Multifunctional Evaluation and Analysis of Synergistic Relationships: A Cognitive Framework for the Sustainable Use of Cropland in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Cropland-Use Data
2.2.2. Soil Data
2.2.3. Other Geographic Data
2.2.4. Social and Economic Data
2.3. Research Methodology
2.3.1. Cognitive Framework Based on Sustainable Utilization of Cropland
2.3.2. The Multifunctional Evaluation Index System and Calculation Method of Cropland Resources
2.3.3. Key Indicators for the Multifunctional Evaluation of Cropland Resources
- (1)
- Grain production volume
- (2)
- Landscape fragmentation
- (3)
- Aggregation Index
- (4)
- Environmental Load of Cropland
2.3.4. Analysis of Synergistic and Trade-Off Relationships of the Cropland’s Functions
3. Results
3.1. Evaluation of Cropland Production Function
3.2. Evaluation of Cropland Ecological Function
3.3. Evaluation of Cropland Living Function
3.4. Analysis of Synergistic and Trade-Off Relationships between the Function of Cropland Resources
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tramberend, S.; Fischer, G.; Bruckner, M.; van Velthuizen, H. Our common cropland: Quantifying global agricultural land use from a consumption perspective. Ecol. Econ. 2019, 157, 332–341. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, H.; Zou, R. Evolution and prospect of systematic cognition on the cultivated land resources. J. Agric. Resour. Environ. 2021, 38, 937–945. [Google Scholar]
- Eitelberg, D.A.; van Vliet, J.; Verburg, P.H. A review of global potentially available cropland estimates and their consequences for model-based assessments. Glob. Change Biol. 2015, 21, 1236–1248. [Google Scholar] [CrossRef]
- Sun, X.; Kong, X.; Wen, L. Evaluation Index System of Cultivated Land Quality and its Development Trend Based on Cultivated Land Elements. Chin. J. Soil Sci. 2019, 50, 739–747. [Google Scholar]
- Ridoutt, B.; Garcia, J.N. Cropland footprints from the perspective of productive land scarcity, malnutrition-related health impacts and biodiversity loss. J. Clean. Prod. 2020, 260, 121150. [Google Scholar] [CrossRef]
- Fu, B. Approaches and methods of comprehensive geographical research: Pattern and process coupling. Acta Geogr. Sin. 2014, 69, 1052–1059. [Google Scholar]
- Dumanski, J.; Pieri, C. Land quality indicators: Research plan. Agric. Ecosyst. Environ. 2000, 81, 93–102. [Google Scholar] [CrossRef]
- Sünnemann, M.; Beugnon, R.; Breitkreuz, C.; Buscot, F.; Cesarz, S.; Jones, A.; Lehmann, A.; Lochner, A.; Orgiazzi, A.; Reitz, T.; et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 2023, 4, 394. [Google Scholar] [CrossRef]
- Sylla, M.; Hagemann, N.; Szewrański, S. Mapping trade-offs and synergies among peri-urban ecosystem services to address spatial policy. Environ. Sci. Policy 2020, 112, 79–90. [Google Scholar] [CrossRef]
- Sun, X.; Kong, X.; Wen, L. Research on the cultivated land quality evaluation index system based on cultivated land elements and its development trend. Soil Bull. 2019, 50, 241–249. [Google Scholar]
- Ceccarelli, T.; Bajocco, S.; Luigi, P.L.; Luca, S.L. Urbaniation and land take of high quality agricultural soils—Exploring long-term land use changes and land capability in northern Italy. Int. J. Environ. Res. 2013, 8, 181–192. [Google Scholar]
- Duan, J.; Liu, S.; Li, P. Article on Research Progress and Directions of Land Functions. China Land Sci. 2020, 34, 8–16. [Google Scholar]
- Su, C.; Fu, B. Discussion on Links Among Landscape Pattern, Ecological Process, and Ecological Services. Chin. J. Nat. 2012, 34, 277–283. [Google Scholar]
- Lin, X.; Hu, Y.; Wang, G.; Fan, S. Analysis of functional connection and spatial pattern of Pearl River Delta urban agglomeration base on multi-element factor flows. World Reg. Stud. 2020, 29, 536–548. [Google Scholar]
