Yeast Warriors: Exploring the Potential of Yeasts for Sustainable Citrus Post-Harvest Disease Management
Abstract
:1. Introduction
2. Post-Harvest Diseases Affecting Citrus
2.1. Fungal Diseases Affecting Post-Harvest Citrus Worldwide
2.2. Types of Post-Harvest Fungal Diseases of Citrus
2.3. Description of the Main Fungal Diseases of Citrus Fruit in Storage
2.3.1. Green Mold
2.3.2. Blue Mold
2.3.3. Sour Rot
2.3.4. Other Fungal Diseases Affecting Citrus Fruits
3. A Comprehensive Global Survey on Yeast-Based Strategies for Fruit Disease Management
3.1. Advantageous Yeast Properties for Potential Biocontrol Applications
3.2. Characteristics of Antagonistic Yeasts
3.2.1. Competition for Nutrients and Space
3.2.2. Mycoparasitism
3.2.3. Induction of Systemic Resistance
3.2.4. Toxin Production
3.2.5. Volatile Organic Compounds
4. Applications of Yeasts against Post-Harvest Pathogenic Fungi in Citrus
4.1. Challenges of Using Yeast as BCAs against Post-Harvest Diseases of Fruit
4.2. Biocontrol Enhancement Using Mixtures of Antagonistic Materials and Implementing Yeast against Post-Harvest Diseases
5. Commercial Yeast-Based Products for Phytosanitary Uses
Microorganisms | Product | Use | Registration | References |
---|---|---|---|---|
Ampelomyces quisqualis M-10 | AQ10 | Fungicide on grapes, vegetables and berries | Registered biopesticide in the EU 2004 | [194] |
Pseudozyma flocculosa PF-A22 | Sporodex | Fungicide on roses and cucumber | Registered biopesticide in the US and Canada | [195] |
Metschnikowia fructicola | Shemer | Fungal rots on fruit Rhizopus, Botrytis, Aspergillus, Penicillium, | Registered biopesticide in Israel | [196] |
Candida oleophila I-182 | Aspire | Post-harvest plants and fruit Penicillium, Botrytis | Registered biopesticide in the US. Withdrawn | [173] |
Cryptococcus albidus | YieldPlus | Fungicide on vegetables and fruit | Registered biopesticide in South Africa | [197] |
Candida oleophila strain O | Nexy | Post-harvest fungicide on apple and pear | Registered biopesticide in the US 2009 | [197] |
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismail, M.; Zhang, J. Post-Harvest Citrus Diseases and Their Control. Outlooks Pest Manag. 2004, 15, 29–35. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 December 2023).
- Mpmdref Filière Agrumicole | Ministère de L’agriculture. Available online: https://www.agriculture.gov.ma/fr/filiere/agrumicole (accessed on 23 October 2023).
- Diering, N.L.; Ulrich, A.; Scapini, T.; Müller, C.; Gasparetto, I.G.; Júnior, F.W.R.; Treichel, H.; Mossi, A.J. Microbial Natural Bioactive Formulations in Citrus Development. Biotechnol. Rep. 2022, 34, e00718. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, U.K. Alternative Management Approaches of Citrus Diseases Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Front. Plant Sci. 2022, 12, 833328. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.L.; Bomfim, A.G.J.; dos Santos, W.L.; Oliveira, J.T.C.; Moreira, K.A.; Galvão, J.R.; Pacheco, M.J.B. Yeast Biocontrol against Green Mold in Pear Orange Postharvest. Comun. Sci. 2023, 14, e3963. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Ji, S.; Chen, T.; Tian, S.; Qin, G. Enhancement of Biocontrol Efficacy of Cryptococcus Laurentii by Cinnamic Acid against Penicillium italicum in Citrus Fruit. Postharvest Biol. Technol. 2019, 149, 42–49. [Google Scholar] [CrossRef]
- Youssef, K.; Hussien, A. Electrolysed Water and Salt Solutions Can Reduce Green and Blue Molds While Maintain the Quality Properties of ‘Valencia’Late Oranges. Postharvest Biol. Technol. 2020, 159, 111025. [Google Scholar] [CrossRef]
- Talibi, I.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Alternative Methods for the Control of Postharvest Citrus Diseases. J. Appl. Microbiol. 2014, 117, 1–17. [Google Scholar] [CrossRef]
- Papoutsis, K.; Mathioudakis, M.M.; Hasperué, J.H.; Ziogas, V. Non-Chemical Treatments for Preventing the Postharvest Fungal Rotting of Citrus Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Trends Food Sci. Technol. 2019, 86, 479–491. [Google Scholar] [CrossRef]
- Adaskaveg, J.E.; Förster, H.; Chen, D. Positioning Natamycin as a Post-Harvest Fungicide for Citrus. Citrograph 2019, 10, 62–65. [Google Scholar]
- Zhang, Y.; Zhang, B.; Luo, C.; Fu, Y.; Zhu, F. Fungicidal Actions and Resistance Mechanisms of Prochloraz to Penicillium digitatum. Plant Dis. 2021, 105, 408–415. [Google Scholar] [CrossRef]
- Elash, W.E.M.; Aborehab, M.E.A.; El-Sehrawy, O.A.M.; Shahin, S.I. Control of Green and Blue Molds of Citrus Fruits Using Some Biocontrol Agents under Egyptian Conditions. Egypt. J. Phytopathol. 2023, 51, 93–102. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Herrmann-Andrade, A.M.; Calabrese, C.D.; Bello, F.; Vázquez, D.; Musumeci, M.A. Effectiveness of Trichoderma Strains Isolated from the Rhizosphere of Citrus Tree to Control Alternaria Alternata, Colletotrichum Gloeosporioides and Penicillium digitatum A21 Resistant to Pyrimethanil in Post-harvest Oranges (Citrus sinensis L.(Osbeck)). J. Appl. Microbiol. 2020, 129, 712–727. [Google Scholar] [CrossRef]
- Citores, L.; Valletta, M.; Singh, V.P.; Pedone, P.V.; Iglesias, R.; Ferreras, J.M.; Chambery, A.; Russo, R. Deciphering Molecular Determinants Underlying Penicillium digitatum’s Response to Biological and Chemical Antifungal Agents by Tandem Mass Tag (TMT)-Based High-Resolution LC-MS/MS. Int. J. Mol. Sci. 2022, 23, 680. [Google Scholar] [CrossRef]
- Perez, M.F.; Díaz, M.A.; Pereyra, M.M.; Córdoba, J.M.; Isas, A.S.; Sepulveda, M.; Ramallo, J.; Dib, J.R. Biocontrol Features of Clavispora Lusitaniae against Penicillium digitatum on Lemons. Postharvest Biol. Technol. 2019, 155, 57–64. [Google Scholar] [CrossRef]
- Edward-Rajanayagam, R.M.A.; Narváez-Zapata, J.A.; Ramírez-González, M.d.S.; de la Cruz-Arguijo, E.A.; López-Meyer, M.; Larralde-Corona, C.P. Yeast Mixtures for Postharvest Biocontrol of Diverse Fungal Rots on Citrus Limon Var Eureka. Horticulturae 2023, 9, 573. [Google Scholar] [CrossRef]
- Hammami, R.; Oueslati, M.; Smiri, M.; Nefzi, S.; Ruissi, M.; Comitini, F.; Romanazzi, G.; Cacciola, S.O.; Sadfi Zouaoui, N. Epiphytic Yeasts and Bacteria as Candidate Biocontrol Agents of Green and Blue Molds of Citrus Fruits. J. Fungi 2022, 8, 818. [Google Scholar] [CrossRef] [PubMed]
- François, G.A.; de Moraes Pontes, J.G.; Pereira, A.K.; Fill, T.P. Exploring the Citrus Sour Rot Pathogen: Biochemical Aspects, Virulence Factors, and Strategies for Disease Management-a Review. Fungal Biol. Rev. 2022, 41, 70–83. [Google Scholar] [CrossRef]
- Muñoz-Guerrero, J.; Guerra-Sierra, B.E.; Alvarez, J.C. Fungal Endophytes of Tahiti Lime (Citrus Citrus× Latifolia) and Their Potential for Control of Colletotrichum Acutatum JH Simmonds Causing Anthracnose. Front. Bioeng. Biotechnol. 2021, 9, 650351. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, L.; Xia, X.; Wang, Z.; Yin, Y.; Cheng, Y.; Li, Z. Melatonin Decreases Resistance to Postharvest Green Mold on Citrus Fruit by Scavenging Defense-Related Reactive Oxygen Species. Postharvest Biol. Technol. 2019, 153, 21–30. [Google Scholar] [CrossRef]
