The Effects of Tillage Systems on the Management of Agronomic Factors in Winter Oilseed Rape Cultivation: A Case Study in North-Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Parameters Determined in the Field
2.3. Statistical Analysis
3. Results
3.1. Tillage
3.2. Weed Control
3.3. Growth Regulation
3.4. Spring Nitrogen Fertilization
3.5. Spring Sulfur Fertilization
4. Discussion
4.1. Tillage
4.2. Weed Control
4.3. Growth Regulation
4.4. Spring Nitrogen Fertilization
4.5. Spring Sulfur Fertilization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faostat. Food and Agriculture Organization Corporate Statistical Database. Available online: http://www.apps.fao.org (accessed on 28 October 2023).
- Rathke, G.W.; Christen, O.; Diepenbrock, W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res. 2005, 94, 103–113. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S.; Załuski, D.; Hulanicki, P.S.; Dubis, B. Using a fractional factorial design to evaluate the effect of the intensity of agronomic practices on the yield of different winter oilseed rape morphotypes. Field Crops Res. 2016, 188, 50–61. [Google Scholar] [CrossRef]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilization. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Saldukaitė, L.; Šarauskis, E.; Zabrodskyi, A.; Adamavičienė, A.; Buragienė, S.; Kriaučiūnienė, Z.; Savickas, D. Assessment of energy saving and GHG reduction of winter oilseed rape production using sustainable strip tillage and direct sowing in three tillage technologies. Sustain. Energy Technol. Asses. 2022, 51, 101911. [Google Scholar] [CrossRef]
- Blecharczyk, A.; Małecka, I.; Sawińska, Z.; Waniorek, B. Effect of tillage system on weed infestation in 3-year crop rotation. Prog. Plant Prot. 2011, 51, 827–831. (In Polish) [Google Scholar]
- Jaskulska, I.; Gałęzewski, L.; Piekarczyk, M.; Jaskulski, D. Strip-till technology-a method for uniformity in the emergence and plant growth of winter rapeseed (Brassica napus L.) in different environmental conditions of Northern Poland. Ital. J. Agron. 2018, 3, 194–199. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. The Yield and weed infestation of winter oilseed rape (Brassica napus L. ssp. oleifera Metzg) in two tillage systems. Agriculture 2022, 12, 563. [Google Scholar] [CrossRef]
- Bečka, D.; Vasak, J.; Kroutil, P.; Stranc, P. Autumn growth and development of different winter oilseed rape variety types at three input levels. Plant Soil Environ. 2004, 4, 168–174. [Google Scholar] [CrossRef]
- Lickfett, T. Effects of reduced tillage intensity on soil Nmin dynamics following oilseed rape cultivation. In Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research; Horst, W.J., Ed.; Kluwer Cademic Publishers: Dordrecht, The Netherlands, 2001; pp. 872–873. [Google Scholar]
- Montemurro, F. Different nitrogen fertilization sources, soil tillage, and crop rotations in winter wheat: Effect on yield, quality, and nitrogen utilization. J. Plant Nutr. 2009, 32, 1–18. [Google Scholar] [CrossRef]
- Hansen, E.M.; Munkholm, L.J.; Olesen, J.E. N-utilization in non-inversion tillage systems. Soil Tillage Res. 2011, 113, 55–60. [Google Scholar] [CrossRef]
- Brennan, J.; Hackett, R.; McCabe, T.; Grant, J.; Fortune, R.A.; Forristal, P.D. The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool Atlantic climate. Eur. J. Agron. 2014, 54, 61–69. [Google Scholar] [CrossRef]
- Fuentes, M.; Govaerts, B.; De Leon, F.; Hidalgo, C.; Dendooven, L.; Sayre, K.D.; Etchevers, J. Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur. J. Agron. 2009, 30, 228–237. [Google Scholar] [CrossRef]
- Katai, Z. Soil tillage systems as an abiotic factor in the production of oilseed rape (Brassica napus L.). Cereal Res. Commun. 2009, 37, 411–414. [Google Scholar]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Tillag. Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Kováč, L.; Jakubová, J.; Kotorová, D. The cost and the economic effectiveness analysis of the winter rape production technologies (Brassica napus L. ssp. oleiferera) on heavy soils. Agriculture 2011, 57, 154–165. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Kotwica, K.; Piekarczyk, M.; Wasilewski, P. Yielding of winter rapeseed depending on the forecrops and soil tillage methods. Ann. Univ. Mariae Curie-Skłodowska Sect. E Agric. 2014, 69, 30–38. (In Polish) [Google Scholar]
- Shah, S.; Flint, C.; Langton, D.; Fletcher, J.M. Effect of different cultivation systems, seed rate and nutrition on crop establishment and yield of winter oilseed rape. Aspect Appl. Biol. 2014, 125, 21–30. [Google Scholar]
