Novel Genomic Regions and Gene Models Controlling Copper and Cadmium Stress Tolerance in Wheat Seedlings
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design and Plant Materials
2.2. Phenotyping of Seedling Traits and Statistical Analysis
2.3. Single-Marker Analysis for Copper and Cadmium Tolerance
2.4. Gene Enrichment and Gene Network of the Identified Gene Models
2.5. Selection of Superior Genotypes Carrying Common Markers Associated with Cu and Cd Stress Tolerance
3. Results
3.1. Genetic Variation in Seedling Traits in the Studied Plant Materials
3.2. Phenotypic Correlation for Seedling Traits Under Copper and Cadmium Conditions
3.3. Genetic Control of Seedling Traits Under Heavy Metal Stresses
3.3.1. Single-Marker Analysis of Seedling Traits Under Cu-Contaminated Soils
3.3.2. Single-Marker Analysis of Seedling Traits Under Cd-Contaminated Soils
3.4. Genomic Regions Controlling Wheat Seedlings’ Tolerance to Both Copper and Cadmium Stresses
Gene Models Controlling Cu and Cd Tolerance, Their Functional Annotation, and Gene Enrichment
3.5. Selection of Superior Genotypes for Cu and Cd Tolerance
4. Discussion
4.1. Genetic Variation and Correlation of Seedling Traits Under Cu and Cd
4.2. Marker-Trait Associated with Cu and Cd Tolerance
4.3. Putative Genomic Regions and Gene Models That Are Commonly Associated with Cu and Cd Tolerance
4.4. Selection of Superior Genotypes for Cu and Cd Tolerance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Lu, S.; Peng, C.; Jiao, W.; Wang, M. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation. Environ. Pollut. 2013, 178, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Ghafoor, A.; Qadir, M. Accumulation and implications of cadmium, cobalt and manganese in soils and vegetables irrigated with city effluent. J. Sci. Food Agric. 2008, 88, 100–107. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Festa, R.A.; Thiele, D.J. Copper: An essential metal in biology. Curr. Biol. 2011, 21, R877–R883. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cheng, S.; Fang, H.; Yang, Y.; Li, Y.; Shi, F.; Zhou, Y. Copper and cadmium co-contamination affects soil bacterial taxonomic and functional attributes in paddy soils. Environ. Pollut. 2023, 329, 121724. [Google Scholar] [CrossRef] [PubMed]
- da Rosa Couto, R.; Benedet, L.; Comin, J.J.; Filho, P.B.; Martins, S.R.; Gatiboni, L.C.; Radetski, M.; de Valois, C.M.; Ambrosini, V.G.; Brunetto, G. Accumulation of copper and zinc fractions in vineyard soil in the mid-western region of Santa Catarina, Brazil. Environ. Earth Sci. 2015, 73, 6379–6386. [Google Scholar] [CrossRef]
- da Rosa Couto, R.; Ribeiro Lazzari, C.J.; Trapp, T.; De Conti, L.; Comin, J.J.; Martins, S.R.; Belli Filho, P.; Brunetto, G. Accumulation and distribution of copper and zinc in soils following the application of pig slurry for three to thirty years in a microwatershed of southern Brazil. Arch. Agron. Soil Sci. 2016, 62, 593–616. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Poggere, G.C.; Teixeira, W.W.R.; Motta, A.C.V.; Prior, S.A.; Curi, N. Assessing soil contamination in automobile scrap yards by portable X-ray fluorescence spectrometry and magnetic susceptibility. Environ. Monit. Assess. 2020, 192, 46. [Google Scholar] [CrossRef]