- Tong, Q.; Chi, B. Multi-dimension Analysis of Cultivated Land Change Based on Land Use Spatial-temporal Database. Geospat. Inf. 2016, 14, 85–96. [Google Scholar]
- Karamesouti, M.; Detsis, V.; Kounalaki, A.; Vasiliou, P.; Salvati, L.; Kosmas, C. Land-use and land degradation processes affecting soil resources: Evidence from a traditional Mediterranean cropland (Greece). Catena 2015, 132, 45–55. [Google Scholar] [CrossRef]
- Kooch, Y.; Ghorbanzadeh, N.; Kuzyakov, Y.; Praeg, N.; Ghaderi, E. Investigation of the effects of the conversion of forests and rangeland to cropland on fertility and soil functions in mountainous semi-arid landscape. Catena 2022, 210, 105951. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Martin-Guay, M.-O.; Paquette, A.; Dupras, J.; Rivest, D. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2017, 615, 767–772. [Google Scholar] [CrossRef]
- Mamkhezri, J.; Muhamad, G.M.; Khezri, M. Assessing the spatial effects of economic freedom on forest-products, grazing-land, and cropland footprints: The case of Asia-Pacific countries. J. Environ. Manag. 2022, 316, 115274. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, X.; Ren, W.; He, J. Spatial pattern and driving factors of cropland ecosystem services in a major grain-producing region: A production-living-ecology perspective. Ecol. Indic. 2023, 155, 111024. [Google Scholar] [CrossRef]
- Xin, Y.; Kong, X.; Yun, W. Design and Application of Multi-functional Evaluation Index System for Cultivated Land in Metropolitan Fringe of Beijing: A Case Article in Daxing District. China Land Sci. 2017, 31, 77–87. [Google Scholar]
- Wang, R.; Zhao, X.; Zhao, L.; Guo, X. Multi-function evaluation and functional zoning of suburban cultivated land using MCR-InVEST model. Trans. Chin. Soc. Agric. Eng. 2022, 38, 209–219. [Google Scholar]
- Ishikawa, Y.; Yamazaki, D. Global high-resolution estimation of cropland suitability and its comparative analysis to actual cropland distribution. Hydrol. Res. Lett. 2021, 15, 9–15. [Google Scholar] [CrossRef]
- Fan, Y.; Gan, L.; Hong, C.; Jessup, L.H.; Jin, X.; Pijanowski, B.C.; Sun, Y.; Lv, L. Spatial identification and determinants of trade-offs among multiple land use functions in Jiangsu province, China. Sci. Total Environ. 2021, 772, 145022. [Google Scholar] [CrossRef]
- Qian, F.; Chi, Y.; Lai, R. Spatiotemporal characteristics analysis of multifunctional cultivated land: A case-article in Shenyang, northeast China. Land Degrad. Dev. 2020, 31, 1812–1822. [Google Scholar] [CrossRef]
- Luo, S.; Lai, Q.; Wang, X. Control and management of cropland regionalization in Fujian Province of China using multi-functional evaluation and trade-off-synergy relationships. Trans. Chin. Soc. Agric. Eng. 2023, 39, 271–280. [Google Scholar]
- Xiong, C.; Zhang, Y.; Wang, Y.; Luan, Q.; Liu, X. Multi-function Evaluation and Zoning Control of Cultivated Land in China. China Land Sci. 2021, 35, 104–114. [Google Scholar]
- Qiu, J.; Turner, M. Spatial interactions among ecological services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef]
- Faber, J.H.; Van, W.J. Elaborations on the use of the ecosystem services concept for application in ecological risk assessment for soils. Sci. Total Environ. 2012, 415, 3–8. [Google Scholar] [CrossRef]
- Gao, X.; Song, Z.; Li, C. Spatial differentiation characteristics of cultivated land multifunctional value under urban-rural gradient. Trans. Chin. Soc. Agric. Eng. 2021, 37, 251–259. [Google Scholar]
- Asgarian, A.; Soffianian, A.; Pourmanafi, S.; Bodaghabad, M.B. Evaluating the spatial effectiveness of alternative urban growth scenarios in protecting cropland resources: A case of mixed agricultural-urbanized landscape in central Iran. Sustain. Cities Soc. 2018, 43, 197–207. [Google Scholar] [CrossRef]