- de Sousa, M.A.; Granada, C.E. Biological Control of Pre-and Post-Harvest Microbial Diseases in Citrus by Using Beneficial Microorganisms. Biocontrol 2023, 68, 75–86. [Google Scholar] [CrossRef]
- Chen, J.; Shen, Y.; Chen, C.; Wan, C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants 2019, 8, 26. [Google Scholar] [CrossRef]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of Microbial Antagonists for the Control of Postharvest Diseases of Fruits: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1498–1513. [Google Scholar] [CrossRef]
- El Khetabi, A.; El Ghadraoui, L.; Ouaabou, R.; Ennahli, S.; Barka, E.A.; Lahlali, R. Antifungal Activities of Aqueous Extracts of Moroccan Medicinal Plants against Monilinia Spp. Agent of Brown Rot Disease. J. Nat. Pestic. Res. 2023, 5, 100038. [Google Scholar] [CrossRef]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Ait Ben Aoumar, A. Antifungal Activity of Moroccan Medicinal Plants against Citrus Sour Rot Agent Geotrichum Candidum. Lett. Appl. Microbiol. 2012, 55, 155–161. [Google Scholar] [CrossRef]
- El Guilli, M.; Jijakli, M.H.; Lahlali, R. Pilot Testing of Two Biofungicide Formulations for the Control of Citrus Blue and Green Mold in Two Moroccan Packinghouses. Moroc. J. Agric. Sci. 2020, 1. [Google Scholar]
- Ameziane, N.; Boubaker, H.; Boudyach, H.; Msanda, F.; Jilal, A.; Ait Benaoumar, A. Antifungal Activity of Moroccan Plants against Citrus Fruit Pathogens. Agron. Sustain. Dev. 2007, 27, 273–277. [Google Scholar] [CrossRef]
- Askarne, L.; Talibi, I.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Serghini, M.A.; Aoumar, A.A. Ben In Vitro and In Vivo Antifungal Activity of Several Moroccan Plants against Penicillium italicum, the Causal Agent of Citrus Blue Mold. Crop Prot. 2012, 40, 53–58. [Google Scholar] [CrossRef]
- Bouzerda, L.; Boubaker, H.; Boudyach, E.H.; Akhayat, O.; Aoumar, A.A. Ben Selection of Antagonistic Yeasts to Green Mold Disease of Citrus in Morocco. J. Food Agric. Environ. 2003, 1, 215–218. [Google Scholar]
- Lahlali, R.; Serrhini, M.N.; Jijakli, H. Efficacy Assessment of Candida Oleophila (Strain O) and Pichia Anomala (Strain K) against Major Postharvest Diseases of Citrus Fruits in Morocco. Comm. Appl. Biol. Sci. Ghent Univ. 2004, 69, 601. [Google Scholar]
- Taqarort, N.; Echairi, A.; Chaussod, R.; Nouaim, R.; Boubaker, H.; Benaoumar, A.A.; Boudyach, E. Screening and Identification of Epiphytic Yeasts with Potential for Biological Control of Green Mold of Citrus Fruits. World J. Microbiol. Biotechnol. 2008, 24, 3031–3038. [Google Scholar] [CrossRef]
- Lahlali, R.; Hamadi, Y.; Jijakli, M.H. Efficacy Assessment of Pichia Guilliermondii Strain Z1, a New Biocontrol Agent, against Citrus Blue Mould in Morocco under the Influence of Temperature and Relative Humidity. Biol. Control 2011, 56, 217–224. [Google Scholar] [CrossRef]
- Perez, M.F.; Contreras, L.; Garnica, N.M.; Fernández-Zenoff, M.V.; Farías, M.E.; Sepulveda, M.; Ramallo, J.; Dib, J.R. Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons. PLoS ONE 2016, 11, e0165590. [Google Scholar] [CrossRef] [PubMed]
- Nabi, S.U.; Raja, W.H.; Kumawat, K.L.; Mir, J.I.; Sharma, O.C.; Singh, D.B.; Sheikh, M.A. Post Harvest Diseases of Temperate Fruits and Their Management Strategies—A Review. Int. J. Pure Biosci. 2017, 5, 885–898. [Google Scholar]
- Palou, L. Penicillium digitatum, Penicillium italicum (Green Mold, Blue Mold). In Postharvest Decay; Elsevier: Amsterdam, The Netherlands, 2014; pp. 45–102. [Google Scholar]
- Moraes Bazioli, J.; Belinato, J.R.; Costa, J.H.; Akiyama, D.Y.; Pontes, J.G.d.M.; Kupper, K.C.; Augusto, F.; de Carvalho, J.E.; Fill, T.P. Biological Control of Citrus Postharvest Phytopathogens. Toxins 2019, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Etebu, E.; Nwauzoma, A.B. A Review on Sweet Orange (Citrus sinensis L Osbeck): Health, Diseases and Management. Am. J. Res. Commun. 2014, 2, 33–70. [Google Scholar]
- Leelasuphakul, W.; Hemmanee, P.; Chuenchitt, S. Growth Inhibitory Properties of Bacillus Subtilis Strains and Their Metabolites against the Green Mold Pathogen (Penicillium digitatum Sacc.) of Citrus Fruit. Postharvest Biol. Technol. 2008, 48, 113–121. [Google Scholar] [CrossRef]
- Sharma, I.M.; Prashad, D.; Sharma, S. Hitherto Unreported Post Harvest Diseases of Kiwifruit (Actinidia deliciosa) from Himachal Pradesh. J. Mycol. Plant Pathol. 2014, 44, 209. [Google Scholar]
- Terao, D.; de Lima Nechet, K.; Ponte, M.S.; Maia, A.d.H.N.; de Almeida Anjos, V.D.; de Almeida Halfeld-Vieira, B. Physical Postharvest Treatments Combined with Antagonistic Yeast on the Control of Orange Green Mold. Sci. Hortic. 2017, 224, 317–323. [Google Scholar] [CrossRef]
- Khamsaw, P.; Sangta, J.; Chaiwan, P.; Rachtanapun, P.; Sirilun, S.; Sringarm, K.; Thanakkasaranee, S.; Sommano, S.R. Bio-Circular Perspective of Citrus Fruit Loss Caused by Pathogens: Occurrences, Active Ingredient Recovery and Applications. Horticulturae 2022, 8, 748. [Google Scholar] [CrossRef]
- Ropars, J.; Caron, T.; Lo, Y.-C.; Bennetot, B. La Domesticate Desk Champignons Penicillium Du Fromage [The Domestication of Penicillium Cheese Fungi]. Comptes Rendus. Biol. 2020, 343, 155–176. [Google Scholar] [CrossRef]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; et al. Role of Citrus Volatiles in Host Recognition, Germination and Growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Garcia, D.; Ramos, A.J.; Sanchis, V.; Marín, S. Intraspecific Variability of Growth and Patulin Production of 79 Penicillium Expansum Isolates at Two Temperatures. Int. J. Food Microbiol. 2011, 151, 195–200. [Google Scholar] [CrossRef]
- Platania, C.; Restuccia, C.; Muccilli, S.; Cirvilleri, G. Efficacy of Killer Yeasts in the Biological Control of Penicillium digitatum on Tarocco Orange Fruits (Citrus sinensis). Food Microbiol. 2012, 30, 219–225. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Qi, T.; Deng, L.; Yi, L.; Zeng, K. Influence of Arginine on the Biocontrol Efficiency of Metschnikowia Citriensis against Geotrichum citri-Aurantii Causing Sour Rot of Postharvest Citrus Fruit. Food Microbiol. 2022, 101, 103888. [Google Scholar] [CrossRef]
- Costa, J.H.; Bazioli, J.M.; de Moraes Pontes, J.G.; Fill, T.P. Penicillium digitatum Infection Mechanisms in Citrus: What Do We Know so Far? Fungal Biol. 2019, 123, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Qian, X.; Dhanasekaran, S.; Boateng, N.A.S.; Yan, X.; Zhu, H.; He, F.; Zhang, H. Study on the Infection Mechanism of Penicillium digitatum on Postharvest Citrus (Citrus Reticulata Blanco) Based on Transcriptomics. Microorganisms 2019, 7, 672. [Google Scholar] [CrossRef] [PubMed]