- Coelho, D.G.; Marinato, C.S.; de Matos, L.P.; de Andrade, H.M.; da Silva, V.M.; Neves, P.H.S.; de Oliveira, J.A. Evaluation of Metals in Soil and Tissues of Economic-Interest Plants Grown in Sites Affected by the Fundão Dam Failure in Mariana, Brazil. Integr. Environ. Assess. Manag. 2020, 16, 596–607. [Google Scholar] [CrossRef]
- Penteado, J.O.; Brum, R.d.L.; Ramires, P.F.; Garcia, E.M.; dos Santos, M.; da Silva Júnior, F.M.R. Health risk assessment in urban parks soils contaminated by metals, Rio Grande city (Brazil) case study. Ecotoxicol. Environ. Saf. 2021, 208, 111737. [Google Scholar] [CrossRef]
- Burges, A.; Fievet, V.; Oustriere, N.; Epelde, L.; Garbisu, C.; Becerril, J.M.; Mench, M. Long-term phytomanagement with compost and a sunflower—Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. Sci. Total Environ. 2020, 700, 134529. [Google Scholar] [CrossRef] [PubMed]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef]
- Khan, Z.; Elahi, A.; Bukhari, D.A.; Rehman, A. Cadmium sources, toxicity, resistance and removal by microorganisms—A potential strategy for cadmium eradication. J. Saudi Chem. Soc. 2022, 26, 101569. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Staessen, J.A.; Roels, H.A.; Munters, E.; Cuypers, A.; Richart, T.; Ruttens, A.; Smeets, K.; Clijsters, H.; Vangronsveld, J. Cadmium exposure in the population: From health risks to strategies of prevention. BioMetals 2010, 23, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Morias, S.; Costa, F.; Pereira, M. Soil, heavy metals, and human health. In Environmental Health—Emerging Issues and Practice; IntechOpen: London, UK, 2012; pp. 59–82. ISBN 9781439844557. [Google Scholar]
- Bermudez, G.M.A.; Jasan, R.; Plá, R.; Pignata, M.L. Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption. J. Hazard. Mater. 2011, 193, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Slepecka, K.; Kalwa, K.; Wyrostek, J.; Pankiewicz, U. Evaluation of cadmium, lead, zinc and copper levels in selected ecological cereal food products and their non-ecological counterparts. Curr. Issues Pharm. Med. Sci. 2017, 30, 147–150. [Google Scholar] [CrossRef]
- Pirhadi, M.; Alikord, M.; Tajdar-oranj, B.; Khaniki, G.J.; Nazmara, S.; Fathabad, A.E.; Ghalhari, M.R.; Sadighara, P. Potential toxic elements (PTEs) concentration in wheat and flour products in Iran: A probabilistic risk assessment. Heliyon 2022, 8, e11803. [Google Scholar] [CrossRef]
- Teklić, T.; Lončarić, Z.; Kovačević, V.; Singh, B.R. Metallic trace elements in cereal grain—A review: How much metal do we eat? Food Energy Secur. 2013, 2, 81–95. [Google Scholar] [CrossRef]