- Nándor, C.; Brigitta, S.; Tamás, H.; Annamária, L.; Judit, M.; László, P.; Gábor, S.; Katalin, T.; Gergely, T. Cropland Productivity Evaluation: A 100 m Resolution Country Assessment Combining Earth Observation and Direct Measurements. Remote Sens. 2023, 15, 1236. [Google Scholar]
- Crookston, B.S.; Yost, M.A.; Bowman, M.; Veum, K.; Cardon, G.; Norton, J. Soil health spatial-temporal variation influence soil security on Midwestern, US farms. Soil Secur. 2021, 3, 100005. [Google Scholar] [CrossRef]
- Su, L.; Liu, Z.; Hu, Y. Spatiotemporal distribution characteristics and evolution law of cultivated land resources in Guangzhou in recent 20 years. Jiangsu J. Agric. Sci. 2023, 39, 978–988. [Google Scholar]
- Wang, D.; Yang, H.; Hu, Y.; Zhu, A.X.; Mao, X. Analyzing Spatiotemporal Characteristics of Cultivated Land Fragmentation and Their Influencing Factors in a Rapidly Developing Region: A Case Article in Guangdong Province, China. Land 2022, 11, 1750. [Google Scholar] [CrossRef]
- Valera, C.A.; Junior, R.V.; Varandas, S.G.P.; Fernandes, L.F.S.; Pacheco, F.A.L. The role of environmental land use conflicts in soil fertility: A study on the Uberaba River basin, Brazil. Sci. Total Environ. 2016, 562, 463–473. [Google Scholar] [CrossRef]
- Salomon, M.; Watts-Williams, S.; McLaughlin, M.; Cavagnaro, T. Spatiotemporal dynamics of soil health in urban agriculture. Sci. Total Environ. 2022, 805, 150224. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Kienast, F.; Bolliger, J.; Potschin, M.; de Groot, R.S.; Verburg, P.H.; Heller, I.; Wascher, D.; Haines-Young, R. Assessing landscape functions with broad-scale environmental data: Insights gained from a prototype development for Europe. Environ. Manag. 2009, 44, 1099–1120. [Google Scholar] [CrossRef]
- Wang, F.; Dong, Y. Spatial differences and influencing factors of land use function in Guangzhou. Resour. Sci. 2015, 37, 2179–2192. [Google Scholar]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Ma, L.; Wang, L. Spatial identification of land use functions and their tradeoffs/synergies in china: Implications for sustainable land management. Ecol. Indic. 2019, 107, 105550. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Zang, J. Multi-functional evaluation of cultivated land and an analysis of the temporal and spatial evolution of Guangzhou in the new era. J. Agric. Resour. Environ. 2021, 38, 332–343. [Google Scholar]
- Zou, L.; Li, Y.; Liu, Y.; Wang, J. Theory building and empirical research of production-living-ecological function of cultivated land based on the elements. Geogr. Res. 2021, 40, 839–855. [Google Scholar]
- Sun, X.; Li, F. Spatiotemporal assessment and trade-offs of multiple ecological services based on land use changes in Zengcheng, China. Sci. Total Env. 2017, 609, 1569–1581. [Google Scholar] [CrossRef]
- Li, F.; Qin, Z.; Liu, X.; Chen, Z.; Wei, X.; Zhang, Q.; Lei, M. Grain production space reconstruction and land system function tradeoffs in China. Geogr. Sustain. 2021, 2, 22–30. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, J.; Dong, J.; Liu, Y.; Liu, Q.; Lyu, D.; Qiao, R.; Zhang, Z. Spatial correlation between the changes of ecological service supply and demand: An ecological zoning approach. Landsc. Urban Plan. 2022, 217, 104258. [Google Scholar] [CrossRef]
- Dong, P.; Zhao, H. Article on Trade off and Synergy Relationship of Cultivated Land Multifunction: A Case of Qingpu District, Shanghai. Resour. Environ. Yangtze Basin 2019, 28, 368–375. [Google Scholar]
- Liu, C.; Xu, Y.; Liu, Y.; Sun, P. Research on Land Use Functions Classification and Evaluation System Based on System Theory. Acta Sci. Nat. Univ. Pekin. 2018, 54, 181–188. [Google Scholar]
- Huang, A.; Xu, Y.; Hao, J.; Sun, P.; Liu, C.; Zheng, W. Research progress and prospects on land use multifunctionality evaluation. Chin. Land Sci. 2017, 31, 88–97. [Google Scholar]
