Utilising Reclaimed Water for Papaya (Carica papaya L.) Cultivation in Cape Verde: A Detailed Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Irrigation System
2.3. Water Quality
2.4. Soil Analysis
2.5. Papaya Production, WUE and Fruit Quality
2.6. Statistical Analysis
3. Results and Discussion
3.1. Water and Soil
3.2. Fruit Weight and Number, Fruit Produced per Tree per Week, and Cumulative Fruit Production
3.3. Water Use Efficiency
3.4. Fruit Quality: Total Soluble Solids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakasone, H.Y.; Paull, R.E. Papaya. In Tropical Fruits; CAB International: Wallingford, UK, 1998; pp. 239–269. [Google Scholar]
- Vij, T.; Prashar, Y. A Review on Medicinal Properties of Carica papaya Linn. Asian Pac. J. Trop. Dis. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Feitosa, E.O.; Araújo, A.F.B.; Oliveira, C.M.B.; Lopes, F.B.; de Andradre, E.M. Irrigation productivity and water-use efficiency in papaya crop under semi-arid conditions. Afr. J. Agric. Res. 2016, 11, 4181–4188. [Google Scholar] [CrossRef]
- Burbano-Figueroa, O.; Sierra-Monroy, A.; David-Hinestroza, A.; Whitney, C.; Borgemeister, C.; Luedeling, E. Farm-planning under risk: An application of decision analysis and portfolio theory for the assessment of crop diversification strategies in horticultural systems. Agric. Syst. 2022, 199, 103409. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, R.K.; Rana, V.S.; Sankhyan, N.; Sharma, U.; Sharma, S. Forecasting the Future of Papaya in India: Predicting Area and Production Through Autoregressive Integrated Moving Average. Appl. Fruit Sci. 2024, 66, 183–191. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mitra, S.K.; Saran, S. Papaya production in India—History, present status and future prospects. Acta Hortic. 2016, 1111, 87–94. [Google Scholar] [CrossRef]
- FAO STAT. Available online: https://www.fao.org/faostat/en/#search/Papayas (accessed on 12 September 2024).
- Honore, M.; Belmonte-Ureña, L.; Navarro-Velasco, A.; Camacho-Ferre, F. Profit Analysis of Papaya Crops under Greenhouses as an Alternative to Traditional Intensive Horticulture in Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 2908. [Google Scholar] [CrossRef]
- Honore, M.; Belmonte-Ureña, L.; Navarro-Velasco, A.; Camacho-Ferre, F. The Production and Quality of Different Varieties of Papaya Grown under Greenhouse in Short Cycle in Continental Europe. Int. J. Environ. Res. Public Health 2019, 16, 1789. [Google Scholar] [CrossRef]
- Salinas, I.; Hueso, J.; Cuevas, J. Fruit growth model, thermal requirements and fruit size determinants in papaya cultivars grown under subtropical conditions. Sci. Hortic. 2019, 246, 1022–1027. [Google Scholar] [CrossRef]
- ISTAC. Producción Recolectada Según Productos Agrícolas. Islas de Canarias por Años. Desde 2012. Ultima actualización. 29 Sep 2023. Available online: https://www.gobiernodecanarias.org/istac/ (accessed on 12 September 2024).
- INE. Available online: https://ine.cv/publicacoes/anuario-estatistico-de-cabo-verde-2021/ (accessed on 18 July 2024).