- Kumar, R.; Mehrotra, N.; Nautiyal, B.; Kumar, P.; Singh, P. Effect of copper on growth, yield and concentration of Fe, Mn, Zn and Cu in wheat plants (Triticum aestivum L.). J. Environ. Biol. 2009, 30, 485–488. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, F.; Song, P.; Liu, X.; Liu, Q.; Kou, T. Nighttime Warming Reduced Copper Concentration and Accumulation in Wheat Grown in Copper-Contaminated Soil by Affecting Physiological Traits. Agronomy 2024, 14, 1302. [Google Scholar] [CrossRef]
- Abedi, T.; Mojiri, A. Cadmium uptake by wheat (Triticum aestivum L.): An overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.A.; Clarke, J.M.; Duguid, S.; Chaney, R.L. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ. 2008, 390, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Liu, J.; Niu, Y.; Chen, Y.; Hao, Y.; Zhao, J.; Sun, L.; Wang, H.; Xiao, J.; et al. Characterization of the heavy-metal-associated isoprenylated plant protein (Hipp) gene family from triticeae species. Int. J. Mol. Sci. 2020, 21, 6191. [Google Scholar] [CrossRef]
- Sallam, N.M.A.; Eraky, A.M.I.; Sallam, A. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Mol. Biol. Rep. 2019, 46, 4463–4470. [Google Scholar] [CrossRef]
- Mourad, A.M.I.; Esmail, S.M.; Boerner, A. Effectiveness and genetic control of Trichoderma spp. as a biological control of wheat powdery mildew disease. Phytopathology 2024, 114, 2221–2234. [Google Scholar] [CrossRef]
- Hussain, W.; Baenziger, P.S.; Belamkar, V.; Guttieri, M.J.; Jorge, P.; Easterly, A.; Sallam, A.; Poland, J. Genotyping-by-Sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Sci. Rep. 2017, 7, 16394. [Google Scholar] [CrossRef]
- Eltaher, S.; Baenziger, P.S.; Belamkar, V.; Emara, H.A.; Nower, A.A.; Salem, K.F.M.; Alqudah, A.M.; Sallam, A. GWAS revealed effect of genotypes X environment interactions for grain yield of Nebraska winter wheat. BMC Genom. 2021, 22, 2. [Google Scholar] [CrossRef]
- Hasseb, N.M.; Sallam, A.; Karam, M.A.; Gao, L.; Wang, R.R.C.; Moursi, Y.S. High-LD SNP markers exhibiting pleiotropic effects on salt tolerance at germination and seedlings stages in spring wheat. Plant Mol. Biol. 2022, 108, 585–603. [Google Scholar] [CrossRef]
- Mourad, A.M.I.; Hamdy, R.M.; Esmail, S.M. Novel genomic regions on chromosome 5B controlling wheat powdery mildew seedling resistance under Egyptian conditions. Front. Plant Sci. 2023, 14, 111737. [Google Scholar] [CrossRef] [PubMed]
- Delfan, S.; Bihamta, M.R.; Dadrezaei, S.T.; Abbasi, A.; Alipoor, H. Exploring genomic regions involved in bread wheat resistance to leaf rust at seedling/adult stages by using GWAS analysis. BMC Genom. 2023, 24, 83. [Google Scholar] [CrossRef]
- Kumar, K.; Jan, I.; Saripalli, G.; Sharma, P.K.; Mir, R.R.; Balyan, H.S.; Gupta, P.K. An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat. Front. Genet. 2022, 13, 816057. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Sallam, A.; Baenziger, P.S.; Börner, A. GWAS: Fast-Forwarding Gene Identification in Temperate Cereals: Barley as a Case Study—A review. J. Adv. Res. 2019, 4, 119–135. [Google Scholar] [CrossRef]
