Integrated Assessment of the Impact of Cropland Use Transition on Food Production Towards the Sustainable Development of Social–Ecological Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. GPP Measurement for Cropland Use Transition
2.4. Spatiotemporal Balance Calculation for Newly Added GPP and Lost GPP
2.5. Spatial Mismatch Analysis
3. Results
3.1. Overall Characteristics of Cropland Use Transition in Guangdong Province
3.2. Influence of Different Cropland Use Transitions on GPP
3.2.1. Loss of GPP Due to the Cropland Non-Agriculturalization
3.2.2. Loss of GPP Due to the Cropland Abandonment
3.2.3. Increase in GPP Due to Cropland Compensation
3.3. Spatial and Temporal Comparison of Added and Lost GPP
3.4. Spatial Mismatch Analysis of Population, Economy, and GPP
4. Discussion
4.1. Main Cropland Use Transitions Causing GPP Loss in Guangdong Province
4.2. Impact of Population and Economy on GPP Changes
4.3. Impact of Cropland Protection Policies on Agricultural Production
4.4. Implications for Cropland Protection
4.5. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, X.; Li, Y.; Zhou, Y. Study on the Abandonment of Sloping Farmland in Fengjie County, Three Gorges Reservoir Area, a Mountainous Area in China. Land Use Policy 2020, 97, 104760. [Google Scholar] [CrossRef]
- Cui, X.; Zhong, Z. Climate Change, Cropland Adjustments, and Food Security: Evidence from China. J. Dev. Econ. 2024, 167, 103245. [Google Scholar] [CrossRef]
- He, T.; Zhang, M.; Xiao, W.; Zhai, G.; Wang, Y.; Guo, A.; Wu, C. Quantitative Analysis of Abandonment and Grain Production Loss under Armed Conflict in Ukraine. J. Clean. Prod. 2023, 412, 137367. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.; Yang, J.; Zhang, L. Analysis for Spatial-Temporal Changes of Grain Production and Farmland Resource: Evidence from Hubei Province, Central China. J. Clean. Prod. 2019, 207, 474–482. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, J.; Wang, T.; Bai, H.; Wang, X.; Zhao, W. Changes in Land-Use and Ecosystem Service Value in Guangdong Province, Southern China, from 1990 to 2018. Land 2021, 10, 426. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, N.; Wang, Y.; Zhang, L.; Wang, W.; Liu, Y. Cropland Non-Agriculturalization Caused by the Expansion of Built-up Areas in China during 1990–2020. Land Use Policy 2024, 146, 107312. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, Y.; Liu, J.; Ge, X.; Liu, G.-J.; Chen, F. Spatial Differentiation of Non-Grain Production on Cultivated Land and Its Driving Factors in Coastal China. Sustainability 2021, 13, 13064. [Google Scholar] [CrossRef]
- Zeng, X.; Xiang, H.; Xue, Y.; Su, Y.; Tong, Y.; Mao, Z. A Scenario-Based Optimization Frame to Adjust Current Strategy for Population- Economy-Resource-Environment Harmony in an Urban Agglomeration, China. Sustain. Cities Soc. 2021, 67, 102710. [Google Scholar] [CrossRef]
- Rask, K.J.; Rask, N. Economic Development and Food Production–Consumption Balance: A Growing Global Challenge. Food Pol. 2011, 36, 186–196. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Y.; Long, H.; Guan, X.-H. Agricultural Production Structure Optimization: A Case Study of Major Grain Producing Areas, China. J. Integr. Agric. 2013, 12, 184–197. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s Food Security and Land Use Policy under Rapid Urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wang, Y. Spatiotemporal Evolution of Cultivated Land Non-Agriculturalization and Its Drivers in Typical Areas of Southwest China from 2000 to 2020. Remote Sens. 2022, 14, 3211. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Chen, X. Assessing the Impact of Urban Expansion on Potential Crop Yield in China during 1990–2010. Food Secur. 2015, 7, 33–43. [Google Scholar] [CrossRef]
