Diagnosis of Custard Apple Disease Based on Adaptive Information Entropy Data Augmentation and Multiscale Region Aggregation Interactive Visual Transformers
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. EDA–ViT
3.2. Multiscale Module
3.3. Interaction Module
3.4. Adaptive Data Augmentation
Algorithm 1 Entropy-Based Adaptive Data Augmentation (EDA) |
Require: Training dataset , model , augmentation space A, number of classes k |
Ensure: Augmented dataset |
1: for each batch do |
2: for each do |
3: Step 1: Compute the softmax probability distribution: |
4: Step 2: Compute the information entropy: |
5: Step 3: Compute the augmentation magnitude: |
6: As , the augmentation becomes more diverse; when , changes are minimal. |
7: Step 4: Randomly select an augmentation operation |
8: Step 5: Apply the augmentation operation with computed magnitude: |
9: Step 6: Compute the Entropy Regularization Loss (EntLoss): |
10: Combine with Cross-Entropy Loss (CEloss) to en hance performance: |
where is a weighting hyperparameter. |
11: end for |
12: end for |
13: return Augmented dataset |
4. Experimental Results and Discussion
4.1. Introducing the Datasets
4.2. Experimental Details
4.3. Classification Results of Advanced Models
4.4. Performance Comparison of Hybrid EntLoss
4.5. Adaptive Data Augmentation Analysis
4.6. Extensive Testing for Plant Diseases
4.7. Vision Attention Visualization
5. Discussion
5.1. Synergistic Relationship Between DMSA and EDA
5.2. Challenges and Advances in Large-Scale Agricultural Monitoring
5.3. Agricultural Automation Can Explain Synergies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moussa, A.Y.; Siddiqui, S.A.; Elhawary, E.A.; Guo, K.; Anwar, S.; Xu, B. Phytochemical constituents, bioactivities, and applications of custard apple (Annona squamosa L.): A narrative review. Food Chem. 2024, 459, 140363. [Google Scholar] [CrossRef]
- Gupta, S.; Tripathi, A.K. Fruit and vegetable disease detection and classification: Recent trends, challenges, and future opportunities. Eng. Appl. Artif. Intell. 2024, 133, 108260. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Rahnama, K.; Vakilian, K.A.; Ampatzidis, Y. Feature engineering to identify plant diseases using image processing and artificial intelligence: A comprehensive review. Smart Agric. Technol. 2024, 8, 100480. [Google Scholar] [CrossRef]
- Nargesi, M.H.; Kheiralipour, K. Ability of visible imaging and machine learning in detection of chickpea flour adulterant in original cinnamon and pepper powders. Heliyon 2024, 10, e35944. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X. Multisource information fusion method for vegetable disease detection. BMC Plant Biol. 2024, 24, 738. [Google Scholar] [CrossRef]
- Malik, M.M.; Fayyaz, A.M.; Yasmin, M.; Abdulkadir, S.J.; Al-Selwi, S.M.; Raza, M.; Waheed, S. A novel deep CNN model with entropy coded sine cosine for corn disease classification. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 102126. [Google Scholar] [CrossRef]
- Ojo, M.O.; Zahid, A. Improving Deep Learning Classifiers Performance via Preprocessing and Class Imbalance Approaches in a Plant Disease Detection Pipeline. Agronomy 2023, 13, 887. [Google Scholar] [CrossRef]
- Ruan, G.; Schmidhalter, U.; Yuan, F.; Cammarano, D.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Exploring the transferability of wheat nitrogen status estimation with multisource data and Evolutionary Algorithm-Deep Learning (EA-DL) framework. Eur. J. Agron. 2023, 143, 126727. [Google Scholar] [CrossRef]
- Shafik, W.; Tufail, A.; Liyanage, C.D.S.; Apong, R.A.A.H.M. Using transfer learning-based plant disease classification and detection for sustainable agriculture. BMC Plant Biol. 2024, 24, 136. [Google Scholar] [CrossRef]