- Bálint, A.F. Mapping of Loci Influencing the Copper Tolerance and Shoot Cu, Fe, Mn and Zn Concentrations of Wheat. Doctoral Dissertation, University of Szeged, Szeged, Hungary, 2005. [Google Scholar]
- Saini, D.K.; Chopra, Y.; Singh, J.; Sandhu, K.S.; Kumar, A.; Bazzer, S.; Srivastava, P. Comprehensive Evaluation of Mapping Complex Traits in Wheat Using Genome-Wide Association Studies; Springer Netherlands: Dodrecht, The Netherlands, 2022; Volume 42, ISBN 0123456789. [Google Scholar]
- Zaid, I.U.; Zheng, X.; Li, X. Breeding low-cadmium wheat: Progress and perspectives. Agronomy 2018, 8, 249. [Google Scholar] [CrossRef]
- Ban, Y.; Ishikawa, G.; Ueda, H.; Ishikawa, N.; Kato, K.; Takata, K.; Matsuyama, M.; Handa, H.; Nakamura, T.; Yanaka, M. Novel quantitative trait loci for low grain cadmium concentration in common wheat (Triticum aestivum L.). Breed. Sci. 2020, 70, 331–341. [Google Scholar] [CrossRef]
- Safdar, L.B.; Almas, F.; Sarfraz, S.; Ejaz, M.; Ali, Z.; Mahmood, Z.; Yang, L.; Tehseen, M.M.; Ikram, M.; Liu, S.; et al. Genome-wide association study identifies five new cadmium uptake loci in wheat. Plant Genome 2020, 13, e20030. [Google Scholar] [CrossRef]
- Rasheed, A.; AL-Huqail, A.A.; Ali, B.; Alghanem, S.M.S.; Shah, A.A.; Azeem, F.; Rizwan, M.; Al-Qthanin, R.N.; Soudy, F.A. Molecular characterization of genes involved in tolerance of cadmium in Triticum aestivum (L.) under Cd stress. J. Hazard. Mater. 2024, 464, 132955. [Google Scholar] [CrossRef]
- Mourad, A.M.I.; Belamkar, V.; Baenziger, P.S. Molecular genetic analysis of spring wheat core collection using genetic diversity, population structure, and linkage disequilibrium. BMC Genom. 2020, 21, 434. [Google Scholar] [CrossRef]
- Mourad, A.M.I.; Amin, A.E.E.A.Z.; Dawood, M.F.A. Genetic variation in kernel traits under lead and tin stresses in spring wheat diverse collection. Environ. Exp. Bot. 2021, 192, 104646. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, S.; Chu, X.; Sun, Z.; Li, J. Inversion of heavy metal copper content in soil-wheat systems using hyperspectral techniques and enrichment characteristics. Sci. Total Environ. 2024, 907, 168104. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Utz, H. PLABSTAT: A Computer Program for Statistical Analysis of Plant Breeding Experiments; Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim: Hohenheim, Germany, 1997. [Google Scholar]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Bolser, D.; Staines, D.M.; Kersey, E.; Kersey, P. Ensembl Plants: Integrating tools for visualizing, mining, and analyzing plant genomics data. In Plant Bioinformatics: Mthods and Protocols; Edwards, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 406, pp. 115–140. ISBN 9781597455350. [Google Scholar]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical enrichment tool for ani-mals and plants. Bioinformatics 2022, 36, 2628–2629. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Ahmed, F.; Javed, B.; Razzaq, A.; Mashwani, Z.U.R. Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. IET Nanobiotechnology 2021, 15, 68–78. [Google Scholar] [CrossRef]