- Yu, D.; Hu, S.; Tong, L.; Xia, C. Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China. Land 2020, 9, 510. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban Expansion Brought Stress to Food Security in China: Evidence from Decreased Cropland Net Primary Productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, J.; Deng, X.; Huang, J.; Uchida, E.; Rozelle, S. Grain for Green versus Grain: Conflict between Food Security and Conservation Set-Aside in China. World Devel. 2006, 34, 130–148. [Google Scholar] [CrossRef]
- Guo, A.; Yue, W.; Yang, J.; Xue, B.; Xiao, W.; Li, M.; He, T.; Zhang, M.; Jin, X.; Zhou, Q. Cropland Abandonment in China: Patterns, Drivers, and Implications for Food Security. J. Clean. Prod. 2023, 418, 138154. [Google Scholar] [CrossRef]
- Chen, H.; Tan, Y.; Xiao, W.; He, T.; Xu, S.; Meng, F.; Li, X.; Xiong, W. Assessment of Continuity and Efficiency of Complemented Cropland Use in China for the Past 20 Years: A Perspective of Cropland Abandonment. J. Clean. Prod. 2023, 388, 135987. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, Q.; Jiang, C.; Yao, R. Cropland Compensation in Mountainous Areas in China Aggravates Non-Grain Production: Evidence from Fujian Province. Land Use Policy 2024, 138, 107026. [Google Scholar] [CrossRef]
- Yu, D.; Hu, S.; Tong, L.; Xia, C.; Ran, P. Dynamics and Determinants of the Grain Yield Gap in Major Grain-Producing Areas: A Case Study in Hunan Province, China. Foods 2022, 11, 1122. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland Transition and Its Influences on Grain Production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Wang, M.; Huang, X. Inhibit or Promote: Spatial Impacts of Multifunctional Farmland Use Transition on Grain Production from the Perspective of Major Function-Oriented Zoning. Habitat Int. 2024, 152, 103172. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.; Li, X.; Zhou, Y. Evaluation of the Efficiency and Drivers of Complemented Cropland in Southwest China over the Past 30 Years from the Perspective of Cropland Abandonment. J. Environ. Manag. 2024, 351, 119909. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Qin, Z.; Liu, X.; Chen, Z.; Wei, X.; Zhang, Q.; Lei, M. Grain production space reconstruction and land system function tradeoffs in China. Geogr. Sustain. 2021, 2, 22–30. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Zhang, Q.; Musyimi, Z. The Response of Grain Production to Changes in Quantity and Quality of Cropland in Yangtze River Delta, China. J. Sci. Food Agric. 2015, 95, 480–489. [Google Scholar] [CrossRef]
- Shi, W.; Tao, F.; Liu, J. Changes in Quantity and Quality of Cropland and the Implications for Grain Production in the Huang-Huai-Hai Plain of China. Food Secur. 2013, 5, 69–82. [Google Scholar] [CrossRef]