- Monteiro, F.; Fortes, A.; Ferreira, V.; Pereira Essoh, A.; Gomes, I.; Correia, A.M.; Romeiras, M.M. Current Status and Trends in Cabo Verde Agriculture. Agronomy 2020, 10, 74. [Google Scholar] [CrossRef]
- Baptista, I.; Fleskens, L.; Ritsema, C.; Querido, A.; Tavares, J.; Ferreira, A.D.; Reis, E.A.; Gomes, S.; Varela, A. Soil and Water Conservation Strategies in Cape Verde (Cabo Verde in Portuguese) and Their Impacts on Livelihoods: An Overview from the Ribeira Seca Watershed. Land 2015, 4, 22–44. [Google Scholar] [CrossRef]
- Tavares, J.P.; Amiotte-Suchet, P. Rainfall erosion risk mapping in volcanic soils of Santiago Island, Cape Verde Archipelago. Afr. Geosci. Rev. 2007, 14, 399–414. [Google Scholar]
- Lopes, M.A.; Guedes-Alonso, R.; Mendoza-Grimón, V.; Montesdeoca-Esponda, S.; Fernández-Vera, J.R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Palacios-Díaz, M.P. Water quality for agricultural irrigation produced by two municipal sewage treatment plants in Santiago Island-Cape Verde: Assessment of chemical parameters and pharmaceutical residues. Water Reuse 2023, 13, 608–619. [Google Scholar] [CrossRef]
- Palacios, M.P.; Mendoza-Grimón, V.; Fernández, F.; Fernández-Vera, J.R.; Hernández-Moreno, J.M. Sustainable reclaimed water management by subsurface drip irrigation system: A study case for forage production. Water Pract. Technol. 2008, 3, wpt2008049. [Google Scholar] [CrossRef]
- Qiu, Z.; Sun, M. A global synthetic analysis of the effects of reclaimed water irrigation on crop yield and water use efficiency. Water Supply 2023, 23, 2758–2772. [Google Scholar] [CrossRef]
- FAO. Water Pollution from Agriculture: A Global Review. The Food and Agriculture Organization of the United Nations. 2017. Available online: https://www.fao.org/land-water/news-archive/news-detail/en/c/1032702/ (accessed on 15 September 2024).
- Sá, F.; Brito, M.; Moreira, R.; Melo, A.; Silva, L.; Gheyi, H.; Figueiredo, L.; Paiva, E. Balance of salts and growth of papaya cultivars irrigated with saline water. Biosci. J. 2016, 32, 849–856. [Google Scholar] [CrossRef]
- Targino, V.; Lopes, A.; Sousa, V.; Henschel, J.; Silva, J.; Rodrigues, L.; Medeiros, W.; Batista, D.; Dias, T. Growth and physiology of ‘Sunrise’ papaya seedlings in response to salinity and humic acid. Rev. Bras. Eng. Agríc. Ambient 2023, 27, 352–358. [Google Scholar] [CrossRef]
- Gaat, B.; Kumar, M.; Naresh, R.; Kumar, S.; Kumar, N.; Rani, S.; Kumar, R. Effect of Irrigation Levels and Straw Mulching on Yield and Water Use Efficiency of Papaya under Drip Irrigation System. Int. J. Environ. Clim. 2023, 13, 693–701. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Fernández-Vera, J.R.; Hernández-Moreno, J.M.; Palacios-Díaz, M.P. Sustainable irrigation using non-conventional resources: What has happened after 30 years regarding Boron phytotoxicity? Water 2019, 11, 1952. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Hernández-Moreno, J.M.; Palacios-Díaz, M.D.P. Improving Water Use in Fodder Production. Water 2015, 7, 2612–2621. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Fernández-Vera, J.R.; Silva, G.D.; Semedo-Varela, A.; Palacios-Díaz, M.D.P. Cape Verde (West Africa) Successful Water Reuse Pilot Project: A Sustainable Way for Increasing Food Production in a Climate Change Scenario. Water 2021, 13, 160. [Google Scholar] [CrossRef]
- Périnelle, A.; Scopel, E.; Adam, M.; Meynard, J.M. Adaptation rather than adoption: A case study of cropping system change in West Africa. Agron. Sustain. Dev. 2024, 44, 43. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Amorós, R.; Fernández-Vera, J.R.; Hernández-Moreno, J.M.; Palacios-Díaz, M.P. Effect of Different Water Quality on the Nutritive Value and Chemical Composition of Sorghum bicolor Payenne in Cape Verde. Agronomy 2021, 11, 1091. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, C.; Wang, D.; Li, H.; Guo, W. Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace. Agriculture 2023, 13, 1463. [Google Scholar] [CrossRef]
- EU. Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Available online: https://eur-lex.europa.eu/eli/reg/2020/741/oj (accessed on 18 July 2024).
- Decreto Regulamentar n° 4/2020 Série—No 24 «B.O.» da República de Cabo Verde. Critérios e os Parâmetros para Controlo da Qualidade da água para Rega, águas de Origem Superficial ou Subterrânea, Dessalinizada, Águas Pluviais Recuperadas ou Águas Residuais Tratadas, com o Objetivo de Satisfazer ou Complementar as Necessidades Hídricas de Culturas Agrícolas, Florestais, Ornamentais, Viveiros, Relvados e Outros Espaços Verdes, Previamente à adição de Fertilizante. Available online: https://kiosk.incv.cv/1.1.24.3139/ (accessed on 18 July 2024).