- Sheikh, M.; Iqra, F.; Ambreen, H.; Pravin, K.A.; Ikra, M.; Chung, Y.S. Integrating artificial intelligence and high-throughput phenotyping for crop improvement. J. Integr. Agric. 2024, 23, 1787–1802. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Zheng, Y.; Wu, Z.; Fu, L. Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. DLMC-Net: Deeper lightweight multi-class classification model for plant leaf disease detection. Ecol. Inform. 2023, 75, 102025. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, X.; Lin, G.; Jiang, J.; Wang, M.; An, S.; Hu, J.; Lyu, Q. Hybrid attention network for citrus disease identification. Comput. Electron. Agric. 2024, 220, 108907. [Google Scholar] [CrossRef]
- Hemalatha, S.; Jayachandran, J.J.B. A Multitask Learning-Based Vision Transformer for Plant Disease Localization and Classification. Int. J. Comput. Intell. Syst. 2024, 17, 188. [Google Scholar] [CrossRef]
- Rezaei, M.; Diepeveen, D.; Laga, H.; Jones, M.G.; Sohel, F. Plant disease recognition in a low data scenario using few-shot learning. Comput. Electron. Agric. 2024, 219, 108812. [Google Scholar] [CrossRef]
- Zeng, Q.; Niu, L.; Wang, S.; Ni, W. SEViT: A large-scale and fine-grained plant disease classification model based on transformer and attention convolution. Multimed. Syst. 2023, 29, 1001–1010. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H.; Nkenyereye, L. SoyaTrans: A novel transformer model for fine-grained visual classification of soybean leaf disease diagnosis. Expert Syst. Appl. 2025, 260, 125385. [Google Scholar] [CrossRef]
- Devi, R.S.S.; Kumar, V.R.V.; Sivakumar, P. InViTMixup: Plant disease classification using convolutional vision transformer with Mixup augmentation. J. Chin. Inst. Eng. 2024, 47, 520–527. [Google Scholar] [CrossRef]
- Ali, A.H.; Youssef, A.; Abdelal, M.; Raja, M.A. An ensemble of deep learning architectures for accurate plant disease classification. Ecol. Inform. 2024, 81, 102618. [Google Scholar] [CrossRef]
- Uğuz, S.; Şikaroğlu, G.; Yağız, A. Disease detection and physical disorders classification for citrus fruit images using convolutional neural network. Food Meas. 2023, 17, 2353–2362. [Google Scholar] [CrossRef]
- Syed-Ab-Rahman, S.F.; Hesamian, M.H.; Prasad, M. Citrus disease detection and classification using end-to-end anchor-based deep learning model. Appl. Intell. 2022, 52, 927–938. [Google Scholar] [CrossRef]
- Zhang, X.; Xun, Y.; Chen, Y. Automated identification of citrus diseases in orchards using deep learning. Biosyst. Eng. 2022, 223, 249–258. [Google Scholar] [CrossRef]
- Hassam, M.; Khan, M.A.; Armghan, A.; Althubiti, S.A.; Alhaisoni, M.; Alqahtani, A.; Kadry, S.; Kim, Y. A Single Stream Modified MobileNet V2 and Whale Controlled Entropy Based Optimization Framework for Citrus Fruit Diseases Recognition. IEEE Access 2022, 10, 91828–91839. [Google Scholar] [CrossRef]
- Dhiman, P.; Kukreja, V.; Manoharan, P.; Kaur, A.; Kamruzzaman, M.M.; Ben Dhaou, I.; Iwendi, C. A Novel Deep Learning Model for Detection of Severity Level of the Disease in Citrus Fruits. Electronics 2022, 11, 495. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q. Grape leaf disease identification with sparse data via generative adversarial networks and convolutional neural networks. Precis. Agric. 2023, 24, 235–253. [Google Scholar] [CrossRef]
- Giakoumoglou, N.; Pechlivani, E.M.; Tzovaras, D. Generate-Paste-Blend-Detect: Synthetic dataset for object detection in the agriculture domain. Smart Agric. Technol. 2023, 5, 100258. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhan, W.; Sun, Y.; Peng, J.; Zhang, Y.; Guo, Y.; Sun, K.; Gui, L. Mask-guided dual-perception generative adversarial network for synthesizing complex maize diseased leaves to augment datasets. Eng. Appl. Artif. Intell. 2024, 136, 108875. [Google Scholar] [CrossRef]
