. Genet. 2016, 50, 211–234. [Google Scholar] [CrossRef]
Treatment | pH | AN (mg/kg) | OM (g/kg) | AP (mg/kg) | AK (mg/kg) | Biomass (kg/m2) | UE (U/g) | SC (U/g) | CAT (U/g) | POD (U/g) | ALP (U/g) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
control | 8.34 ± 0.03 a | 125 ± 2.08 | 34.33 ± 0.59 | 171.11 ± 1.59 c | 234.21 ± 2.76 a | 1847.73 ± 37.61 d | 1241.29 ± 28.49 | 3.57 ± 0.29 b | 18.4 ± 0.28 | 4.91 ± 0.83 c | 10,693.68 ± 327.62 | |||||||||||
T1 | 8.30 ± 0.02 a | 121.33 ± 1.45 | 37.86 ± 0.28 | 221.93 ± 2.63 a | 214.92 ± 1.92 b | 2524.89 ± 18.12 b | 1365.09 ± 53.2 | 4.02 ± 0.13 b | 18.77 ± 1.14 | 11.5 ± 1.04 a | 12,365.07 ± 44.12 | |||||||||||
T2 | 8.24 ± 0.01 ab | 125 ± 4.04 | 37.35 ± 1.58 | 211.65 ± 1.88 b | 235.82 ± 1.00 a | 2882.82 ± 17.42 a | 1261.55 ± 26.09 | 4.81 ± 0.16 a | 19.16 ± 0.09 | 9.02 ± 1.15 ab | 11,295.23 ± 1300.06 | |||||||||||
T3 | 8.18 ± 0.06 b | 135 ± 5.51 | 37.32 ± 0.68 | 218.3 ± 2.55 ab | 208.38 ± 0.47 c | 2418.48 ± 21.39 c | 1319.22 ± 10.9 | 2.9 ± 0.09 c | 20.12 ± 0.18 | 7.75 ± 0.42 bc | 12,318.43 ± 551.57 | |||||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
T | 4.31 | 0.04 | 2.60 | 0.13 | 3.04 | 0.09 | 2.849 | 0.105 | 19.281 | 0.001 | 294.342 | 0.000 | 2.849 | 0.105 | 19.281 | 0.001 | 1.541 | 0.277 | 9.157 | 0.006 | 1.266 | 0.35 |
Type | Treatment | df | PERMANOVA | ANOSIM | ||
---|---|---|---|---|---|---|
F | p | R | p | |||
Bacteria | T | 3 | 3.188 | 0.0001 | 0.7193 | 0.0003 |
Fungi | T | 3 | 25.91 | 0.0001 | 0.9784 | 0.0003 |
Treatment | Total Sugar | Central Soluble Solids Content (%) | Vitamin C | Soluble Protein Content | Soluble Carbohydrate Content | Organic Acid | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
control | 6.4 ± 0.1 b | 14.3 ± 0.1 c | 11.0 ± 0.0 d | 0.3 ± 0.0 | 4.2 ± 0.0 c | 3.0 ± 0.3 c | ||||||
T1 | 6.4 ± 0.0 b | 14.4 ± 0.0 c | 11.8 ± 0.0 c | 0.3 ± 0.0 | 4.5 ± 0.1 b | 9.0 ± 1.0 b | ||||||
T2 | 6.7 ± 0.0 a | 16.4 ± 0.0 a | 13.0 ± 0.0 a | 0.3 ± 0.0 | 4.2 ± 0.0 c | 10.9 ± 0.1 a | ||||||
T3 | 6.4 ± 0.1 b | 14.7 ± 0.0 b | 12.3 ± 0.1 b | 0.3 ± 0.0 | 4.9 ± 0.0 a | 9.6 ± 0.1 ab | ||||||
F | p | F | p | F | p | F | p | F | p | F | p | |
T | 6.1 | 0.0 | 561.3 | 0.0 | 920.1 | 0.0 | 0.5 | 0.7 | 84.6 | 0.0 | 41.9 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, M.; Yu, R.; Guo, S.; Yang, W.; Liu, S.; Du, H.; Liang, J.; Zhang, X. Effect of Vermicompost Application on the Soil Microbial Community Structure and Fruit Quality in Melon (Cucumis melo). Agronomy 2024, 14, 2536. https://doi.org/10.3390/agronomy14112536
Tian M, Yu R, Guo S, Yang W, Liu S, Du H, Liang J, Zhang X. Effect of Vermicompost Application on the Soil Microbial Community Structure and Fruit Quality in Melon (Cucumis melo). Agronomy. 2024; 14(11):2536. https://doi.org/10.3390/agronomy14112536
Chicago/Turabian StyleTian, Mei, Rong Yu, Song Guo, Wanbang Yang, Shengfeng Liu, Huiying Du, Jinjin Liang, and Xingxu Zhang. 2024. "Effect of Vermicompost Application on the Soil Microbial Community Structure and Fruit Quality in Melon (Cucumis melo)" Agronomy 14, no. 11: 2536. https://doi.org/10.3390/agronomy14112536
APA StyleTian, M., Yu, R., Guo, S., Yang, W., Liu, S., Du, H., Liang, J., & Zhang, X. (2024). Effect of Vermicompost Application on the Soil Microbial Community Structure and Fruit Quality in Melon (Cucumis melo). Agronomy, 14(11), 2536. https://doi.org/10.3390/agronomy14112536