- Karamanos, R.E.; Pomarenski, Q.; Goh, T.B.; Flore, N.A. The effect of foliar copper application on grain yield and quality of wheat. Can. J. Plant Sci. 2004, 84, 47–56. [Google Scholar] [CrossRef]
- Sitko, K.; Opała-Owczarek, M.; Jemioła, G.; Gieroń, Ż.; Szopiński, M.; Owczarek, P.; Rudnicka, M.; Małkowski, E. Effect of drought and heavy metal contamination on growth and photosynthesis of silver birch trees growing on post-industrial heaps. Cells 2022, 11, 53. [Google Scholar] [CrossRef]
- Chiroma, T.M.; Ebewele, R.O.; Hymore, F.K. Comparative Assessement Of Heavy Metal Levels In Soil, Vegetables And Urban Grey Waste Water Used For Irrigation In Yola And Kano. Int. Ref. J. Eng. Sci. 2014, 3, 1–9. [Google Scholar]
- de Vries, W.; Schütze, G.; Lots, S.; Meili, M.; Römkens, P.; Farret, R.; de Temmerman, L.; Jakubowski, M. Critical limits for cadmium, lead and mercury related to ecotoxicological effects on soil organisms, aquatic organisms, plants, animals and humans. In Proceedings of the Expert Meeting on Critical Limits for Heavy Metals and Methods for Their Application, Berlin, Germany, 2–4 December 2002; pp. 91–130. [Google Scholar]
- Yang, Q.; Li, H.; Zhang, Y.; Liu, Y.; Li, H. Wheat morphological and biochemical responses to copper oxide nanoparticles in two soils. Pedosphere 2024, 34, 814–825. [Google Scholar] [CrossRef]
- Zhang, Z.; Ke, M.; Qu, Q.; Peijnenburg, W.J.G.M.; Lu, T.; Zhang, Q.; Ye, Y.; Xu, P.; Du, B.; Sun, L.; et al. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ. Pollut. 2018, 239, 689–697. [Google Scholar] [CrossRef]
- Das, P.; Samantaray, S.; Rout, G.R. Studies on cadmium toxicity in plants: A review. Environ. Pollut. 1997, 98, 29–36. [Google Scholar] [CrossRef]
- Metwali, E.M.R.; Gowayed, S.M.H.; Al-Maghrabi, O.A.; Mosleh, Y.Y. Evaluation of toxic effect of copper and cadmium on growth, physiological traits and protein profile of wheat (Triticum aestivium L.), maize (Zea mays L.) and sorghum (Sorghum bicolor L.). World Appl. Sci. J. 2013, 21, 301–314. [Google Scholar]
- Mourad, A.M.I.; Farghly, K.A.; Börner, A.; Moursi, Y.S. Candidate genes controlling alkaline-saline tolerance in two different growing stages of wheat life cycle. Plant Soil 2023, 493, 283–307. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Mohamed, E.A.; Hussein, M.Y.; Sallam, A. Genomic regions associated with leaf wilting traits under drought stress in spring wheat at the seedling stage revealed by GWAS. Environ. Exp. Bot. 2021, 184, 104393. [Google Scholar] [CrossRef]
- Amro, A.; Harb, S.; Youssef, K.; Ali, M.M.F.; Mohammed, A.G.; Mourad, A.M.I.; Afifi, M.; Börner, A.; Sallam, A. Growth responses and genetic variation among highly ecologically diverse spring wheat genotypes grown under seawater stress. Front. Plant Sci. 2022, 13, 996538. [Google Scholar] [CrossRef]
- Wang, N.; Akey, J.M.; Zhang, K.; Chakraborty, R.; Jin, L. Distribution of Recombination Crossovers and the Origin of Haplotype Blocks: The Interplay of Population History, Recombination, and Mutation. Am. J. Hum. Genet. 2002, 71, 1227–1234. [Google Scholar] [CrossRef]