- Xu, H.; Li, Q.; Chen, J. Highlight Removal from A Single Grayscale Image Using Attentive GAN. Appl. Artif. Intell. 2022, 36, 1988441. [Google Scholar] [CrossRef]
- Dai, G.; Tian, Z.; Fan, J.; Sunil, C.; Dewi, C. DFN-PSAN: Multi-level deep information feature fusion extraction network for interpretable plant disease classification. Comput. Electron. Agric. 2024, 216, 108481. [Google Scholar] [CrossRef]
- Dai, G.; Fan, J.; Tian, Z.; Wang, C. PPLC-Net:Neural network-based plant disease identification model supported by weather data augmentation and multi-level attention mechanism. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101555. [Google Scholar] [CrossRef]
- Barman, U.; Sarma, P.; Rahman, M.; Deka, V.; Lahkar, S.; Sharma, V.; Saikia, M.J. ViT-SmartAgri: Vision Transformer and Smartphone-Based Plant Disease Detection for Smart Agriculture. Agronomy 2024, 14, 327. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, C. OmiQnet: Multiscale feature aggregation convolutional neural network for omnidirectional image assessment. Appl. Intell. 2024, 54, 5711–5727. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wang, Y.; Wang, C.; Yang, Y.; Liu, Y.; Tao, D. EATFormer: Improving Vision Transformer Inspired by Evolutionary Algorithm. Int. J. Comput. Vis. 2024, 132, 3509–3536. [Google Scholar] [CrossRef]
- Lai, B.; Liu, M.; Ryan, F.; Rehg, J.M. In the Eye of Transformer: Global–Local Correlation for Egocentric Gaze Estimation and Beyond. Int. J. Comput. Vis. 2024, 132, 854–871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pu, L.; Wan, L.; Wang, X.; Zhou, Y. DS-MSFF-Net: Dual-path self-attention multi-scale feature fusion network for CT image segmentation. Appl. Intell. 2024, 54, 4490–4506. [Google Scholar] [CrossRef]
- Cui, L.; Tian, X.; Wei, Q.; Liu, Y. A self-attention based contrastive learning method for bearing fault diagnosis. Expert Syst. Appl. 2024, 238, 121645. [Google Scholar] [CrossRef]
- Yang, Z.; Sinnott, R.O.; Bailey, J.; Ke, Q. A survey of automated data augmentation algorithms for deep learning-based image classification tasks. Knowl. Inf. Syst. 2023, 65, 2805–2861. [Google Scholar] [CrossRef]
- Gao, X.; Xiao, Z.; Deng, Z. High accuracy food image classification via vision transformer with data augmentation and feature augmentation. J. Food Eng. 2024, 365, 111833. [Google Scholar] [CrossRef]
- Zaji, A.; Liu, Z.; Xiao, G.; Bhowmik, P.; Sangha, J.S.; Ruan, Y. AutoOLA: Automatic object level augmentation for wheat spikes counting. Comput. Electron. Agric. 2023, 205, 107623. [Google Scholar] [CrossRef]
- Yang, S.; Shen, F.; Zhao, J. EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for Image Classification. arXiv 2024, arXiv:2409.06290. [Google Scholar] [CrossRef]
- Dehghan, A.; Razzaghi, P.; Abbasi, K.; Gharaghani, S. TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function. Expert Syst. Appl. 2023, 232, 120754. [Google Scholar] [CrossRef]
- Chang, B.; Wang, Y.; Zhao, X.; Li, G.; Yuan, P. A general-purpose edge-feature guidance module to enhance vision transformers for plant disease identification. Expert Syst. Appl. 2024, 237, 121638. [Google Scholar] [CrossRef]
- Jungiewicz, M.; Jastrzębski, P.; Wawryka, P.; Przystalski, K.; Sabatowski, K.; Bartuś, S. Vision Transformer in stenosis detection of coronary arteries. Expert Syst. Appl. 2023, 228, 120234. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Hu, M.; Ren, F. EERCA-ViT: Enhanced Effective Region and Context-Aware Vision Transformers for image sentiment analysis. J. Vis. Commun. Image Represent. 2023, 97, 103968. [Google Scholar] [CrossRef]
- Wang, D.; Cao, W.; Zhang, F.; Li, Z.; Xu, S.; Wu, X. A Review of Deep Learning in Multiscale Agricultural Sensing. Remote Sens. 2022, 14, 559. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Qi, Z. Remote Sensing Data Assimilation in Crop Growth Modeling from an Agricultural Perspective: New Insights on Challenges and Prospects. Agronomy 2024, 14, 1920. [Google Scholar] [CrossRef]