- Ballester, A.-R.; González-Candelas, L. EFE-Mediated Ethylene Synthesis Is the Major Pathway in the Citrus Postharvest Pathogen Penicillium digitatum during Fruit Infection. J. Fungi 2020, 6, 175. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.H.; Bazioli, J.M.; Barbosa, L.D.; dos Santos Júnior, P.L.T.; Reis, F.C.G.; Klimeck, T.; Crnkovic, C.M.; Berlinck, R.G.S.; Sussulini, A.; Rodrigues, M.L. Phytotoxic Tryptoquialanines Produced In Vivo by Penicillium digitatum Are Exported in Extracellular Vesicles. MBio 2021, 12, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.A.; Silva, C.L.M.; Brandao, T.R.S. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. Food Eng. Rev. 2013, 5, 77–106. [Google Scholar] [CrossRef]
- Kanashiro, A.M.; Akiyama, D.Y.; Kupper, K.C.; Fill, T.P. Penicillium italicum: An Underexplored Postharvest Pathogen. Front. Microbiol. 2020, 11, 606852. [Google Scholar] [CrossRef] [PubMed]
- Galindo, A.; Calín-Sánchez, Á.; Collado-González, J.; Ondoño, S.; Hernández, F.; Torrecillas, A.; Carbonell-Barrachina, Á.A. Phytochemical and Quality Attributes of Pomegranate Fruits for Juice Consumption as Affected by Ripening Stage and Deficit Irrigation. J. Sci. Food Agric. 2014, 94, 2259–2265. [Google Scholar] [CrossRef]
- Li, Y.; Xia, M.; He, P.; Yang, Q.; Wu, Y.; He, P.; Ahmed, A.; Li, X.; Wang, Y.; Munir, S. Developing Penicillium digitatum Management Strategies on Post-Harvest Citrus Fruits with Metabolic Components and Colonization of Bacillus Subtilis L1-21. J. Fungi 2022, 8, 80. [Google Scholar] [CrossRef]
- Méndez-Líter, J.A.; de Eugenio, L.I.; Nieto-Domínguez, M.; Prieto, A.; Martínez, M.J. Hemicellulases from Penicillium and Talaromyces for Lignocellulosic Biomass Valorization: A Review. Bioresour. Technol. 2021, 324, 124623. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, X.-J.; Wang, Z.-J.; Jin, Q.; Wang, X.-N.; Chen, S.-S.; Luo, X.-D. Amphotericin B and 5-Flucytosine as Fungicides against Penicillium italicum for Citrus Fruit Rot. Postharvest Biol. Technol. 2022, 193, 112058. [Google Scholar] [CrossRef]
- Palou, L. Alternatives to Conventional Fungicides for the Control of Citrus Postharvest Green and Blue Moulds. Stewart Postharvest Rev. 2008, 4, 1–16. [Google Scholar] [CrossRef]
- Barkai-Golan, R. Postharvest Diseases of Fruits and Vegetables: Development and Control; Elsevier: Amsterdam, The Netherlands, 2001; ISBN 0080539297. [Google Scholar]
- OuYang, Q.; Reymick, O.O.; Tao, N. A Combination of Cinnamaldehyde and Citral Greatly Alleviates Postharvest Occurrence of Sour Rot in Citrus Fruits without Compromising the Fruit Quality. J. Food Sci. Technol. 2022, 59, 2776–2783. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Montiel, L.G.; Holguín-Peña, R.J.; Latisnere-Barragan, H. First Report of Sour Rot Caused by Geotrichum citri-Aurantii on Key Lime (Citrus aurantifolia) in Colima State, Mexico. Plant Dis. 2010, 94, 488. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yang, Y.; Zhu, X.; Yuan, P.; Gong, B.; Ding, S.; Shan, Y. Inhibitory Mechanisms of Cinnamic Acid on the Growth of Geotrichum citri-Aurantii. Food Control 2022, 131, 108459. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Pérez-Gago, M.B.; Taberner, V.; Settier-Ramírez, L.; Martínez-Blay, V.; Palou, L. Postharvest Application of Novel Bio-Based Antifungal Composite Edible Coatings to Reduce Sour Rot and Quality Losses of ‘Valencia’ Oranges. Coatings 2023, 13, 1412. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, D.; Wang, Y.; Yang, F.; Zhao, J.; Du, Y.; Tian, Z.; Long, C. Dimethyl Dicarbonate as a Food Additive Effectively Inhibits Geotrichum citri-Aurantii of Citrus. Foods 2022, 11, 2328. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Sugiyama, J. 1 Saccharomycotina and Taphrinomycotina: The Yeasts and Yeastlike Fungi of the Ascomycota. Syst. Evol. Part B 2015, 3–33. [Google Scholar]
- Wilson, C.L.; Chalutz, E. Postharvest Biological Control of Penicillium Rots of Citrus with Antagonistic Yeasts and Bacteria. Sci. Hortic. 1989, 40, 105–112. [Google Scholar] [CrossRef]
- Lei, X.; Liu, Y.; Guo, Y.; Wang, W.; Zhang, H.; Yi, L.; Zeng, K. Debaryomyces Nepalensis Reduces Fungal Decay by Affecting the Postharvest Microbiome during Jujube Storage. Int. J. Food Microbiol. 2022, 379, 109866. [Google Scholar] [CrossRef]
- De Hoog, G.S.; Smith, M.T. Ribosomal Gene Phylogeny and Species Delimitation in Geotrichum and Its Teleomorphs. Stud. Mycol. 2004, 50, 489–515. [Google Scholar]
- Feng, L.; Wu, F.; Li, J.; Jiang, Y.; Duan, X. Antifungal Activities of Polyhexamethylene Biguanide and Polyhexamethylene Guanide against the Citrus Sour Rot Pathogen Geotrichum citri-Aurantii In Vitro and In Vivo. Postharvest Biol. Technol. 2011, 61, 160–164. [Google Scholar] [CrossRef]
- Boubaker, H.; Karim, H.; El Hamdaoui, A.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.H.; Aoumar, A.A. Ben Chemical Characterization and Antifungal Activities of Four Thymus Species Essential Oils against Postharvest Fungal Pathogens of Citrus. Ind. Crops Prod. 2016, 86, 95–101. [Google Scholar] [CrossRef]
- Kara, M.; Soylu, E.M. Assessment of Glucosinolate-derived Isothiocyanates as Potential Natural Antifungal Compounds against Citrus Sour Rot Disease Agent Geotrichum citri-aurantii. J. Phytopathol. 2020, 168, 279–289. [Google Scholar] [CrossRef]
- Saito, S.; Xiao, C.-L. Prevalence of Postharvest Diseases of Mandarin Fruit in California. Plant Health Prog. 2017, 18, 204–210. [Google Scholar] [CrossRef]
- Soylu, E.M.; Kose, F. Antifungal Activities of Essential Oils Against Citrus Black Rot Disease Agent Alternaria Alternata. J. Essent. Oil Bear. Plants 2015, 18, 894–903. [Google Scholar] [CrossRef]
- Khan, A.S.; Ali, S.; Hasan, M.U.; Malik, A.U.; Singh, Z. 23 Postharvest Physiology of Citrus Fruit. Citrus Prod. Technol. Adv. Adapt. Chang. Clim. 2022, 345. [Google Scholar]
- Adaskaveg, J.E.; Hao, W.; Förster, H. Postharvest Strategies for Managing Phytophthora Brown Rot of Citrus Using Potassium Phosphite in Combination with Heat Treatments. Plant Dis. 2015, 99, 1477–1482. [Google Scholar] [CrossRef]
- Ramallo, A.C.; Cerioni, L.; Olmedo, G.M.; Volentini, S.I.; Ramallo, J.; Rapisarda, V.A. Control of Phytophthora Brown Rot of Lemons by Pre-and Postharvest Applications of Potassium Phosphite. Eur. J. Plant Pathol. 2019, 154, 975–982. [Google Scholar] [CrossRef]
- Naqvi, S. Diagnosis and Management of Pre and Post-Harvest Diseases of Citrus Fruit. In Diseases of Fruits and Vegetables Volume I: Diagnosis and Management; Springer: Berlin/Heidelberg, Germany, 2004; pp. 339–359. [Google Scholar]