- Palacios-Diaz, M.P.; Fernández-Vera, J.R.; Hernández-Moreno, J.M.; Amorós, R.; Mendoza-Grimón, V. Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde. Agriculture 2023, 13, 192. [Google Scholar] [CrossRef]
- FAO, AQUASTAT. Food and Agriculture Organization. AQUASTAT Climate Information Tool. Available online: https://aquastat.fao.org/climate-information-tool/climate-data?lat=15.14 (accessed on 25 May 2024).
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; FAO Irrigation and Drainage Paper 46; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992; ISBN 9251031061. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/es/ (accessed on 14 February 2021).
- Carr, M.K.V. The water relations and irrigation requirements of papaya (Carica papaya L.): A review. Exp. Agric. 2014, 50, 270–283. [Google Scholar] [CrossRef]
- Migliaccio, K.W.; Schaffer, B.; Crane, J.H.; Davies, F.S. Plant Response to Evapotranspiration and Soil Water Sensor Irrigation Scheduling Methods for Papaya Production in South Florida. Agric. Water Manag. 2010, 97, 1452–1460. [Google Scholar] [CrossRef]
- ANAS. Estação de Tratamento de Águas Residuais “ETAR” Cabo Verde. Estudo e Caracterização; Departamento de Gestão de Recursos Hídricos e Saneamento “DGRHS”, Agência Nacional de Água e Saneamento “ANAS”: June 2016. Available online: https://maa.gov.cv/index.php/agua-e-saneamento (accessed on 11 September 2024).
- USDA. Soil Survey Staff. Keys to Soil Taxonomy, 8th ed.; 1998-NRCS.; U.S.D.A.: Lincoln, NE, USA, 1998. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2014. Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Miller, R.H., Keeney, E.R., Eds.; Agronomy Monograph 9.2; America Society Agronomy, Inc. and Soil Science of America, Inc.: Madison, WI, USA, 1982; pp. 1035–1049. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage, Paper 29; Food and Agriculture Organization: Rome, Italy, 1985. [Google Scholar]
- Evans, E.A.; Ballen, F.H.; Crane, J.H. An Overview of Global Papaya Production, Trade, and Consumption: FE913/FE913, 9/2012. EDIS 2012. Available online: https://edis.ifas.ufl.edu/publication/FE913 (accessed on 16 May 2024).
- Axayacatl, O. Estadísticas de Producción de Papaya en México. Available online: https://blogagricultura.com/estadisticas-papaya-mexico/ (accessed on 10 September 2024).
- Zimmerman, T.W. Water Usage and Papaya Growth in Double-Row Systems Established During the Dry Season; Water Resources Research Institute, University of the Virgin Islands: St. Thomas, VI, USA, 2008. [Google Scholar] [CrossRef]
- Hueso, J.J.; Salinas, I.; Pinillos, V.; Cuevas, J. El Cultivo de la Papaya en el Sureste de España—Horticultura. Available online: https://www.interempresas.net/Horticola/Articulos/196398-El-cultivo-de-la-papaya-en-el-Sureste-de-Espana.html (accessed on 12 September 2024).
- INNOVAGRI. Comparación de los Sistemas Productivos de la Papaya en España y Brasil. Available online: https://www.innovagri.es/investigacion-desarrollo-innovacion/comparacion-de-los-sistemas-productivos-de-la-papaya-en-espana-y-brasil.html (accessed on 10 September 2024).