- Marzougui, S. Marker traits association of flag and second leaf traits in bread wheat (Triticum aestivum L.). J. New Sci. Agric. Biotechnol. 2019, 64, 4002–4007. [Google Scholar]
- Mourad, A.M.I.; Eltaher, S.; Börner, A.; Sallam, A. Unlocking the genetic control of spring wheat kernel traits under normal and heavy metals stress conditions. Plant Soil 2023, 484, 257–278. [Google Scholar] [CrossRef]
- Babu, T.S.; Akhtar, T.A.; Lampi, M.A.; Tripuranthakam, S.; Dixon, D.G.; Greenberg, B.M. Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: Implication of reactive oxygen species as common signals. Plant Cell Physiol. 2003, 44, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Sobkowiak, R.; Deckert, J. Proteins induced by cadmium in soybean cells. J. Plant Physiol. 2006, 163, 1203–1206. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, Y.J.; Kim, B.G.; Lim, Y.; Ahn, J.H. Flavanone 3β-hydroxylases from rice: Key enzymes for favonol and anthocyanin biosynthesis. Mol. Cells 2008, 25, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.; Zeyad, M.T.; Shahid, M.; Elgorban, A.M.; Alkhulaifi, M.M.; Ansari, I.A. Heavy metals induced modulations in growth, physiology, cellular viability, and biofilm formation of an identified bacterial isolate. ACS Omega 2021, 6, 25076–25088. [Google Scholar] [CrossRef]
- Liu, C.X.; Yang, T.; Zhou, H.; Ahammed, G.J.; Qi, Z.Y.; Zhou, J. The E3 Ubiquitin Ligase Gene Sl1 Is Critical for Cadmium Tolerance in Solanum lycopersicum L. Antioxidants 2022, 11, 456. [Google Scholar] [CrossRef]
- Lin, J.; Song, N.; Liu, D.; Liu, X.; Chu, W.; Li, J.; Chang, S.; Liu, Z.; Chen, Y.; Yang, Q.; et al. Histone acetyltransferase TaHAG1 interacts with TaNACL to promote heat stress tolerance in wheat. Plant Biotechnol. J. 2022, 20, 1645–1647. [Google Scholar] [CrossRef] [PubMed]
- Horbowicz, M.; Debski, H.; Wiczkowski, W.; Szawara-Nowak, D.; Koczkodaj, D.; Mitrus, J.; Sytykiewicz, H. The impact of short-term exposure to Pb and Cd on flavonoid composition and seedling growth of common buckwheat cultivars. Pol. J. Environ. Stud. 2013, 22, 1723–1730. [Google Scholar]
- Bhat, J.A.; Ali, S.; Salgotra, R.K.; Mir, Z.A.; Dutta, S.; Jadon, V.; Tyagi, A.; Mushtaq, M.; Jain, N.; Singh, P.K.; et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet. 2016, 7, 221. [Google Scholar] [CrossRef]
- Bertan, I.; de Carvalho, F.I.; De Oliveira, A.C. Parental selection strategies in plant breeding programs. J. Crop Sci. Biotechnol. 2007, 10, 211–222. [Google Scholar]
Treatment | Ctrl | Cu | Cd |
---|---|---|---|
pH | 8.32 | 8.22 | 8.42 |
Heavy metals concentration (mg/kg soil) | |||
Cd | 0.055 | -- | 0.138 |
Cu | 9.842 | 233.19 | -- |
Cations (mg/kg soil) | |||
Mg2+ | 2.436 | 3.34 | 0.68 |
K+ | 0.24 | 0.25 | 0.28 |
Na+ | 6.29 | 22.22 | 11.44 |
Anions (mg/kg soil) | |||
Cl− | 1.69 | 0.944 | 38.76 |
Saturation capacity (%) | 20.74 | 21.52 | 20.98 |
Soil conductivity | 887 | 977 | 869 |