- Li, L.; Zheng, S.; Zhao, K.; Shen, K.; Yan, X.; Zhao, Y. The Quantitative Impact of the Arable Land Protection Policy on the Landscape of Farmland Abandonment in Guangdong Province. Remote Sens. 2022, 14, 4991. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory Spatial Planning and National Governance System in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Sun, Z.; Zhong, Y.; Wang, X.; Zhang, L. Identifying Cropland Non-Agriculturalization with High Representational Consistency from Bi-Temporal High-Resolution Remote Sensing Images: From Benchmark Datasets to Real-World Application. ISPRS J. Photogramm. Remote Sens. 2024, 212, 454–474. [Google Scholar] [CrossRef]
- Shuai, G.; Basso, B. Subfield Maize Yield Prediction Improves When In-Season Crop Water Deficit Is Included in Remote Sensing Imagery-Based Models. Remote Sens. Environ. 2022, 272, 112938. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, B.; Xu, H.; Qiao, Z.; Liu, L. Interannual Monitoring of Cropland in South China from 1991 to 2020 Based on the Combination of Deep Learning and the Land Trendr Algorithm. Remote Sens. 2024, 16, 949. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Zhu, A.-X.; Lao, C.; Hu, G.; Hu, Y. Scenario Farmland Protection Zoning Based on Production Potential: A Case Study in China. Land Use Policy 2020, 95, 104581. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.; Su, K.; Zhou, Y.; Li, X.; Lin, A. Understanding the Impact of Cultivated Land-Use Changes on China’s Grain Production Potential and Policy Implications: A Perspective of Non-Agriculturalization, Non-Grainization, and Marginalization. J. Clean. Prod. 2024, 436, 140647. [Google Scholar] [CrossRef]
- Yin, H.; Brandão, A.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring Cropland Abandonment with Landsat Time Series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Su, Y.; Wu, S.; Kang, S.; Xu, H.; Liu, G.; Qiao, Z.; Liu, L. Monitoring Cropland Abandonment in Southern China from 1992 to 2020 Based on the Combination of Phenological and Time-Series Algorithm Using Landsat Imagery and Google Earth Engine. Remote Sens. 2023, 15, 669. [Google Scholar] [CrossRef]
- Martin, R.W. Spatial Mismatch and the Structure of American Metropolitan Areas, 1970–2000. J. Reg. Sci. 2004, 44, 467–488. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, X.; Miao, L.; Yang, X. A Historical Reconstruction of Cropland in China from 1900 to 2016. Earth Syst. Sci. Data 2021, 13, 3203–3218. [Google Scholar] [CrossRef]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future Urban Land Expansion and Implications for Global Croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Tang, Z.; Chen, C.; Berry, J. How Cropland Losses Shaped by Unbalanced Urbanization Process? Land Use Policy 2020, 96, 104715. [Google Scholar] [CrossRef]
- Li, S.; Li, X. Global Understanding of Farmland Abandonment: A Review and Prospects. J. Geog. Sci. 2017, 27, 1123–1150. [Google Scholar] [CrossRef]
- Khanal, N.R.; Watanabe, T. Abandonment of Agricultural Land and Its Consequences. Mt. Res. Dev. 2006, 26, 32–40. [Google Scholar] [CrossRef]
- Li, T.; Long, H.; Zhang, Y.; Tu, S.; Ge, D.; Li, Y.; Hu, B. Analysis of the Spatial Mismatch of Grain Production and Farmland Resources in China Based on the Potential Crop Rotation System. Land Use Policy 2017, 60, 26–36. [Google Scholar] [CrossRef]
- Jiang, C.; Song, W. Degree of Abandoned Cropland and Socioeconomic Impact Factors in China: Multi-Level Analysis Model Based on the Farmer and District/County Levels. Land 2022, 11, 8. [Google Scholar] [CrossRef]