- Santana, J.L.; Sousa, M.J.; Rodriguez, M.C.; Suarez, C.L. Response of the papaya (Carica papaya L.) Plant to deficit irrigation in the Canary Islands. Acta Hortic. 2008, 792, 559–565. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Crane, J.H.; Migliaccio, K.W.; Li, Y.; Ballen, F. ET-Based Irrigation Scheduling for Papaya (Carica papaya) in Florida: AE540, 03/2020. EDIS 2020, 2020, 1–4. [Google Scholar] [CrossRef]
- Carvalho, G.C.; Coelho, E.F.; da Silva, A.S.A.M.; Pamponet, A.J.M. Trickle irrigation: Effects on papaya crop. Sci. Pap. Eng. Agríc. 2014, 34, 10–25. [Google Scholar] [CrossRef]
- De Melo, D.M.; Da Silva, B.L.P.; Lima, L.W.F.; Barros, D.L.; Coelho, E.F. Irrigation of papaya in a sandy loam soil in the semiarid of Bahia, Brazil. Rev. Bras. Cienc. Agrar. 2020, 15, 1. [Google Scholar] [CrossRef]
- Manjunath, B.L.; Laxman, R.H.; Upreti, K.K.; Raghupati, H.B. Partial root zone drying irrigation in papaya (Carica papaya L.) for enhanced water use efficiency under limited water situations. J. Hortic. Sci. 2017, 12, 2. [Google Scholar] [CrossRef]
- Manjunath, B.L.; Nair, A.K.; Laxman, R.H. Standardization of spacing and soil volume wetting for drip irrigation in papaya (Carica papaya L.). J. Hortic. Sci. 2020, 15, 35–44. [Google Scholar] [CrossRef]
- Manjunath, B.L.; Upretti, K.K.; Laxman, R.H.; Radha, T.K.; Raghupathi, H.B. Partial root zone drying irrigation for higher water use efficiency in papaya (Carica papaya L.). J. Appl. Hortic. 2022, 24, 135–139. [Google Scholar] [CrossRef]
- Lima Santos, D.; Ferreira Coelho, E.; França da Cunha, F.; Rodrigues Donato, S.L.; de Paula Bernado, W.; Pereira Rodrigues, W.; Campostrini, E. Partial root-zone drying in field-grown papaya: Gas exchange, yield, and water use efficiency. Agric. Water Manag. 2021, 243, 106421. [Google Scholar] [CrossRef]
- Dantas, J.L.L.; Lucena, R.S.; Boas, S.A.V. Avaliação agronómica de linhagens e híbridos de mamoeiro. Rev. Bras. Frutic. 2015, 37, 138–148. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Lobo, M.G. Evaluación pre y postcosecha de tres cultivares de papaya. In Proceedings of the Jornadas Técnicas de Papaya, Santa Cruz de Tenerife, Spain, 29–30 June 2016; Instituto de Canarias de Investigaciones Agrarias (ICIA): Santa Cruz de Tenerife, Spain, 2016; p. 33. [Google Scholar]
- Cabrera, J.A.; Ritter, A.; Raya, V.; Pérez, E.; Lobo, M.G. Papaya (Carica papaya L.) Phenology under Different Agronomic Conditions in the Subtropics. Agriculture 2021, 11, 173. [Google Scholar] [CrossRef]
- Mahouachi, J.; Marrero-Díaz, E. Plant Growth and Fruit Nutrient Changes in Carica papaya L. Genotypes Subjected to Regulated Deficit Irrigation. Life 2022, 12, 1831. [Google Scholar] [CrossRef]
- Manjunath, B.L.; Gutam, S.; Raghupathi, H.B. Standardisation of fertigation in papaya for higher productivity and profitability. J. Hortic. Sci. 2023, 18, 104–112. [Google Scholar] [CrossRef]
pH | EC | COD | BOD5 | NO3− | SAR | Cl− | Na | Ca | Mg | TSS | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
µS/cm | mg/L | (meq/L)1/2 | mg/L | |||||||||
RW | Mean | 7.5 | 2970 | 32 | 6.3 | 320 | 6.8 | 415 | 361.6 | 91.3 | 71.4 | 2.2 |
Std | 0.7 | 355.9 | 1.4 | 0.4 | 157.2 | 2.2 | 35.4 | 91.3 | 5.5 | 9.9 | 0.2 |
Well | pH | EC | SAR | Na | K | Ca | Mg | Cl− | NO3− | SO42− | B | Cu | Fe | Zn | Mn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µS/cm | (meq/L)1/2 | mg/L | ||||||||||||||