- Di Liberto, M.G.; Seimandi, G.M.; Fernández, L.N.; Ruiz, V.E.; Svetaz, L.A.; Derita, M.G. Botanical Control of Citrus Green Mold and Peach Brown Rot on Fruits Assays Using a Persicaria acuminata Phytochemically Characterized Extract. Plants 2021, 10, 425. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.P.; Talhinhas, P.; Sreenivasaprasad, S.; Oliveira, H. Characterization of Colletotrichum Gloeosporioides, as the Main Causal Agent of Citrus Anthracnose, and C. Karstii as Species Preferentially Associated with Lemon Twig Dieback in Portugal. Phytoparasitica 2016, 44, 549–561. [Google Scholar] [CrossRef]
- Rhaiem, A.; Taylor, P.W.J. Colletotrichum Gloeosporioides Associated with Anthracnose Symptoms on Citrus, a New Report for Tunisia. Eur. J. Plant Pathol. 2016, 146, 219–224. [Google Scholar] [CrossRef]
- Dwiastuti, M.E.; Soesanto, L.; Aji, T.G.; Devy, N.F. Biological Control Strategy for Postharvest Diseases of Citrus, Apples, Grapes and Strawberries Fruits and Application in Indonesia. Egypt. J. Biol. Pest Control 2021, 31, 1–12. [Google Scholar] [CrossRef]
- Agirman, B.; Erten, H. Biocontrol Ability and Action Mechanisms of Aureobasidium Pullulans GE17 and Meyerozyma Guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium Expansum DSM62841 Causing Postharvest Diseases. Yeast 2020, 37, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Fenta, L.; Mekonnen, H.; Kabtimer, N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms 2023, 11, 1044. [Google Scholar] [CrossRef]
- da Cunha, T.; Ferraz, L.P.; de Sousa-Júnior, G.d.S.; Kupper, K.C. The Action of Yeast Strains as Biocontrol Agents against Penicillium digitatum in Lima Sweet Oranges. Citrus Res. Technol. 2020, 41, e1054. [Google Scholar] [CrossRef]
- Paola, M.R.N.; Lizeth, B.M.C.; Athenas, S.J.T.; Roberto, A.V.; Cecilia, A.C.J.; Iñaky, L.A.E. Biofungicides for Management of Postharvest Diseases. In Biofungicides: Eco-Safety and Future Trends; CRC Press: Boca Raton, FL, USA, 2023; pp. 283–311. [Google Scholar]
- Pereyra, M.M.; Diaz, M.A.; Meinhardt, F.; Dib, J.R. Effect of Stress Factors Associated with Postharvest Citrus Conditions on the Viability and Biocontrol Activity of Clavispora Lusitaniae Strain 146. PLoS ONE 2020, 15, e0239432. [Google Scholar] [CrossRef]
- Doyle, C. Beer and Ale in Early Medieval England: A Survey of Evidence. In Beer and Brewing in Medieval Culture and Contemporary Medievalism; Springer: Berlin/Heidelberg, Germany, 2022; pp. 33–56. [Google Scholar]
- Mukherjee, A.; Verma, J.P.; Gaurav, A.K.; Chouhan, G.K.; Patel, J.S.; Hesham, A.E.-L. Yeast a Potential Bio-Agent: Future for Plant Growth and Postharvest Disease Management for Sustainable Agriculture. Appl. Microbiol. Biotechnol. 2020, 104, 1497–1510. [Google Scholar] [CrossRef]
- Barnett, J.A.; Barnett, L. Yeast Research: A Historical Overview; American Society for Microbiology Press: Washington, DC, USA, 2011; ISBN 1555815162. [Google Scholar]
- Hernandez-Montiel, L.G.; Droby, S.; Preciado-Rangel, P.; Rivas-García, T.; González-Estrada, R.R.; Gutiérrez-Martínez, P.; Ávila-Quezada, G.D. A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. Plants 2021, 10, 2641. [Google Scholar] [CrossRef]
- Li, Y.; Ji, N.; Zuo, X.; Hou, Y.; Zhang, J.; Zou, Y.; Jin, P.; Zheng, Y. PpMYB308 Is Involved in Pichia Guilliermondii-Induced Disease Resistance against Rhizopus Rot by Activating the Phenylpropanoid Pathway in Peach Fruit. Postharvest Biol. Technol. 2023, 195, 112115. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, Y.; Dhanasekaran, S.; Li, J.; Ngolong Ngea, G.L.; Gu, X.; Li, B.; Zhao, L.; Zhang, H. Controlling Black Spot of Postharvest Broccoli by Meyerozyma Guilliermondii and Its Regulation on ROS Metabolism of Broccoli. Biol. Control 2022, 170, 104938. [Google Scholar] [CrossRef]
- Bosqueiro, A.S.; Bizarria Jr, R.; Rosa-Magri, M.M. Biocontrol of Post-Harvest Tomato Rot Caused by Alternaria Arborescens Using Torulaspora Indica. Biocontrol Sci. Technol. 2023, 33, 115–132. [Google Scholar] [CrossRef]
- Aktepe, B.P.; Aysan, Y. Biological Control of Fire Blight Disease Caused by Erwinia Amylovora on Apple. Erwerbs-Obstbau 2023, 65, 645–654. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Liang, L.; Godana, E.A.; Zhang, X.; Yang, X.; Wu, M.; Song, Y.; Zhang, H. Changes in Quality and Microbiome Composition of Strawberry Fruits Following Postharvest Application of Debaryomyces Hansenii, a Yeast Biocontrol Agent. Postharvest Biol. Technol. 2023, 202, 112379. [Google Scholar] [CrossRef]
- Ramos-Bell, S.; Hernández-Montiel, L.G.; Velázquez-Estrada, R.M.; Herrera-González, J.A.; Gutiérrez-Martínez, P. Potential of Debaryomyces Hansenii Strains on the Inhibition of Botrytis Cinerea in Blueberry Fruits (Vaccinium corymbosum L.). Horticulturae 2022, 8, 1125. [Google Scholar] [CrossRef]
- Raynaldo, F.A.; Dhanasekaran, S.; Ngea, G.L.N.; Yang, Q.; Zhang, X.; Zhang, H. Investigating the Biocontrol Potentiality of Wickerhamomyces Anomalus against Postharvest Gray Mold Decay in Cherry Tomatoes. Sci. Hortic. 2021, 285, 110137. [Google Scholar] [CrossRef]
- Konsue, W.; Dethoup, T.; Limtong, S. Biological Control of Fruit Rot and Anthracnose of Postharvest Mango by Antagonistic Yeasts from Economic Crops Leaves. Microorganisms 2020, 8, 317. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, D.; Ye, X.; Wu, Y.; Fang, T. Potential of Saturnispora Diversa MA as a Postharvest Biocontrol Agent against Anthracnose in Loquat Fruit. Biol. Control 2022, 173, 105006. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, R.; Xiong, B. Management of Postharvest Diseases of Kiwifruit with a Combination of the Biocontrol Yeast Candida Oleophila and an Oligogalacturonide. Biol. Control 2021, 156, 104549. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; González-Gutiérrez, K.N.; Ragazzo-Sánchez, J.A.; Narváez-Zapata, J.A.; Sandoval-Contreras, T.; Calderón-Santoyo, M. Morphological and Molecular Identification of the Causal Agents of Post-Harvest Diseases in Avocado Fruit, and Potential Biocontrol with Meyerozyma Caribbica. Arch. Phytopathol. Plant Prot. 2021, 54, 411–430. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Liu, J.; Wisniewski, M.; Droby, S.; Norelli, J.; Hershkovitz, V.; Tian, S.; Farrell, R. Increase in Antioxidant Gene Transcripts, Stress Tolerance and Biocontrol Efficacy of Candida Oleophila Following Sublethal Oxidative Stress Exposure. FEMS Microbiol. Ecol. 2012, 80, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Review: Utilization of Antagonistic Yeasts to Manage Postharvest Fungal Diseases of Fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [Google Scholar] [CrossRef]
- Di Francesco, A.; Righetti, L.; D’Aquino, S.; Mari, M. Biological Control of Postharvest Fungal Pathogens by Aureobasidium Pullulans: Competition Aspects. In Aureobasidium pullulans As Biological Control Agent: Modes of Action; Università di Bologna: Bologna, Italy, 2015; p. 97. [Google Scholar]
- Verma, S.; Azevedo, L.C.B.; Pandey, J.; Khusharia, S.; Kumari, M.; Kumar, D.; Kaushalendra; Bhardwaj, N.; Teotia, P.; Kumar, A. Microbial Intervention: An Approach to Combat the Postharvest Pathogens of Fruits. Plants 2022, 11, 3452. [Google Scholar] [CrossRef]