Cu | ||||||||||||||||
S.O.V. | BW | SW | RW | SW/RW | SL | RL | SL/RL | LW | ||||||||
d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | |
Rep (R) | 2 | 0.02 ** | 2 | 0.01 ** | 2 | 0.00 | 2 | 62.50 ** | 2 | 31.25 * | 2 | 16.68 ** | 2 | 0.05 | 2 | 0.01 ** |
Gen (G) | 91 | 0.01 ** | 89 | 0.00 ** | 90 | 0.002 ** | 89 | 8.23 ** | 91 | 42.37 ** | 91 | 16.01 ** | 91 | 0.84 ** | 90 | 0.28 ** |
G × R | 182 | 0.00 | 171 | 0.00 | 180 | 0.00 | 171 | 3.69 | 182 | 7.29 | 182 | 1.85 | 182 | 0.08 | 180 | 0.00 |
Total | 275 | -- | 262 | -- | 272 | -- | 262 | -- | 275 | -- | 275 | -- | 275 | -- | 272 | -- |
Heritability (H2) | 0.69 | 0.64 | 0.68 | 0.55 | 0.83 | 0.88 | 0.91 | 0.99 | ||||||||
Cd | ||||||||||||||||
S.O.V. | BW | SW | RW | SW/RW | SL | RL | SL/RL | LW | ||||||||
d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | d.f | M.S. | |
Rep (R) | 2 | 0.02 ** | 2 | 0.01 * | 2 | 0.00 | 2 | 375.50 ** | 2 | 74.52 ** | 2 | 25.49 ** | 2 | 1.73 ** | 2 | 0.00 |
Gen (G) | 72 | 1.16 ** | 72 | 0.01 ** | 72 | 0.25 | 72 | 18.62 | 72 | 87.89 ** | 72 | 12.50 ** | 72 | 1.47 ** | 71 | 0.23 ** |
G × R | 144 | 0.00 | 139 | 0.00 | 144 | 0.04 | 139 | 16.01 | 143 | 7.46 | 143 | 1.29 | 143 | 0.21 | 141 | 0.00 |
Total | 218 | -- | 213 | -- | -- | -- | 213 | -- | 217 | -- | 217 | -- | 217 | -- | 214 | -- |
Heritability (H2) | 0.87 | 0.78 | 0.93 | 0.14 | 0.92 | 0.90 | 0.85 | 0.96 |
Contaminated Soil | Seedling Trait | No. Significant Markers | No. Chromosomes | −log10 | R2 | Allele Effect |
---|---|---|---|---|---|---|
Cu | BW | 43 | 11 | 3.02–4.74 | 12.68–20.85 | 0.03–0.07 |
SW | 52 | 14 | 3.02–4.54 | 12.99–21.55 | 0.02–0.05 | |
RW | 35 | 11 | 3.02–4.79 | 12.72–20.86 | 0.03–0.06 | |
SW/RW | 15 | 10 | 3.02–4.69 | 13.55–21.39 | 1.08–2.60 | |
SL | 61 | 17 | 3.01–5.04 | 12.59–21.92 | 2.63–5.27 | |
RL | 28 | 9 | 3.01–5.96 | 12.87–26.10 | 1.73–3.18 | |
SL/RL | 43 | 14 | 3.01–6.42 | 12.82–28.01 | 0.36–0.75 | |
LW | 16 | 5 | 3.00–3.46 | 12.75–16.77 | 0.05–0.08 | |
Total | 265 | 21 | 3.00–6.42 | 12.59–28.01 | 0.02–5.27 | |
Cd | BW | 194 | 21 | 3.01–11.19 | 17.48–56.18 | 0.06–0.45 |
SW | 75 | 18 | 3.02–6.84 | 17.27–38.19 | 0.04–0.19 | |
SL | 25 | 12 | 3.00–4.73 | 17.85–28.97 | 4.78–9.86 | |
RL | 63 | 13 | 3.01–4.35 | 17.58–25.93 | 1.61–5.63 | |
SL/RL | 63 | 12 | 3.01–4.64 | 18.02–31.45 | 0.64–1.24 | |
LW | 43 | 11 | 3.02–4.12 | 18.01–24.95 | 0.07–0.16 | |
Total | 381 | 21 | 3.00–11.19 | 17.27–56.18 | 0.04–9.86 |
Marker | Chrom | Position | Trait | Log10 (p-Value) | R2 | Target Allele | Allele Effect | Gene Model | Functional Annotation | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Cd | Cu | Cd | Cu | Cd | Cu | Cd | Cu | Cd | |||||
Kukri_rep_c106834_139 | 1B | 4349225 | RW | BW | 3.22 | 3.61 | 13.91 | 20.85 | T | T | 0.03 | 0.13 | TraesCS1B02G008000 | Mei2-like protein |
AX-111559927 | 2A | 747088588 | RW | BW | 3.18 | 4.26 | 13.58 | 25.03 | A | A | 0.04 | 0.17 | TraesCS2A02G527700 | Chalcone synthase |
IACX3245 | 2A | 747089736 | RW | BW | 3.11 | 4.26 | 13.56 | 25.03 | T | T | 0.04 | 0.14 | ||