- Qi, W.; Deng, Y.; Fu, B. Rural Attraction: The Spatial Pattern and Driving Factors of China’s Rural in-Migration. J. Rural Stud. 2022, 93, 461–470. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, H. Interactive Relationship among Urban Expansion, Economic Development, and Population Growth since the Reform and Opening up in China: An Analysis Based on a Vector Error Correction Model. Land 2019, 8, 153. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Song, W. Review of the Evolution of Cultivated Land Protection Policies in the Period Following China’s Reform and Liberalization. Land Use Policy 2017, 67, 660–669. [Google Scholar] [CrossRef]
- Chen, B.; Yao, N. Evolution Characteristics of Cultivated Land Protection Policy in China Based on Smith Policy Implementation. Agriculture 2024, 14, 1194. [Google Scholar] [CrossRef]
- Hong, C.; Prishchepov, A.V.; Bavorova, M. Cropland Abandonment in Mountainous China: Patterns and Determinants at Multiple Scales and Policy Implications. Land Use Policy 2024, 145, 107292. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Shi, T.; Li, H.; Zhai, L. Understanding Cropland Abandonment from Economics within a Representative Village and Its Empirical Analysis in Chinese Mountainous Areas. Land Use Policy 2023, 133, 106876. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Ding, C. Assessing Farmland Protection Policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Y.; Yang, Q.; He, H.; Su, K. Exploring a Moderate Fallow Scale of Cultivated Land in China from the Perspective of Food Security. Int. J. Environ. Res. Public Health 2019, 16, 4329. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Lu, C. Change of Cultivated Land and Its Implications on Food Security in China. Chin. Geogr. Sci. 2006, 16, 299–305. [Google Scholar] [CrossRef]
- Lu, X.; Qu, Y.; Sun, P.; Yu, W.; Peng, W. Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation. Land 2020, 9, 475. [Google Scholar] [CrossRef]
- Huang, Y.; Li, F.; Xie, H. A Scientometrics Review on Farmland Abandonment Research. Land 2020, 9, 263. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Xu, C. Land Consolidation and Rural Revitalization in China: Mechanisms and Paths. Land Use Policy 2020, 91, 104379. [Google Scholar] [CrossRef]
- Jin, X.; Shao, Y.; Zhang, Z.; Resler, L.M.; Campbell, J.B.; Chen, G.; Zhou, Y. The Evaluation of Land Consolidation Policy in Improving Agricultural Productivity in China. Sci. Rep. 2017, 7, 2792. [Google Scholar] [CrossRef]
- Wu, Z.; Li, S.; Wu, D.; Song, J.; Lin, T.; Gao, Z. Analysis of Characteristics and Driving Mechanisms of Non-Grain Production of Cropland in Mountainous Areas at the Plot Scale—A Case Study of Lechang City. Foods 2024, 13, 1459. [Google Scholar] [CrossRef]
Date Type | Time Range | Spatial Resolution | Source |
---|---|---|---|
CNLUCC | 1990, 1995, 2000, 2005, 2010, 2015, 2020 | 30 m | Resources and Environmental Science Data Center (https://www.resdc.cn/) accessed on 9 January 2024 |
Meteorological date | 1991–2020 | 10 km | China Meteorological Data Network (https://data.cma.cn/) accessed on 12 January 2024 |
Statistical data | 1991–2020 | - | Guangdong Statistical Yearbook (http://stats.gd.gov.cn/gdtjnj/) accessed on 22 January 2024 |
DEM | - | 30 m | Shuttle Radar Topography Mission data (http://srtm.csi.cgiar.org/srtmdata/) accessed on 9 January 2024 |