- Agirman, B.; Carsanba, E.; Settanni, L.; Erten, H. Exploring Yeast-based Microbial Interactions: The next Frontier in Postharvest Biocontrol. Yeast 2023, 40, 457–475. [Google Scholar] [CrossRef]
- Oztekin, S.; Dikmetas, D.N.; Devecioglu, D.; Acar, E.G.; Karbancioglu-Guler, F. Recent Insights into the Use of Antagonistic Yeasts for Sustainable Biomanagement of Postharvest Pathogenic and Mycotoxigenic Fungi in Fruits with Their Prevention Strategies against Mycotoxins. J. Agric. Food Chem. 2023, 71, 9923–9950. [Google Scholar] [CrossRef]
- Rivas-Garcia, T.; Murillo-Amador, B.; Nieto-Garibay, A.; Rincon-Enriquez, G.; Chiquito-Contreras, R.G.; Hernandez-Montiel, L.G. Enhanced Biocontrol of Fruit Rot on Muskmelon by Combination Treatment with Marine Debaryomyces Hansenii and Stenotrophomonas Rhizophila and Their Potential Modes of Action. Postharvest Biol. Technol. 2019, 151, 61–67. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, F.; Gu, N.; Yan, X.; Wang, K.; Dhanasekaran, S.; Gu, X.; Zhao, L.; Zhang, H. Postharvest Biological Control of Rhizopus Rot and the Mechanisms Involved in Induced Disease Resistance of Peaches by Pichia Membranefaciens. Postharvest Biol. Technol. 2020, 163, 111146. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- González-Gutiérrez, K.N.; Ragazzo-Sánchez, J.A.; Barros-Castillo, J.C.; Narváez-Zapata, J.A.; Calderón-Santoyo, M. Yeasts with Potential Biocontrol of Colletotrichum Gloeosporioides in Avocado (Persea americana Mill. Cv. Hass) and Characterization of Yamadazyma Mexicana Mechanisms. Eur. J. Plant Pathol. 2023, 165, 525–543. [Google Scholar] [CrossRef]
- Alimadadi, N.; Nasr, S.; Fazeli, S.A.S. Screening of Antagonistic Yeast Strains for Postharvest Control of Penicillium Expansum Causing Blue Mold Decay in Table Grape. Fungal Biol. 2023, 127, 901–908. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Dhanasekaran, S.; Guo, Z.; Chen, S.; Zhang, X.; Zhang, H. Efficacy of Wickerhamomyces Anomalus Yeast in the Biocontrol of Blue Mold Decay in Apples and Investigation of the Mechanisms Involved. BioControl 2021, 66, 547–558. [Google Scholar] [CrossRef]
- Wang, S.; Ruan, C.; Yi, L.; Deng, L.; Yao, S.; Zeng, K. Biocontrol Ability and Action Mechanism of Metschnikowia Citriensis against Geotrichum citri-Aurantii Causing Sour Rot of Postharvest Citrus Fruit. Food Microbiol. 2020, 87, 103375. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska, E.; James, S.A.; Breierova, E.; Antolak, H.; Kregiel, D. Biocontrol Capability of Local Metschnikowia Sp. Isolates. Antonie Leeuwenhoek 2019, 112, 1425–1445. [Google Scholar] [CrossRef] [PubMed]
- Settier-Ramírez, L.; López-Carballo, G.; Hernández-Muñoz, P.; Fontana, A.; Strub, C.; Schorr-Galindo, S. New Isolated Metschnikowia Pulcherrima Strains from Apples for Postharvest Biocontrol of Penicillium Expansum and Patulin Accumulation. Toxins 2021, 13, 397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, B.; Zhang, Z.; Chen, Y.; Tian, S. Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. J. Fungi 2020, 6, 158. [Google Scholar] [CrossRef] [PubMed]
- Gore-Lloyd, D.; Sumann, I.; Brachmann, A.O.; Schneeberger, K.; Ortiz-Merino, R.A.; Moreno-Beltrán, M.; Schläfli, M.; Kirner, P.; Santos Kron, A.; Rueda-Mejia, M.P. Snf2 Controls Pulcherriminic Acid Biosynthesis and Antifungal Activity of the Biocontrol Yeast Metschnikowia Pulcherrima. Mol. Microbiol. 2019, 112, 317–332. [Google Scholar] [CrossRef]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol Ability and Action Mechanism of Food-Isolated Yeast Strains against Botrytis Cinerea Causing Post-Harvest Bunch Rot of Table Grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef]
- Chi, Z.; Wang, X.-X.; Ma, Z.-C.; Buzdar, M.A.; Chi, Z.-M. The Unique Role of Siderophore in Marine-Derived Aureobasidium Pullulans HN6. 2. Biometals 2012, 25, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Zajc, J.; Cernosa, A.; Di Francesco, A.; Casteria, R.; De Curtis, F.; Lima, G.; Badri, H.; Jijakli, H.; Ippolito, A.; Gostincar, C. Characterization of Aureobasidium Pullulans Isolates Selected as Biocontrol Agents against Fruit Decay Pathogens. Fungal Genomics Biol. 2020, 10, 163. [Google Scholar]
- Hernández, A.; Rodríguez, A.; Córdoba, M.G.; Martín, A.; Ruiz-Moyano, S. Fungal Control in Foods through Biopreservation. Curr. Opin. Food Sci. 2022, 47, 100904. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty Years of Postharvest Biocontrol Research: Is It Time for a New Paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- Liu, B.; Liang, J.; Tang, G.; Wang, X.; Liu, F.; Zhao, D. Drought Stress Affects on Growth, Water Use Efficiency, Gas Exchange and Chlorophyll Fluorescence of Juglans Rootstocks. Sci. Hortic. 2019, 250, 230–235. [Google Scholar] [CrossRef]
- Pu, L.; Jingfan, F.; Kai, C.; Chao-an, L.; Yunjiang, C. Phenylethanol Promotes Adhesion and Biofilm Formation of the Antagonistic Yeast Kloeckera Apiculata for the Control of Blue Mold on Citrus. FEMS Yeast Res. 2014, 14, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanpour, M.; Omidvari, M.; Abbaszadeh-Dahaji, P.; Omidvar, R.; Kariman, K. Mechanisms Underlying the Protective Effects of Beneficial Fungi against Plant Diseases. Biol. Control 2018, 117, 147–157. [Google Scholar] [CrossRef]
- Hernandez-Montiel, L.G.; Gutierrez-Perez, E.D.; Murillo-Amador, B.; Vero, S.; Chiquito-Contreras, R.G.; Rincon-Enriquez, G. Mechanisms Employed by Debaryomyces Hansenii in Biological Control of Anthracnose Disease on Papaya Fruit. Postharvest Biol. Technol. 2018, 139, 31–37. [Google Scholar] [CrossRef]
- Wisniewski, M.; Biles, C.; Droby, S.; McLaughlin, R.; Wilson, C.; Chalutz, E. Mode of Action of the Postharvest Biocontrol Yeast, Pichia Guilliermondii. I. Characterization of Attachment to Botrytis Cinerea. Physiol. Mol. Plant Pathol. 1991, 39, 245–258. [Google Scholar] [CrossRef]
- Calderón, C.E.; Rotem, N.; Harris, R.; Vela-Corcía, D.; Levy, M. Pseudozyma Aphidis Activates Reactive Oxygen Species Production, Programmed Cell Death and Morphological Alterations in the Necrotrophic Fungus Botrytis Cinerea. Mol. Plant Pathol. 2019, 20, 562–574. [Google Scholar] [CrossRef]
- Lai, J.; Cao, X.; Yu, T.; Wang, Q.; Zhang, Y.; Zheng, X.; Lu, H. Effect of Cryptococcus Laurentii on Inducing Disease Resistance in Cherry Tomato Fruit with Focus on the Expression of Defense-Related Genes. Food Chem. 2018, 254, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, C.; Guan, X.; Lian, S.; Li, B.; Wang, C. Biocontrol Efficiency of Meyerozyma guilliermondii Y-1 against Apple Postharvest Decay Caused by Botryosphaeria dothidea and the Possible Mechanisms of Action. Int. J. Food Microbiol. 2021, 338, 108957. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, L.; Li, Z.; Li, C.; Li, B.; Gu, X.; Zhang, X.; Zhang, H. Screening and Identification of an Antagonistic Yeast Controlling Postharvest Blue Mold Decay of Pears and the Possible Mechanisms Involved. Biol. Control 2019, 133, 26–33. [Google Scholar] [CrossRef]