PT33 | Mean | 8.1 | 1150 | 2.21 | 99 | 9.15 | 55 | 62 | 140 | 45.5 | 39.5 | 0.135 | <0.015 | <0.015 | 0.016 | <0.005 |
Std | 0 | 50 | 0.03 | 1 | 0.05 | 1 | 2 | 0 | 1.5 | 2.5 | 0.005 | - | - | - | - | |
FT59 | Mean | 7.95 | 1250 | 1285 | 65.5 | 7.3 | 96 | 60.5 | 190 | 45 | 46 | 0.07 | <0.015 | <0.015 | <0.010 | <0.005 |
Std | 0.04 | 106.1 | 0.01 | 2.47 | 0.28 | 9.9 | 5.3 | 42.42 | 0.71 | 1.41 | 0 | - | - | - | - |
dS/m | % | % | mg/kg | meq/100 g | mg/kg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treat | pH | CE | OM | Ntot | C/N | Nitrate | Polsen | K | Ca | Mg | Na | B | |
Dec-20 | 1 | 8.8 | 1.1 | 2.9 | 0.18 | 8.95 | 862.5 | 141.0 | 7.8 | 18.5 | 10.2 | 8.7 | 2.0 |
2 | 8.7 | 0.7 | 3.4 | 0.2 | 9.7 | 574.0 | 168.0 | 7.0 | 20.3 | 11.4 | 5.8 | 1.4 | |
3 | 8.9 | 0.5 | 2.1 | 0.1 | 9.9 | 202.0 | 78.0 | 5.8 | 21.4 | 11.6 | 8.0 | 1.4 | |
Nov-21 | 1 | 8.5 | 0.5 | 3.0 | 0.2 | 9.8 | 353.3 | 153.5 | 5.9 | 20.9 | 13.2 | 2.9 | 1.7 |
2 | 8.6 | 0.5 | 3.0 | 0.3 | 10.2 | 343.5 | 195.3 | 7.1 | 20.7 | 11.9 | 3.9 | 1.9 | |
3 | 8.9 | 0.4 | 2.8 | 0.2 | 9.6 | 142.8 | 127.0 | 6.2 | 19.8 | 12.3 | 3.5 | 6.0 |
Region | Fruit Yield (kg/ha) | Water Consumption (mm/year) | WUE (kg/m3) | ||
---|---|---|---|---|---|
Thailand | 30,000–50,000 | 900–1100 | I + R | 4.55 | [7] [41] |
India | 60,000–80,000 | 1200–1500 | I + R | 5.33 | [7] [41] |
India | 50,000–70,000 | 1200–2000 | 3.5 | [7] | |
Mexico (Veracruz) | 113,200 | 1200–2000 | 5.66 | [42] | |
Mexico (Colima) | 80,100 | 1200–2000 | 4.01 | [42] | |
Mexico (Oaxaca) | 78,900 | 1200–2000 | 3.95 | [42] | |
Mexico | 50,000–70,000 | 1100–1300 | I + R | 5.38 | [7] |
Brazil | 40,000–60,000 | 1000–1200 | I + R | 5 | [7] [41] |
Brazil | 60,000–80,000 | 1800–2000 | 4 | [7] | |
USA (Hawaii) | 50,000–60,000 | 1200 | R | 5 | [43] |
Spain (southeast) | 45,000–60,000 | 1200–2000 | 3 | [44] [45] | |
Spain (Canary Islands) | 40,000–50,000 | 700–900 | I | 5.56 | [46] |
Spain (Canary Islands) | 50,000–70,000 | 1200–2000 | 3.5 | [7] | |
Cape Verde | 69,060 | 1256 | I + R | 5.97 | This study (T1) |
Cape Verde | 65,080 | 1256 | I + R | 5.62 | This study (T2) |
Cape Verde | 62,660 | 1256 | I + R | 5.42 | This study (T3) |
I: Irrigation | |||||
R: Rainfall |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Grimón, V.; Amorós, R.; Fernández-Vera, J.R.; Lopes da Veiga, E.; Palacios-Díaz, M.d.P. Utilising Reclaimed Water for Papaya (Carica papaya L.) Cultivation in Cape Verde: A Detailed Case Study. Agronomy 2024, 14, 2726. https://doi.org/10.3390/agronomy14112726
Mendoza-Grimón V, Amorós R, Fernández-Vera JR, Lopes da Veiga E, Palacios-Díaz MdP. Utilising Reclaimed Water for Papaya (Carica papaya L.) Cultivation in Cape Verde: A Detailed Case Study. Agronomy. 2024; 14(11):2726. https://doi.org/10.3390/agronomy14112726
Chicago/Turabian StyleMendoza-Grimón, Vanessa, Regla Amorós, Juan Ramón Fernández-Vera, Ernestina Lopes da Veiga, and Maria del Pino Palacios-Díaz. 2024. "Utilising Reclaimed Water for Papaya (Carica papaya L.) Cultivation in Cape Verde: A Detailed Case Study" Agronomy 14, no. 11: 2726. https://doi.org/10.3390/agronomy14112726
APA StyleMendoza-Grimón, V., Amorós, R., Fernández-Vera, J. R., Lopes da Veiga, E., & Palacios-Díaz, M. d. P. (2024). Utilising Reclaimed Water for Papaya (Carica papaya L.) Cultivation in Cape Verde: A Detailed Case Study. Agronomy, 14(11), 2726. https://doi.org/10.3390/agronomy14112726