Soil data | - | 1 km | Resources and Environmental Science Data Center (https://www.resdc.cn/) accessed on 9 January 2024 |
Status | Serious Imbalance | Less Balanced | Basic Equilibrium | Perfect Balance |
---|---|---|---|---|
BV (104t) | −10< | −10~−1 | −1~1 | >1 |
Districts | Area (km2) | GPP (104t) | Area (km2) | GPP (104t) | |||||
---|---|---|---|---|---|---|---|---|---|
1991–2000 | 2001–2010 | 2011–2020 | 1991–2000 | 2001–2010 | 2011–2020 | 1991–2020 | 1991–2020 | ||
PRD | Dongguan | 1158.99 | 469.63 | 361.06 | 57.20 | 22.59 | 19.87 | 28,745.96 | 1240.26 |
Foshan | 1361.72 | 757.19 | 635.23 | 75.66 | 43.78 | 42.33 | |||
Guangzhou | 2420.80 | 1233.28 | 1015.31 | 104.70 | 56.55 | 52.50 | |||
Shenzhen | 627.67 | 334.45 | 285.74 | 25.35 | 12.54 | 11.83 | |||
Zhongshan | 687.18 | 383.91 | 324.66 | 30.55 | 17.40 | 16.26 | |||
Zhuhai | 481.80 | 267.52 | 268.34 | 7.00 | 3.67 | 4.10 | |||
Huizhou | 2486.67 | 1459.87 | 1288.00 | 99.05 | 63.73 | 67.82 | |||
Jiangmen | 2104.44 | 1868.60 | 1531.27 | 79.22 | 71.34 | 75.69 | |||
Zhaoqing | 2242.41 | 1505.76 | 1184.45 | 76.23 | 51.53 | 51.75 | |||
EG | Shantou | 712.80 | 431.87 | 396.04 | 28.08 | 17.67 | 18.96 | 9188.98 | 222.60 |
Shanwei | 1077.09 | 623.03 | 753.06 | 36.94 | 23.22 | 33.22 | |||
Jieyang | 1592.06 | 991.40 | 863.10 | 65.88 | 40.97 | 45.34 | |||
Chaozhou | 944.57 | 470.23 | 333.74 | 31.83 | 17.03 | 15.64 | |||
WG | Zhanjiang | 2970.04 | 3381.26 | 2721.06 | 186.57 | 212.95 | 205.66 | 19,787.06 | 1056.41 |
Yangjiang | 1773.93 | 1524.91 | 928.59 | 61.19 | 59.63 | 43.54 | |||
Maoming | 2636.22 | 2334.55 | 1516.52 | 103.76 | 100.50 | 82.61 | |||
NG | Meizhou | 2693.25 | 1149.06 | 1270.54 | 73.08 | 33.74 | 51.18 | 24,987.57 | 891.54 |
Yunfu | 1675.31 | 1187.77 | 706.88 | 41.43 | 31.00 | 28.23 | |||
Shaoguan | 2371.74 | 1210.99 | 1158.23 | 106.58 | 49.14 | 60.63 | |||
Qingyuan | 3308.60 | 2057.36 | 1563.65 | 117.00 | 72.53 | 72.69 | |||
Heyuan | 2447.41 | 1006.60 | 1180.17 | 72.91 | 32.89 | 48.50 |
Districts | Area (km2) | GPP (104 t) | Area (km2) | GPP (104 t) | |||||
---|---|---|---|---|---|---|---|---|---|
1991–2000 | 2001–2010 | 2011–2020 | 1991–2000 | 2001–2010 | 2011–2020 | 1991–2020 | 1991–2020 | ||
PRD | Dongguan | 251.34 | 155.68 | 252.20 | 5.62 | 3.86 | 6.40 | 22,891.76 | 511.33 |
Foshan | 312.87 | 284.48 | 473.18 | 7.79 | 7.56 | 13.22 | |||
Guangzhou | 1271.63 | 1065.69 | 1108.78 | 25.95 | 25.44 | 29.55 | |||
Shenzhen | 237.85 | 156.49 | 179.22 | 4.22 | 2.73 | 3.39 | |||
Zhongshan | 87.45 | 71.61 | 142.81 | 1.76 | 1.40 | 3.09 | |||
Zhuhai | 119.51 | 114.91 | 161.45 | 0.74 | 1.02 | 1.29 | |||
Huizhou | 2233.60 | 1886.40 | 2254.87 | 42.57 | 48.17 | 59.62 | |||
Jiangmen | 1961.82 | 1901.88 | 1889.00 | 39.99 | 44.66 | 47.31 | |||
Zhaoqing | 1667.43 | 1145.09 | 1504.50 | 30.87 | 20.98 | 32.10 | |||
EG | Shantou | 566.59 | 449.93 | 662.83 | 9.74 | 10.94 | 15.23 | 12,326.04 | 158.57 |
Shanwei | 1304.80 | 1062.78 | 1406.83 | 24.53 | 23.08 | 33.66 | |||
Jieyang | 2085.24 | 1387.45 | 1502.56 | 45.94 | 35.55 | 42.81 | |||
Chaozhou | 876.09 | 477.51 | 543.43 | 16.61 | 11.84 | 12.93 | |||
WG | Zhanjiang | 5201.53 | 5912.45 | 5052.79 | 156.31 | 186.23 | 206.78 | 35,124.60 | 1005.33 |
Yangjiang | 2856.83 | 2411.39 | 1848.11 | 57.62 | 54.46 | 45.06 | |||
Maoming | 4455.34 | 4498.46 | 2887.70 | 104.24 | 113.01 | 81.63 | |||