- Chan, Z.; Tian, S. Induction of H2O2-Metabolizing Enzymes and Total Protein Synthesis by Antagonistic Yeast and Salicylic Acid in Harvested Sweet Cherry Fruit. Postharvest Biol. Technol. 2006, 39, 314–320. [Google Scholar] [CrossRef]
- El-Ghaouth, A.; Wilson, C.L.; Wisniewski, M. Ultrastructural and Cytochemical Aspects of the Biological Control of Botrytis Cinerea by Candida Saitoana in Apple Fruit. Phytopathology 1998, 88, 282–291. [Google Scholar] [CrossRef]
- Chan, Z.; Qin, G.; Xu, X.; Li, B.; Tian, S. Proteome Approach to Characterize Proteins Induced by Antagonist Yeast and Salicylic Acid in Peach Fruit. J. Proteome Res. 2007, 6, 1677–1688. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, L.P.; Cunha, T.d.; da Silva, A.C.; Kupper, K.C. Biocontrol Ability and Putative Mode of Action of Yeasts against Geotrichum citri-Aurantii in Citrus Fruit. Microbiol. Res. 2016, 188–189, 72–79. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol Yeasts: Mechanisms and Applications. World J. Microbiol. Biotechnol. 2019, 35, 1–19. [Google Scholar] [CrossRef]
- Lukša, J.; Podoliankaitė, M.; Vepštaitė, I.; Strazdaitė-Žielienė, Ž.; Urbonavičius, J.; Servienė, E. Yeast β-1, 6-Glucan Is a Primary Target for the Saccharomyces Cerevisiae K2 Toxin. Eukaryot. Cell 2015, 14, 406–414. [Google Scholar] [CrossRef]
- Chi, Z.-M.; Liu, G.; Zhao, S.; Li, J.; Peng, Y. Marine Yeasts as Biocontrol Agents and Producers of Bio-Products. Appl. Microbiol. Biotechnol. 2010, 86, 1227–1241. [Google Scholar] [CrossRef]
- Chessa, R.; Landolfo, S.; Ciani, M.; Budroni, M.; Zara, S.; Ustun, M.; Cakar, Z.P.; Mannazzu, I. Biotechnological Exploitation of Tetrapisispora Phaffii Killer Toxin: Heterologous Production in Komagataella phaffii (Pichia pastoris). Appl. Microbiol. Biotechnol. 2017, 101, 2931–2942. [Google Scholar] [CrossRef]
- Mannazzu, I.; Domizio, P.; Carboni, G.; Zara, S.; Zara, G.; Comitini, F.; Budroni, M.; Ciani, M. Yeast Killer Toxins: From Ecological Significance to Application. Crit. Rev. Biotechnol. 2019, 39, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Grzegorczyk, M.; Żarowska, B.; Restuccia, C.; Cirvilleri, G. Postharvest Biocontrol Ability of Killer Yeasts against Monilinia Fructigena and Monilinia Fructicola on Stone Fruit. Food Microbiol. 2017, 61, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Banjara, N.; Nickerson, K.W.; Suhr, M.J.; Hallen-Adams, H.E. Killer Toxin from Several Food-Derived Debaryomyces Hansenii Strains Effective against Pathogenic Candida Yeasts. Int. J. Food Microbiol. 2016, 222, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Krzymińska, J.; Tyburski, J. Yeasts as a Potential Biological Agent in Plant Disease Protection and Yield Improvement—A Short Review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Oro, L.; Feliziani, E.; Ciani, M.; Romanazzi, G.; Comitini, F. Volatile Organic Compounds from Wickerhamomyces Anomalus, Metschnikowia Pulcherrima and Saccharomyces Cerevisiae Inhibit Growth of Decay Causing Fungi and Control Postharvest Diseases of Strawberries. Int. J. Food Microbiol. 2018, 265, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Performance Evaluation of Volatile Organic Compounds by Antagonistic Yeasts Immobilized on Hydrogel Spheres against Gray, Green and Blue Postharvest Decays. Food Microbiol. 2017, 63, 191–198. [Google Scholar] [CrossRef]
- Arrarte, E.; Garmendia, G.; Rossini, C.; Wisniewski, M.; Vero, S. Volatile Organic Compounds Produced by Antarctic Strains of Candida Sake Play a Role in the Control of Postharvest Pathogens of Apples. Biol. Control 2017, 109, 14–20. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Hernández, A.; Galvan, A.I.; Córdoba, M.G.; Casquete, R.; Serradilla, M.J.; Martín, A. Selection and Application of Antifungal VOCs-Producing Yeasts as Biocontrol Agents of Grey Mould in Fruits. Food Microbiol. 2020, 92, 103556. [Google Scholar] [CrossRef]
- Chen, O.; Yi, L.; Deng, L.; Ruan, C.; Zeng, K. Screening Antagonistic Yeasts against Citrus Green Mold and the Possible Biocontrol Mechanisms of Pichia Galeiformis ( BAF03 ). J. Sci. Food Agric. 2020, 100, 3812–3821. [Google Scholar] [CrossRef]
- Delali, K.I.; Chen, O.; Wang, W.; Yi, L.; Deng, L.; Zeng, K. Evaluation of Yeast Isolates from Kimchi with Antagonistic Activity against Green Mold in Citrus and Elucidating the Action Mechanisms of Three Yeast: P. Kudriavzevii, K. Marxianus, and Y. Lipolytica. Postharvest Biol. Technol. 2021, 176, 111495. [Google Scholar] [CrossRef]
- Öztekin, S.; Karbancioglu-Guler, F. Biological Control of Green Mould on Mandarin Fruit through the Combined Use of Antagonistic Yeasts. Biol. Control 2023, 180, 105186. [Google Scholar] [CrossRef]
- Pereyra, M.M.; Garmendia, G.; Rossini, C.; Meinhardt, F.; Vero, S.; Dib, J.R. Volatile Organic Compounds of Clavispora Lusitaniae AgL21 Restrain Citrus Postharvest Pathogens. Biol. Control 2022, 174, 105025. [Google Scholar] [CrossRef]
- Toffano, L.; Fialho, M.B.; Pascholati, S.F. Potential of Fumigation of Orange Fruits with Volatile Organic Compounds Produced by Saccharomyces Cerevisiae to Control Citrus Black Spot Disease at Postharvest. Biol. Control 2017, 108, 77–82. [Google Scholar] [CrossRef]
- Díaz, M.A.; Pereyra, M.M.; Santander, F.F.S.; Perez, M.F.; Córdoba, J.M.; Alhussein, M.; Karlovsky, P.; Dib, J.R. Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora Lusitaniae 146. Microorganisms 2020, 8, 1477. [Google Scholar] [CrossRef]
- Nasahi, C.; Yusuf, A.R.; Hartati, S.; Kurniadie, D.; Subakti-Putri, S.N. Yeast Potential in Controlling Aspergillus Sp. Causing Fruit Rot Disease in Dekopon Oranges (Citrus reticulata ‘Shiranui’). Res. Crop. 2023, 24, 407–415. [Google Scholar]
- Sukmawati, D.; Family, N.; Hidayat, I.; Sayyed, R.Z.; Elsayed, E.A.; Dailin, D.J.; Hanapi, S.Z.; Wadaan, M.A.; Enshasy, H. El Biocontrol Activity of Aureubasidium Pullulans and Candida Orthopsilosis Isolated from Tectona Grandis L. Phylloplane against Aspergillus Sp. in Post-Harvested Citrus Fruit. Sustainability 2021, 13, 7479. [Google Scholar] [CrossRef]
- Oztekin, S.; Karbancioglu-Guler, F. Bioprospection of Metschnikowia Sp. Isolates as Biocontrol Agents against Postharvest Fungal Decays on Lemons with Their Potential Modes of Action. Postharvest Biol. Technol. 2021, 181, 111634. [Google Scholar] [CrossRef]
- López-Cruz, R.; Segarra, G.; Torres, R.; Teixidó, N.; Ragazzo-Sanchez, J.A.; Calderon-Santoyo, M. Biocontrol Efficacy of Meyerozyma Guilliermondii LMA-Cp01 against Post-Harvest Pathogens of Fruits. Arch. Phytopathol. Plant Prot. 2023, 56, 1003–1020. [Google Scholar] [CrossRef]
- M Ashour, S.; A Mohamed, A.; S Zaki, S. Evaluation of the Native Killer Yeasts against the Postharvest Phytopathogenic Mould of Balady Orange Fruits. J. Sci. Res. Sci. 2022, 39, 23–48. [Google Scholar]
