Heavy Metal Remediation Using Phosphate-Solubilizing Fungi: From Bioprocess to Application
Abstract
:1. Introduction
2. Heavy Metal Remediation Using PSF
2.1. Heavy Metal Toxicity-Resistant Capacity of Phosphate-Solubilizing Fungi
2.2. Mechanism of Heavy Metal Tolerance in PSF
2.3. Mechanism of Heavy Metal Remediation by PSF
3. Factors That Influence Heavy Metal Remediation When Using PSF
3.1. pH
3.2. Nutrient Supply
3.3. Metal Cations
4. Improvement of PSF in Heavy Metal Remediation
4.1. PSF Combined with Materials
4.2. Collaboration Between PSF and Other Organisms
4.3. The Application of PSF as a Phosphate-Based Biofertilizer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tayang, A.; Songachan, L.S. Microbial bioremediation of heavy metals. Curr. Sci. India 2021, 120, 1013–1025. [Google Scholar] [CrossRef]
- Khodja, H.; Iddou, A.; Aguedal, H.; Aziz, A.; Shishkin, A. Bioremoval of Lead (II) and Cadmium (II) in Single and Multicomponent Systems Using Penicillium sp. Key Eng. Mater. 2018, 762, 93–98. [Google Scholar] [CrossRef]
- Wen, Z.; Dang, Z.; Yu, D.S.; Shang, A. Research progress of supercritical carbon dioxide fluid extraction of heavy metals. Prog. Chem. 2001, 13, 310–314. [Google Scholar]
- Li, Z.; Wang, F.W.; Bai, T.S.; Tao, J.J.; Guo, J.Y.; Yang, M.Y.; Wang, S.M.; Hu, S.J. Lead immobilization by geological fluorapatite and fungus Aspergillus niger. J. Hazard. Mater. 2016, 320, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.H.; Luo, Y.T.; He, J.Y.; Sun, L.J.; Long, B.B.; Liu, Q.L.; Yuan, X.F.; Dai, P.B.; Shi, J.Y. Investigation of lead bioimmobilization and transformation by Penicillium oxalicum SL2. Bioresour. Technol. 2018, 264, 206–210. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, H.; Xuan, G.; Dai, L.; Hu, Y.; Hu, S.; Zhong, S.; Li, Z.; Gao, M.; Wang, S.; et al. Longitudinal Study of the Effects of Environmental pH on the Mechanical Properties of Aspergillus niger. ACS Biomater. Sci. Eng. 2017, 3, 2974–2979. [Google Scholar] [CrossRef]
- Qiu, J.; Song, X.; Li, S.; Zhu, B.; Chen, Y.; Zhang, L.; Li, Z. Experimental and modeling studies of competitive Pb (II) and Cd (II) bioaccumulation by Aspergillus niger. Appl. Microbiol. Biotechnol. 2021, 105, 6477–6488. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Tu, Y.; Wang, H.; Wang, Z.; Li, Y.; Chai, L.; Zhang, W.; Lin, Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. Eco-Environ. Health 2022, 1, 229–243. [Google Scholar] [CrossRef]
- Li, Y.P.; Ben Fekih, I.; Chi Fru, E.; Moraleda-Munoz, A.; Li, X.; Rosen, B.P.; Yoshinaga, M.; Rensing, C. Antimicrobial Activity of Metals and Metalloids. Annu. Rev. Microbiol. 2021, 75, 175–197. [Google Scholar] [CrossRef]
- Anam, G.B.; Reddy, M.S.; Ahn, Y.H. Characterization of RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Sci. Total Environ. 2019, 662, 462–469. [Google Scholar] [CrossRef]
- Mukherjee, D.; Pramanik, K.; Mandal, S.; Mandal, N.C. Augmented growth of Cd-stressed rice seedlings with the application of phytostimulating, root-colonizing, Cd-tolerant, leaf-endophytic fungi Colletotrichum spp. isolated from Eupatorium triplinerve. J. Hazard. Mater. 2022, 438, 129508. [Google Scholar] [CrossRef]
- Luo, L.; Tao, G.; Qin, F.X.; Luo, B.L.; Liu, J.; Xu, A.Q.; Li, W.Y.; Hu, Y.J.; Yi, Y. Phosphate-solubilizing fungi enhances the growth of Brassica chinensis L. and reduces arsenic uptake by reshaping the rhizosphere microbial community. Environ. Sci. Pollut. Res. 2023, 30, 120805–120819. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Wang, P.; Ge, F.; Li, F.; Deng, S.; Zhang, D.; Tian, J. Enhanced Lead (Pb) immobilization in red soil by phosphate solubilizing fungi associated with tricalcium phosphate influencing microbial community composition and Pb translocation in Lactuca sativa L. J. Hazard. Mater. 2022, 424, 127720. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Harrison, J.; Bowers, K. Production of Oxalic Acid from Aspergillus niger and Whey Permeate. Water Air Soil Pollut. 2018, 229, 5. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Moller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef]