- González-Rodríguez, V.E.; Izquierdo-Bueno, I.; Cantoral, J.M.; Carbú, M.; Garrido, C. Artificial Intelligence: A Promising Tool for Application in Phytopathology. Horticulturae 2024, 10, 197. [Google Scholar] [CrossRef]
- Balaska, V.; Adamidou, Z.; Vryzas, Z.; Gasteratos, A. Sustainable Crop Protection via Robotics and Artificial Intelligence Solutions. Machines 2023, 11, 774. [Google Scholar] [CrossRef]
- Holzinger, A.; Fister, I.; Fister, I.; Kaul, H.-P.; Asseng, S. Human-Centered AI in Smart Farming: Toward Agriculture 5.0. IEEE Access 2024, 12, 62199–62214. [Google Scholar] [CrossRef]
- Rong, Y.; Leemann, T.; Nguyen, T.-T.; Fiedler, L.; Qian, P.; Unhelkar, V.; Seidel, T.; Kasneci, G.; Kasneci, E. Towards Human-Centered Explainable AI: A Survey of User Studies for Model Explanations. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 2104–2122. [Google Scholar] [CrossRef]
Method | Precision | Recall | F1-Score | Accuracy | MCC | FPS |
---|---|---|---|---|---|---|
DenseNet | 0.9347 | 0.9319 | 0.9321 | 0.9326 | 0.8933 | 16.12 |
ResNetV2 | 0.9172 | 0.9159 | 0.9163 | 0.9160 | 0.8672 | 22.53 |
Xception | 0.9383 | 0.9379 | 0.9378 | 0.9380 | 0.9113 | 21.39 |
EfficientNet | 0.9317 | 0.9290 | 0.9280 | 0.9290 | 0.8891 | 26.21 |
Inception | 0.9418 | 0.9406 | 0.9403 | 0.9290 | 0.9056 | 20.53 |
MobileNetV2 | 0.9211 | 0.9202 | 0.9201 | 0.9202 | 0.8670 | 21.91 |
VGG-19 | 0.9128 | 0.9115 | 0.9117 | 0.9116 | 0.8598 | 18.76 |
VGG-16 | 0.9143 | 0.9131 | 0.9133 | 0.9132 | 0.8621 | 17.89 |
DeiT-Ti | 0.9269 | 0.9264 | 0.9265 | 0.9264 | 0.8824 | 25.53 |
LocalViT | 0.9335 | 0.9303 | 0.9294 | 0.9303 | 0.8902 | 16.81 |
Swin | 0.9294 | 0.9251 | 0.9251 | 0.9251 | 0.8816 | 20.79 |
ViT-B | 0.9530 | 0.9523 | 0.9524 | 0.9523 | 0.9239 | 13.54 |
VMamba | 0.9536 | 0.9536 | 0.9535 | 0.9536 | 0.9262 | 15.25 |
MaxViT | 0.9498 | 0.9492 | 0.9493 | 0.9492 | 0.9185 | 13.67 |
EfficientFormerv2 | 0.9452 | 0.9445 | 0.9446 | 0.9445 | 0.9107 | 15.32 |
EDA–ViT | 0.9658 | 0.9566 | 0.9610 | 0.9611 | 0.9224 | 12.22 |
DMSA | EDA | EntLoss | CEloss | Cutout | CutMix | Trivialaugment | Accuracy (%) | MCC |
---|---|---|---|---|---|---|---|---|
✓ | ✓ | ✓ | 0.9478 | 0.9112 | ||||
✓ | ✓ | ✓ | 0.9512 | 0.9148 | ||||
✓ | ✓ | ✓ | 0.9425 | 0.9087 | ||||
✓ | ✓ | 0.9278 | 0.8941 | |||||
✓ | ✓ | ✓ | 0.9578 | 0.9209 | ||||
✓ | ✓ | ✓ | 0.9333 | 0.9015 | ||||
✓ | ✓ | ✓ | 0.9425 | 0.9079 | ||||
✓ | ✓ | ✓ | ✓ | 0.9611 | 0.9224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, K.; Huang, J.; Dai, G.; Fan, J.; Dewi, C. Diagnosis of Custard Apple Disease Based on Adaptive Information Entropy Data Augmentation and Multiscale Region Aggregation Interactive Visual Transformers. Agronomy 2024, 14, 2605. https://doi.org/10.3390/agronomy14112605
Cui K, Huang J, Dai G, Fan J, Dewi C. Diagnosis of Custard Apple Disease Based on Adaptive Information Entropy Data Augmentation and Multiscale Region Aggregation Interactive Visual Transformers. Agronomy. 2024; 14(11):2605. https://doi.org/10.3390/agronomy14112605
Chicago/Turabian StyleCui, Kunpeng, Jianbo Huang, Guowei Dai, Jingchao Fan, and Christine Dewi. 2024. "Diagnosis of Custard Apple Disease Based on Adaptive Information Entropy Data Augmentation and Multiscale Region Aggregation Interactive Visual Transformers" Agronomy 14, no. 11: 2605. https://doi.org/10.3390/agronomy14112605
APA StyleCui, K., Huang, J., Dai, G., Fan, J., & Dewi, C. (2024). Diagnosis of Custard Apple Disease Based on Adaptive Information Entropy Data Augmentation and Multiscale Region Aggregation Interactive Visual Transformers. Agronomy, 14(11), 2605. https://doi.org/10.3390/agronomy14112605