- Abo-Elyousr, K.A.M.; Al-Qurashi, A.D.; Almasoudi, N.M. Evaluation of the Synergy between Schwanniomyces Vanrijiae and Propolis in the Control of Penicillium digitatum on Lemons. Egypt. J. Biol. Pest Control 2021, 31, 66. [Google Scholar] [CrossRef]
- Chen, O.; Zhu, R.; Xu, Y.; Yao, S.; Yi, L.; Zeng, K. Genome-Wide Discovery of Pichia Galeiformis-Secreted Proteins and Their Induction of Green Mold Resistance in Citrus Fruit. Postharvest Biol. Technol. 2023, 204, 112435. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Liu, J.; Tian, X.; Zhang, D.; Wang, Q. Management of Blue Mold (Penicillium italicum) on Mandarin Fruit with a Combination of the Yeast, Meyerozyma Guilliermondii and an Alginate Oligosaccharide. Biol. Control 2021, 152, 104451. [Google Scholar] [CrossRef]
- Janisiewicz, W.J.; Korsten, L. Biological Control of Postharvest Diseases of Fruits. Annu. Rev. Phytopathol. 2002, 40, 411–441. [Google Scholar] [CrossRef] [PubMed]
- Opulente, D.A.; Langdon, Q.K.; Buh, K.V.; Haase, M.A.B.; Sylvester, K.; Moriarty, R.V.; Jarzyna, M.; Considine, S.L.; Schneider, R.M.; Hittinger, C.T. Pathogenic Budding Yeasts Isolated Outside of Clinical Settings. FEMS Yeast Res. 2019, 19, foz032. [Google Scholar] [CrossRef] [PubMed]
- De Llanos, R.; Querol, A.; Pemán, J.; Gobernado, M.; Fernández-Espinar, M.T. Food and Probiotic Strains from the Saccharomyces Cerevisiae Species as a Possible Origin of Human Systemic Infections. Int. J. Food Microbiol. 2006, 110, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef]
- Shahzadi, A.; Tahir, N.; Usman, M.K.; Raza, A.; OUEDRAOGO, A. Protecting Plants from Disease and Increasing Their Yields Through the Use of Yeasts as a Biological Agent. Int. J. Res. Adv. Agric. Sci. 2022, 1, 1–13. [Google Scholar]
- Parveen, S.; Wani, A.H.; Bhat, M.Y.; Koka, J.A. Biological Control of Postharvest Fungal Rots of Rosaceous Fruits Using Microbial Antagonists and Plant Extracts—A Review. Czech Mycol. 2016, 68, 41–66. [Google Scholar] [CrossRef]
- Calvo, J.; Calvente, V.; de Orellano, M.E.; Benuzzi, D.; de Tosetti, M.I.S. Improvement in the Biocontrol of Postharvest Diseases of Apples with the Use of Yeast Mixtures. BioControl 2003, 48, 579–593. [Google Scholar] [CrossRef]
- Nunes, C.A. Biological Control of Postharvest Diseases of Fruit. Eur. J. Plant Pathol. 2012, 133, 181–196. [Google Scholar] [CrossRef]
- Pandhal, J.; Noirel, J. Synthetic Microbial Ecosystems for Biotechnology. Biotechnol. Lett. 2014, 36, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Fenta, L.; Mekonnen, H.; Gashaw, T. Biocontrol Potential of Trichoderma and Yeast against Post Harvest Fruit Fungal Diseases: A Review. World News Nat. Sci. 2019, 27, 153–173. [Google Scholar]
- Panebianco, S.; Vitale, A.; Polizzi, G.; Scala, F.; Cirvilleri, G. Enhanced Control of Postharvest Citrus Fruit Decay by Means of the Combined Use of Compatible Biocontrol Agents. Biol. Control 2015, 84, 19–27. [Google Scholar] [CrossRef]
- Bastiaanse, H.; De Bellaire, L.d.L.; Lassois, L.; Misson, C.; Jijakli, M.H. Integrated Control of Crown Rot of Banana with Candida Oleophila Strain O, Calcium Chloride and Modified Atmosphere Packaging. Biol. Control 2010, 53, 100–107. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative Management Technologies for Postharvest Disease Control: The Journey from Simplicity to Complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Nunes, C.; Usall, J.; Teixidó, N.; Abadias, M.; Viñas, I. Improved Control of Postharvest Decay of Pears by the Combination of Candida Sake (CPA-1) and Ammonium Molybdate. Phytopathology 2002, 92, 281–287. [Google Scholar] [CrossRef]
- Wan, Y.K.; Tian, S.P.; Qin, G.Z. Enhancement of Biocontrol Activity of Yeasts by Adding Sodium Bicarbonate or Ammonium Molybdate to Control Postharvest Disease of Jujube Fruits. Lett. Appl. Microbiol. 2003, 37, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Yuan, Y.; Hu, Z.; Zheng, Y. Combination of Pichia Membranifaciens and Ammonium Molybdate for Controlling Blue Mould Caused by Penicillium Expansum in Peach Fruit. Int. J. Food Microbiol. 2010, 141, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Tian, S.; Wang, Y. Sodium Bicarbonate Enhances Biocontrol Efficacy of Yeasts on Fungal Spoilage of Pears. Int. J. Food Microbiol. 2004, 93, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, A.; Schena, L.; Pentimone, I.; Nigro, F. Control of Postharvest Rots of Sweet Cherries by Pre-and Postharvest Applications of Aureobasidium Pullulans in Combination with Calcium Chloride or Sodium Bicarbonate. Postharvest Biol. Technol. 2005, 36, 245–252. [Google Scholar] [CrossRef]
- Pimenta, R.S.; Silva, J.F.M.; Coelho, C.M.; Morais, P.B.; Rosa, C.A.; Corrêa, A., Jr. Integrated Control of Penicillium digitatum by the Predacious Yeast Saccharomycopsis Crataegensis and Sodium Bicarbonate on Oranges. Braz. J. Microbiol. 2010, 41, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Lu, L.; Guo, J.; Lu, H.; Abudureheman, N.; Yu, T.; Zheng, X. Postharvest Control of Green Mold Decay of Citrus Fruit Using Combined Treatment with Sodium Bicarbonate and Rhodosporidium Paludigenum. Food Bioprocess Technol. 2013, 6, 2925–2930. [Google Scholar] [CrossRef]
- Spadaro, D.; Gullino, M.L. State of the Art and Future Prospects of the Biological Control of Postharvest Fruit Diseases. Int. J. Food Microbiol. 2004, 91, 185–194. [Google Scholar] [CrossRef]
- Lu, L.; Ji, L.; Qiao, L.; Zhang, Y.; Chen, M.; Wang, C.; Chen, H.; Zheng, X. Combined Treatment with Rhodosporidium Paludigenum and Ammonium Molybdate for the Management of Green Mold in Satsuma Mandarin (Citrus unshiu Marc.). Postharvest Biol. Technol. 2018, 140, 93–99. [Google Scholar] [CrossRef]
- Sundh, I.; Melin, P. Safety and Regulation of Yeasts Used for Biocontrol or Biopreservation in the Food or Feed Chain. Antonie Leeuwenhoek 2011, 99, 113–119. [Google Scholar] [CrossRef]
- Chamba, J.F.; Jamet, E. Contribution to the Safety Assessment of Technological Microflora Found in Fermented Dairy Products. Int. J. Food Microbiol. 2008, 126, 263–266. [Google Scholar] [CrossRef]
- Mattia, A.; Merker, R. Regulation of Probiotic Substances as Ingredients in Foods: Premarket Approval or “Generally Recognized as Safe” Notification. Clin. Infect. Dis. 2008, 46, S115–S118. [Google Scholar] [CrossRef]
- Danish Veterinary and Food Administration. Liste over Anmeldte Mikrobielle Kulturer; Danish Veterinary and Food Administration: Glostrup, Denmark, 2016. (In Danish) [Google Scholar]
- Belda, I.; Ruiz, J.; Alonso, A.; Marquina, D.; Santos, A. The Biology of Pichia Membranifaciens Killer Toxins. Toxins 2017, 9, 112. [Google Scholar] [CrossRef]
- Chambard, M.; Albert, B.; Cadiou, M.; Auby, S.; Profizi, C.; Boulogne, I. Living Yeast-Based Biostimulants: Different Genes for the Same Results? Front. Plant Sci. 2023, 14, 1171564. [Google Scholar] [CrossRef]