- Tian, D.; Jiang, Z.Q.; Jiang, L.; Su, M.; Feng, Z.Y.; Zhang, L.; Wang, S.M.; Li, Z.; Hu, S.J. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Environ. Microbiol. 2019, 21, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Naik, M.M.; Dubey, S.K. Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol. Environ. Saf. 2013, 98, 1–7. [Google Scholar] [CrossRef]
- Hall, J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef]
- Hartley, J.; Cairney, J.W.G.; Meharg, A.A. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 1997, 189, 303–319. [Google Scholar] [CrossRef]
- Kolecík, M.; Cernansky, S.; Urík, M.; Littera, P.; Molnárová, M.; Gardosova, K.; Stubna, J.; Vojtková, H.; Chipík, J. Solubilization of toxic metal mineral by the Aspergillus niger strain and oxalic acid. Fresenius Environ. Bull. 2012, 21, 2289–2297. [Google Scholar]
- Xu, H.; Hao, R.X.; Yang, S.Q.; Xu, X.Y.; Lu, A.H.; Li, Y.H. Removal of lead ions in an aqueous solution by living and modified Aspergillus niger. Water Env. Res. 2021, 93, 844–853. [Google Scholar] [CrossRef]
- Gientka, I.; Błażejak, S.; Stasiak-Różańska, L.; Chlebowska-Śmigiel, A. Exopolysaccharides from yeast: Insight into optimal conditions for biosynthesis, chemical composition and functional properties—Review. Acta Sci. Pol. Technol. Aliment. 2015, 14, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.M.; Blazejak, S.; Kieliszek, M.; Gientka, I.; Brys, J.; Reczek, L.; Pobiega, K. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by yeast strains in media containing agro-industrial waste. World J. Microbiol. Biotechnol. 2019, 35, 157. [Google Scholar] [CrossRef]
- Saadat, Y.R.; Khosroushahi, A.Y.; Gargari, B.P. Yeast exopolysaccharides and their physiological functions. Folia Microbiol. 2021, 66, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, T.; Sun, Y.; Nong, Y.; Tang, L.; Gu, T.; Wang, S.; Li, Z. Application of Pb(II) to probe the physiological responses of fungal intracellular vesicles. Ecotoxicol. Environ. Saf. 2020, 194, 110441. [Google Scholar] [CrossRef] [PubMed]
- Iram, S.; Zaman, A.; Iqbal, Z.; Shabbir, R. Heavy Metal Tolerance of Fungus Isolated from Soil Contaminated with Sewage and Industrial Wastewater. Pol. J. Environ. Stud. 2013, 22, 691–697. [Google Scholar]
- Jalili, B.; Sadegh-Zadeh, F.; Jabari-Giashi, M.; Emadi, M. Lead bioimmobilization in contaminated mine soil by Aspergillus niger SANRU. J. Hazard. Mater. 2020, 393, 122375. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Bolan, N.; Megharaj, M.; Naidu, R. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). J. Environ. Manag. 2011, 92, 1115–1120. [Google Scholar] [CrossRef]
- Dang, C.; Yang, Z.; Liu, W.; Du, P.; Cui, F.; He, K. Role of extracellular polymeric substances in biosorption of Pb2+ by a high metal ion tolerant fungal strain Aspergillus niger PTN31. J. Environ. Chem. Eng. 2018, 6, 2733–2742. [Google Scholar] [CrossRef]
- Khan, I.; Ali, M.; Aftab, M.; Shakir, S.; Qayyum, S.; Haleem, K.S.; Tauseef, I. Mycoremediation: A treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ. Monit. Assess. 2019, 191, 622. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, L.L.; Li, X.; Wang, L.Y.; Yusef, K.K.; Gao, H.J.; Tian, D. Remediation of Lead Contamination by and Phosphate Rocks under Different Nitrogen Sources. Agronomy 2022, 12, 1639. [Google Scholar] [CrossRef]
- Tian, D.; Wang, L.Y.; Hu, J.; Zhang, L.L.; Zhou, N.N.; Xia, J.J.; Xu, M.Y.; Yusef, K.K.; Wang, S.M.; Li, Z.; et al. A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger. J. Microbiol. 2021, 59, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.; El Zokm, G.M.; Farag, A.E.M.; Abdelwahab, M.S. Assessment of heat-inactivated marine Aspergillus flavus as a novel biosorbent for removal of Cd(II), Hg(II), and Pb(II) from water. Environ. Sci. Pollut. Res. 2017, 24, 18218–18228. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Li, Z.Y.; Wang, J.Y.; Li, X.F.; Meng, L.Z.; Chen, Y.H.; Su, M.; Li, Z. Electron microscopic imaging and NanoSIMS investigation on physiological responses of Aspergillus niger under Pb(II) and Cd(II) stress. Front. Bioeng. Biotechnol. 2023, 10, 1096384. [Google Scholar] [CrossRef]