- Wu, D.; Liu, Y.; Zhang, X.; He, Y. Analysis of cultivated land function evaluation in Guangzhou from 1990 to 2014. China Agric. Resour. Zoning 2019, 40, 64–72. [Google Scholar]
- Zhang, X.; Jin, X.; Liang, X.; Ren, J.; Han, B.; Liu, J.; Fan, Y.; Zhou, Y. Implications of land sparing and sharing for maintaining regional ecological services: An empirical article from a suitable area for agricultural production in China. Sci. Total Environ. 2022, 820, 153330. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, J.; Kong, X.; Rongtao, W.U.; Baolian, L.I.; Liu, J. Trade-off relation Measurement and Zoning Optimization of Multi-functionality of Cultivated Land Use: A Case Article of Henan Province. China Land Sci. 2018, 32, 57–64. [Google Scholar]
- Prochazka, P.; Maitah, M.; Mullen, K.J.; Honig, V.; Soukupova, J.; Zamkova, M.; Rojik, S.; Smutka, L.; Cabelkova, I.; Hinke, J.; et al. Factors Influencing Farm-Land Value in the Czech Republic. Agronomy 2023, 13, 892. [Google Scholar] [CrossRef]
- Maharjan, B.; Das, S.; Acharya, B.S. Soil Health Gap: A concept to establish a benchmark for soil health management. Glob. Ecol. Conserv. 2020, 23, e01116. [Google Scholar] [CrossRef]
- Okolo, C.C.; Dippold, M.A.; Gebresamuel, G.; Zenebe, A.; Haile, M.; Bore, E. Assessing the sustainability of land use management of northern Ethiopian drylands by various indicators for soil health. Ecol. Indic. 2020, 112, 106092. [Google Scholar] [CrossRef]
Function | Indicator | References | Attributes |
---|---|---|---|
Production | Soil pH | Kong et al., 2017 [22] | − |
Irrigation Rate | Zhao et al., 2022 [23] | + | |
Organic Matter Content | Kong et al., 2017 [22] | + | |
Grain Production | Fan et al., 2021 [25] | + | |
Ecological | Fragmentation of Cropland | Qian et al., 2020 [26] | − |
Aggregation Index | Luo et al., 2023 [27] | + | |
Environmental Load of Cropland | Xiong et al., 2021 [28] | − | |
Vegetation Cover | Zhang et al., 2019 [42] | + | |
Living | Accessibility | Peng et al., 2018 [43] | + |
Per Capita Grain Insurance Rate | Zang et al., 2021 [44] | + | |
Per Capita Cropland Area | Luo et al., 2023 [28] | + |
Function | Indicator | AHP Weight | Entropy Weight | Combined Weight |
---|---|---|---|---|
Production Function | Soil pH | 0.21 | 0.15 | 0.18 |
Irrigation Rate | 0.12 | 0.19 | 0.15 | |
Organic Matter Content | 0.30 | 0.39 | 0.35 | |
Grain Production | 0.37 | 0.27 | 0.32 | |
Ecological Function | Fragmentation of cropland | 0.27 | 0.17 | 0.22 |
Aggregation Index | 0.13 | 0.14 | 0.13 | |
Environmental Load of Cropland | 0.38 | 0.27 | 0.33 | |
Vegetation Cover | 0.22 | 0.42 | 0.32 | |
Living Function | Accessibility | 0.16 | 0.27 | 0.22 |
Per Capita Grain Assurance Rate | 0.59 | 0.47 | 0.53 | |
Per Capita Cropland Area | 0.25 | 0.26 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, R.; Peng, Y.; Yang, H.; Hu, Y.; Liu, L.; Mao, X. Multifunctional Evaluation and Analysis of Synergistic Relationships: A Cognitive Framework for the Sustainable Use of Cropland in China. Agronomy 2024, 14, 284. https://doi.org/10.3390/agronomy14020284
Zou R, Peng Y, Yang H, Hu Y, Liu L, Mao X. Multifunctional Evaluation and Analysis of Synergistic Relationships: A Cognitive Framework for the Sustainable Use of Cropland in China. Agronomy. 2024; 14(2):284. https://doi.org/10.3390/agronomy14020284
Chicago/Turabian StyleZou, Runyan, Yuanyuan Peng, Hao Yang, Yueming Hu, Luo Liu, and Xiaoyun Mao. 2024. "Multifunctional Evaluation and Analysis of Synergistic Relationships: A Cognitive Framework for the Sustainable Use of Cropland in China" Agronomy 14, no. 2: 284. https://doi.org/10.3390/agronomy14020284
APA StyleZou, R., Peng, Y., Yang, H., Hu, Y., Liu, L., & Mao, X. (2024). Multifunctional Evaluation and Analysis of Synergistic Relationships: A Cognitive Framework for the Sustainable Use of Cropland in China. Agronomy, 14(2), 284. https://doi.org/10.3390/agronomy14020284