- Hernández-Fernández, M.; Cordero-Bueso, G.; Ruiz-Muñoz, M.; Cantoral, J.M. Culturable Yeasts as Biofertilizers and Biopesticides for a Sustainable Agriculture: A Comprehensive Review. Plants 2021, 10, 822. [Google Scholar] [CrossRef]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as Alternative to Synthetic Fungicide Control of Grey Mould (Botrytis cinerea)–Prospects and Challenges. Biocontrol Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- EU. EU Commission Decision 2007/380/EC Recognising in Principle the Completeness of the Dossiers Submitted for Detailed Examination in View of the Possible Inclusion of Candida Oleophila Strain O in Annex I to Council Directive 91/414/EEC; EU: Brussels, Belgium, 2007. [Google Scholar]
- US EPA. Biopesticides Registration Action Document (BRAD), Candida Oleophila Strain O; Biopesticides and Pollution Prevention Division, Office of Pesticide Programs, U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- Kurtzman, C.P.; Droby, S. Metschnikowia Fructicola, a New Ascosporic Yeast with Potential for Biocontrol of Postharvest Fruit Rots. Syst. Appl. Microbiol. 2001, 24, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Anuagasi, C.L.; Okigbo, R.N.; Anukwuorji, C.A.; Okereke, C.N. The Impact of Biofungicides on Agricultural Yields and Food Security in Africa. Int. J. Agric. Technol. 2017, 13, 953–978. [Google Scholar]
- Mari, M.; Di Francesco, A.; Bertolini, P. Control of Fruit Postharvest Diseases: Old Issues and Innovative Approaches. Stewart Postharvest Rev. 2014, 10, 1–4. [Google Scholar]
- Piombo, E.; Sela, N.; Wisniewski, M.; Hoffmann, M.; Gullino, M.L.; Allard, M.W.; Levin, E.; Spadaro, D.; Droby, S. Genome Sequence, Assembly and Characterization of Two Metschnikowia Fructicola Strains Used as Biocontrol Agents of Postharvest Diseases. Front. Microbiol. 2018, 9, 593. [Google Scholar] [CrossRef]
- de Souza, J.R.B.; Kupper, K.C.; Augusto, F. In Vivo Investigation of the Volatile Metabolome of Antiphytopathogenic Yeast Strains Active against Penicillium digitatum Using Comprehensive Two-Dimensional Gas Chromatography and Multivariate Data Analysis. Microchem. J. 2018, 141, 204–209. [Google Scholar] [CrossRef]
Yeast Species | Pathogen | Fruit | Disease | Country | Reference |
---|---|---|---|---|---|
Pichia guilliermondii | Rhizopus stolonifer | Peach | Soft rot | China | [91] |
Meyerozyma guilliermondii | Alternaria brassicicola | Broccoli | Black spot | China | [92] |
Torulaspora indica | Alternaria arborescens | Tomato | Tomato rot | Brazil | [93] |
Aureobasidium pullulans | Erwinia amylovora | Apple | Fire blight | Turkey | [94] |
Debaryomyces hansenii | Botrytis cinerea | Strawberry | Gray mold | China | [95] |
Debaryomyces nepalensis | Alternaria sp., Penicillium sp., Fusarium sp. and Botrytis sp. | Jujube | - | China | [67] |
Debaryomyces hansenii | Botrytis cinerea | Blueberry | Gray mold | Spain | [96] |
Wickerhamomyces anomalus | Botrytis cinerea | Cherry tomatoes | Gray mold | China | [97] |
Torulaspora indica, Torulaspora indica Pseudozyma hubeiensis | Lasiodiplodia theobromae Colletotrichum gloeosporioides | Mango | Fruit rot and anthracnose | Thailand | [98] |
Saturnispora diversa | Colletotrichum gloeosporioides | Loqua | Anthracnose | China | [99] |
Candida oleophila | Botrytis cinerea and Alternaria alternate | Kiwi | Gray mold and black rot | China | [100] |
Meyerozyma caribbica | Colletotrichum gloeosporioides, Colletotrichum sp., Fusarium sp. | Avocado | - | Mexico | [101] |
Yeast Species | Pathogen | Disease | Inhibition Range (%) | Country | Reference |
---|---|---|---|---|---|
Pichia fermentans Clavispora lusitaniae | P. digitatum | Green mold | 70–96.67% | Argentina | [86] |
Pichia galeiformis | P. digitatum | Green mold | 85% in-vitro 75% in vivo | China | [150] |
Meyerozyma guilliermondii Pseudozyma sp. Saccharomyces cerevisiae | Penicillium sp., Fusarium sp., Colletotrichum sp. | Green/blue mold Fusarium rot Anthracnose | 85% in vitro | Mexico | [17] |
Aureobasidium pullulans Rhodoturula minuta Candida tropicalis | Aspergillus sp. | Fruit rot | 22.5–42.2% | Indonesia | [156] |
Metschnikowia citriensis | Geotrichum citri-auranti | Sour rot | 30–50% | China | [115] |
Candida orthopsilosis Aureobasidium pullulans | Aspergillus flavus Aspergillus niger | Citrus mold | 25–60% | Indonesia | [157] |
Candida peltata | P. digitatum | Green mold | 85.7% | Brazil | [6] |
Clavispora lusitaniae | P. digitatum | Green mold | 86–95% | Argentina | [155] |
Metschnikowia aff. Pulcherrima Hanseniaspora uvarum Meyerozyma guilliermondii | P. digitatum | Green mold | 73.85–85.64% | Turkey | [152] |
Metschnikowia sp. | P. digitatum P. expansum | Green and blue mold | 83.63–100% | Turkey | [158] |
Candida oleophila Debaryomyces hansenii | P. digitatum and P. italicum | Green and blue mold | 20–32% | Tunisia | [18] |
Meyerozyma guilliermondii | P. italicum P. digitatum | Green and blue mold | 70 and 72% | México | [159] |
Saccharomyces cerevisiae | P. digitatum P. italicum | Green and blue mold | 22.5–70% of P. digitatum 21.1–68.5% of P. italicum | Egypt | [160] |
Candida spp. | Penicillium sp. Alternaria sp. | Green mold and Alternaria rot | - | Indonesia | [81] |
Schwanniomyces vanrijiae | P. digitatum | Green mold | 55% | Egypt | [161] |
Metschnikowia citriensis | Geotrichum citri-aurantii | Sour rot | 43.66% | China | [47] |
Pichia galeiformis | P. digitatum | Green mold | - | China | [162] |
Saccharomyces cerevisiae Candida stellimalicola | P. digitatum | Green mold | >80% | Brazil | [84] |
Meyerozyma guilliermondii | P. italicum | Blue mold | 57.5% | China | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzouggari, R.; Bahhou, J.; Taoussi, M.; Seddiqi Kallali, N.; Aberkani, K.; Barka, E.A.; Lahlali, R. Yeast Warriors: Exploring the Potential of Yeasts for Sustainable Citrus Post-Harvest Disease Management. Agronomy 2024, 14, 288. https://doi.org/10.3390/agronomy14020288
Ezzouggari R, Bahhou J, Taoussi M, Seddiqi Kallali N, Aberkani K, Barka EA, Lahlali R. Yeast Warriors: Exploring the Potential of Yeasts for Sustainable Citrus Post-Harvest Disease Management. Agronomy. 2024; 14(2):288. https://doi.org/10.3390/agronomy14020288
Chicago/Turabian StyleEzzouggari, Rachid, Jamila Bahhou, Mohammed Taoussi, Najwa Seddiqi Kallali, Kamal Aberkani, Essaid Ait Barka, and Rachid Lahlali. 2024. "Yeast Warriors: Exploring the Potential of Yeasts for Sustainable Citrus Post-Harvest Disease Management" Agronomy 14, no. 2: 288. https://doi.org/10.3390/agronomy14020288
APA StyleEzzouggari, R., Bahhou, J., Taoussi, M., Seddiqi Kallali, N., Aberkani, K., Barka, E. A., & Lahlali, R. (2024). Yeast Warriors: Exploring the Potential of Yeasts for Sustainable Citrus Post-Harvest Disease Management. Agronomy, 14(2), 288. https://doi.org/10.3390/agronomy14020288