NG | Meizhou | 1608.55 | 1050.54 | 1657.29 | 22.98 | 17.81 | 31.86 | 22,360.76 | 469.98 |
Yunfu | 1327.34 | 1391.09 | 1213.15 | 21.33 | 24.41 | 26.75 | |||
Shaoguan | 1157.28 | 897.27 | 1415.19 | 29.26 | 21.91 | 44.20 | |||
Qingyuan | 2107.13 | 1698.49 | 2129.01 | 47.30 | 38.81 | 56.26 | |||
Heyuan | 1943.87 | 1038.97 | 1725.60 | 32.60 | 18.14 | 36.35 |
Districts | Area (km2) | GPP (104t) | Area (km2) | GPP (104t) | |||||
---|---|---|---|---|---|---|---|---|---|
1991–2000 | 2001–2010 | 2011–2020 | 1991–2000 | 2001–2010 | 2011–2020 | 1991–2020 | 1991–2020 | ||
PRD | Dongguan | 666.75 | 449.26 | 386.02 | 29.59 | 22.45 | 23.19 | 27,646.26 | 1212.26 |
Foshan | 832.73 | 780.58 | 696.76 | 45.40 | 43.14 | 49.49 | |||
Guangzhou | 1500.35 | 1400.05 | 1307.57 | 64.09 | 62.65 | 65.98 | |||
Shenzhen | 438.76 | 343.76 | 319.11 | 15.47 | 12.92 | 13.49 | |||
Zhongshan | 413.48 | 386.75 | 364.47 | 17.59 | 16.84 | 17.72 | |||
Zhuhai | 308.98 | 276.86 | 332.72 | 4.15 | 3.94 | 4.96 | |||
Huizhou | 2065.61 | 1837.81 | 1759.69 | 89.06 | 83.49 | 93.92 | |||
Jiangmen | 1959.56 | 2148.80 | 1755.18 | 77.42 | 84.47 | 88.62 | |||
Zhaoqing | 1816.27 | 1722.22 | 1376.17 | 65.61 | 53.55 | 63.07 | |||
EG | Shantou | 644.49 | 535.57 | 512.59 | 26.15 | 21.86 | 24.73 | 10,265.30 | 264.08 |
Shanwei | 1157.29 | 913.34 | 1027.29 | 44.88 | 36.52 | 46.38 | |||
Jieyang | 1564.35 | 1249.34 | 1073.70 | 70.22 | 56.56 | 59.38 | |||
Chaozhou | 649.11 | 515.66 | 422.58 | 24.54 | 19.46 | 19.56 | |||
WG | Zhanjiang | 4828.42 | 4440.01 | 4087.52 | 296.44 | 282.80 | 316.81 | 26,817.51 | 1520.07 |
Yangjiang | 2059.52 | 1909.23 | 1250.46 | 82.04 | 77.35 | 60.27 | |||
Maoming | 3171.66 | 3217.11 | 1853.58 | 141.26 | 147.28 | 115.83 | |||
NG | Meizhou | 1693.05 | 1351.37 | 1425.61 | 54.02 | 39.81 | 58.91 | 24,991.77 | 1006.29 |
Yunfu | 1490.85 | 1411.38 | 1027.13 | 50.55 | 40.33 | 44.87 | |||
Shaoguan | 1925.13 | 1602.81 | 1257.45 | 100.03 | 66.32 | 74.64 | |||
Qingyuan | 2864.81 | 2491.39 | 1913.23 | 121.56 | 90.52 | 101.41 | |||
Heyuan | 1854.51 | 1231.11 | 1451.94 | 64.67 | 40.12 | 58.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Lu, X.; Liu, J.; Huang, J.; Qu, Y.; Qiao, Z.; Xie, Y.; Liao, X.; Liu, L. Integrated Assessment of the Impact of Cropland Use Transition on Food Production Towards the Sustainable Development of Social–Ecological Systems. Agronomy 2024, 14, 2851. https://doi.org/10.3390/agronomy14122851
Liao Y, Lu X, Liu J, Huang J, Qu Y, Qiao Z, Xie Y, Liao X, Liu L. Integrated Assessment of the Impact of Cropland Use Transition on Food Production Towards the Sustainable Development of Social–Ecological Systems. Agronomy. 2024; 14(12):2851. https://doi.org/10.3390/agronomy14122851
Chicago/Turabian StyleLiao, Yixin, Xiaojun Lu, Jialin Liu, Jiajun Huang, Yue Qu, Zhi Qiao, Yuangui Xie, Xiaofeng Liao, and Luo Liu. 2024. "Integrated Assessment of the Impact of Cropland Use Transition on Food Production Towards the Sustainable Development of Social–Ecological Systems" Agronomy 14, no. 12: 2851. https://doi.org/10.3390/agronomy14122851
APA StyleLiao, Y., Lu, X., Liu, J., Huang, J., Qu, Y., Qiao, Z., Xie, Y., Liao, X., & Liu, L. (2024). Integrated Assessment of the Impact of Cropland Use Transition on Food Production Towards the Sustainable Development of Social–Ecological Systems. Agronomy, 14(12), 2851. https://doi.org/10.3390/agronomy14122851