BobWhite_c5178_188 | 2A | 751511240 | RW | BW | 3.83 | 4.12 | 16.58 | 23.84 | C | C | 0.06 | 0.21 | TraesCS2A02G538800 | Ubiquitin carboxyl-terminal hydrolase |
RAC875_c2110_117 | 2B | 146736196 | RW | RL | 3.04 | 3.97 | 13.08 | 23.66 | T | T | 0.04 | 5.62 | TraesCS2B02G172400 | Small nuclear RNA-activating complex (SNAPc) |
AX-158575246 | 2B | 146736220 | RW | RL | 3.09 | 4.04 | 13.14 | 23.71 | T | T | 0.04 | 5.63 | ||
BS00023202_51 | 2B | 759491069 | RW | BW | 3.87 | 4.12 | 16.56 | 23.48 | T | T | 0.06 | 0.21 | TraesCS2B02G568800 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein |
Kukri_c24408_743 | 7A | 670765573 | SW | BW | 3.10 | 3.06 | 13.84 | 18.10 | T | T | 0.05 | 0.12 | NA | NA |
Genotype | Country | PI Code | BW | SW | RW | SL | RL | LW | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Cd | Cu | Cd | Cu | Cd | Cu | Cd | Cu | Cd | Cu | Cd | |||
Sakha_93 | Egypt | - | NA | 1 | NA | 1 | NA | 1 | NA | 70 | NA | 55 | NA | 60 |
Gimmiza_9 | Egypt | - | 71 | 53 | 86 | 58 | 10 | 34 | 45 | 41 | 33 | 12 | 77 | 41 |
Sids_12 | Egypt | - | 42 | 5 | 45 | 8 | 33 | 5 | 28 | 58 | 5 | 54 | NA | 67 |
1668 | Iran | PI222677 | 85 | 46 | 85 | 45 | 50 | 52 | 69 | 2 | 45 | 1 | 70 | 7 |
15 | Iran | PI381963 | 83 | 42 | 80 | 27 | 49 | 19 | 53 | 9 | 21 | 2 | 80 | 17 |
Misr_1 | Egypt | - | * | 2 | * | 2 | * | 3 | * | 60 | * | 39 | NA | 4 |
Gimmiza_10 | Egypt | - | * | 71 | * | 68 | * | 73 | * | 73 | * | 69 | NA | NA |
Janetzkis Sommerweizen | Germany | PI191600 | 92 | 21 | * | 18 | 65 | 46 | 90 | 15 | 87 | 45 | 90 | 43 |
Grekum 105 | Kazakhstan | PI438962 | 1 | 31 | 1 | 30 | 2 | 35 | 61 | 29 | 37 | 36 | 30 | 10 |
Rhodesian Sabanero | Kenya | PI230202 | 5 | 48 | 20 | 52 | 4 | 43 | 74 | 45 | 49 | 58 | 71 | 56 |
1372 | Morocco | PI525434 | 32 | 6 | 19 | 5 | 73 | 10 | 21 | 19 | 43 | 10 | 10 | 1 |
1130 | Morocco | PI525282 | 24 | 44 | 35 | 56 | 14 | 16 | 66 | 51 | 50 | 38 | 7 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourad, A.M.I.; Baghdady, S.; Abdel-Aleem, F.A.-Z.M.; Jazeri, R.M.; Börner, A. Novel Genomic Regions and Gene Models Controlling Copper and Cadmium Stress Tolerance in Wheat Seedlings. Agronomy 2024, 14, 2876. https://doi.org/10.3390/agronomy14122876
Mourad AMI, Baghdady S, Abdel-Aleem FA-ZM, Jazeri RM, Börner A. Novel Genomic Regions and Gene Models Controlling Copper and Cadmium Stress Tolerance in Wheat Seedlings. Agronomy. 2024; 14(12):2876. https://doi.org/10.3390/agronomy14122876
Chicago/Turabian StyleMourad, Amira M. I., Sara Baghdady, Fatma Al-Zahraa M. Abdel-Aleem, Randa M. Jazeri, and Andreas Börner. 2024. "Novel Genomic Regions and Gene Models Controlling Copper and Cadmium Stress Tolerance in Wheat Seedlings" Agronomy 14, no. 12: 2876. https://doi.org/10.3390/agronomy14122876
APA StyleMourad, A. M. I., Baghdady, S., Abdel-Aleem, F. A. -Z. M., Jazeri, R. M., & Börner, A. (2024). Novel Genomic Regions and Gene Models Controlling Copper and Cadmium Stress Tolerance in Wheat Seedlings. Agronomy, 14(12), 2876. https://doi.org/10.3390/agronomy14122876