- Wahid, O.A.A.; Mehana, T.A. Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol. Res. 2000, 155, 221–227. [Google Scholar] [CrossRef]
- de Oliveira, S.C.; Mendes, G.D.; da Silva, U.C.; da Silva, I.R.; Ribeiro, J.I.; Costa, M.D. Decreased mineral availability enhances rock phosphate solubilization efficiency in Aspergillus niger. Ann. Microbiol. 2015, 65, 745–751. [Google Scholar] [CrossRef]
- Mendes, G.D.; da Silva, N.M.R.M.; Anastacio, T.C.; Vassilev, N.B.; Ribeiro, J.I.; da Silva, I.R.; Costa, M.D. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Microb. Biotechnol. 2015, 8, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.E.; Yakout, A.A.; Abdel-Aal, H.; Osman, M.M. Enhanced biosorptive removal of cadmium from aqueous solutions by silicon dioxide nano-powder, heat inactivated and immobilized Aspergillus ustus. Desalination 2011, 279, 291–297. [Google Scholar] [CrossRef]
- Akar, T.; Celik, S.; Ari, A.G.; Akar, S.T. Removal of Pb2+ ions from contaminated solutions by microbial composite: Combined action of a soilborne fungus Mucor plumbeus and alunite matrix. Chem. Eng. J. 2013, 215, 626–634. [Google Scholar] [CrossRef]
- Ding, C.; Cheng, W.; Sun, Y.; Wang, X. Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J. Hazard. Mater. 2015, 295, 127–137. [Google Scholar] [CrossRef]
- Tauqeer, H.M.; Basharat, Z.; Ramzani, P.M.A.; Farhad, M.; Lewinska, K.; Turan, V.; Karczewska, A.; Khan, S.A.; Faran, G.E.; Iqbal, M. Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek. Environ. Pollut. 2022, 313, 120064. [Google Scholar] [CrossRef]
- González-Chávez, M.D.A.; Carrillo-González, R.; Cuellar-Sánchez, A.; Delgado-Alvarado, A.; Suárez-Espinosa, J.; Ríos-Leal, E.; Solís-Domínguez, F.A.; Maldonado-Mendoza, I.E. Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead-acid battery recycling site. Sci. Total Environ. 2019, 650, 3134–3144. [Google Scholar] [CrossRef]
- Bandara, T.; Herath, I.; Kumarathilaka, P.; Seneviratne, M.; Seneviratne, G.; Rajakaruna, N.; Vithanage, M.; Ok, Y.S. Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. J. Soils Sediments 2017, 17, 665–673. [Google Scholar] [CrossRef]
- da Silva, V.N. Solubility curve of rock powder inoculated with microorganisms in the production of biofertilizers. Agric. Nat. Resour. 2017, 51, 142–147. [Google Scholar] [CrossRef]
- Fitriatin, B.N.; Suryatmana, P.; Yuniarti, A.; Istifadah, N. The Application of Phosphate Solubilizing Microbes Biofertilizer to Increase Soil P and Yield of Maize on Ultisols Jatinangor. KnE Life Sci. 2017, 2, 179–184. [Google Scholar] [CrossRef]
- Meng, L.Z.; Pan, S.; Zhou, L.M.; Santasup, C.; Su, M.; Tian, D.; Li, Z. Evaluating the survival of in a highly polluted red soil with addition of Phosphogypsum and bioorganic fertilizer. Environ. Sci. Pollut. Res. 2022, 29, 76446–76455. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, D.; Zhang, S.; Wang, D.; Zhang, L.; Chen, H.; Ye, X. Heavy Metal Remediation Using Phosphate-Solubilizing Fungi: From Bioprocess to Application. Agronomy 2024, 14, 2638. https://doi.org/10.3390/agronomy14112638
Tian D, Zhang S, Wang D, Zhang L, Chen H, Ye X. Heavy Metal Remediation Using Phosphate-Solubilizing Fungi: From Bioprocess to Application. Agronomy. 2024; 14(11):2638. https://doi.org/10.3390/agronomy14112638
Chicago/Turabian StyleTian, Da, Shuo Zhang, Dechao Wang, Liangliang Zhang, Haoming Chen, and Xinxin Ye. 2024. "Heavy Metal Remediation Using Phosphate-Solubilizing Fungi: From Bioprocess to Application" Agronomy 14, no. 11: 2638. https://doi.org/10.3390/agronomy14112638
APA StyleTian, D., Zhang, S., Wang, D., Zhang, L., Chen, H., & Ye, X. (2024). Heavy Metal Remediation Using Phosphate-Solubilizing Fungi: From Bioprocess to Application. Agronomy, 14(11), 2638. https://doi.org/10.3390/agronomy14112638