- Talarczyk, W.; Łowinski, L. Tools and machines used in various tillage systems. Tech. Rol. Ogrod. I Leśna 2017, 2, 11–14. (In Polish) [Google Scholar]
- Jaskulska, I.; Jaskulski, D. Strip-till one-pass technology in central and eastern Europe: A Mzuri Pro-Til Hybrid machine case study. Agronomy 2020, 10, 925. [Google Scholar] [CrossRef]
- Jankowski, K.J. Winter and spring oilseed rape. In Crop Production; Kotecki, A., Ed.; Wrocław University of Environmental and Life Sciences: Wrocław, Poland, 2020; pp. 305–383. Volume 3. (In Polish) [Google Scholar]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plough over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Guan, D.; Zhang, Y.; Mahdi, M.; Kaisi, A.; Wang, Q.; Zhang, M.; Li, Z. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Tillage Res. 2015, 146, 286–295. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Iverson, W.M.; Evans, R.G.; Allen, B.L. Crop water productivity of sugarbeet as affected by tillage. Agron. J. 2014, 106, 2280–2286. [Google Scholar] [CrossRef]
- Myalo, V.V.; Demshuk, E.V.; Kuzmin, D.E.; Soyunov, A.S.; Sabiev, U.K. Relevance for using machines appropriate to strip tillage. Mater. Sci. Eng. 2019, 582, 012025. [Google Scholar] [CrossRef]
- Tonev, T.; Mitkov, A. Chemical control of weeds in major field crops. Farming Plus 2015, 2, 33–44. [Google Scholar]
- Deligios, P.A.; Carboni, G.; Farci, R.; Solinas, S.; Ledda, L. Low-input herbicide management: Effects on rapeseed production and profitability. Sustainability 2018, 10, 2258. [Google Scholar] [CrossRef]
- Pacanoski, Z. Application time and herbicide rate effects on weeds in oilseed rape (Brassica napus var. oleifera). Herbologia 2014, 14, 33–45. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 14 October 2023).
- Hamzei, J.; Nasab, A.D.M.; Khoie, F.R.; Javanshir, A.; Moghaddam, M. Critical period of weed control in three winter oilseed rape (Brassica napus L.) cultivars. Turk. J. Agric. For. 2007, 31, 83–90. [Google Scholar]
- Plaza, E.H.; Navarrete, L.; González-Andújar, J.L. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosys. Environ. 2015, 207, 101–108. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Sawinska, Z.; Piechota, T.; Waniorek, B. Impact of crop sequence and tillage system on weed infestation of winter wheat. Fragm. Agronom. 2015, 32, 54–63. [Google Scholar]
- Bankina, B.; Balodis, O.; Gaile, Z. Advances of fungicide application for winter oilseed rape. In Fungicide; Carisse, O., Ed.; InTech: Rijeka, Croatia, 2010; pp. 157–176. [Google Scholar]
- Balodis, O.; Gaile, Z. Fungicide as growth regulator application effect on winter oilseed rape (Brasscia napus L.) autumn growth. J. Agric. Sci. 2011, 22, 7–12. [Google Scholar]
- Zamani-Noor, N.; Knüfer, J. Effects of host plant resistance and fungicide application on phoma stem canker, growth parameters and yield of winter oilseed rape. Crops Prot. 2018, 112, 313–321. [Google Scholar] [CrossRef]
- Kalninš, E.; Gaile, Z. Winter oilseed rape yield formation depending on sowing time and application of plant growth regulator. In Proceedings of the 14th International Scientific Conference “Students on their way to science”, Jełgawa, Latvia, 26 April 2019. [Google Scholar]
- Matysiak, K.; Kaczmarek, S. Effect of chlorocholine chloride and triazoles–tebuconazole and flusilazole on winter oilseed rape (Brassica napus var. oleifera L.) in response to the application term and sowing density. J. Plant Prot. Res. 2013, 53, 78–88. [Google Scholar] [CrossRef]
- Kuai, J.; Yang, Y.; Sun, Y.; Zhou, G.; Zuo, Q.; Ling, X. Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Res. 2015, 180, 10–20. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Hoppe, S. Evaluation of hybrid and population cultivars on standard and high-input technology in winter oilseed rape. Acta Agric. Scan. Sect. B Soil Plant Sci. 2018, 68, 678–689. [Google Scholar] [CrossRef]
- Groth, D.A.; Sokólski, M.M.; Jankowski, K.J. A multi-criteria evaluation of the effectiveness of nitrogen and sulfur fertilization in different cultivars of winter rapeseed—Productivity, economic and energy balance. Energies 2020, 13, 4654. [Google Scholar] [CrossRef]
- Jarecki, W. The reaction of winter oilseed rape to different foliar fertilization with macro- and micronutrients. Agriculture 2021, 11, 515. [Google Scholar] [CrossRef]
- Sikorska, A.; Gugała, M.; Zarzecka, K. The response of different kinds of rapeseed cultivars to foliar application of nitrogen, sulphur and boron. Sci. Rep. 2021, 11, 21102. [Google Scholar] [CrossRef] [PubMed]
- Poisson, E.; Trouverie, J.; Brunel-Muguet, S.; Akmouche, Y.; Pontet, C.; Pinochet, X.; Avice, J.C. Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Front. Plant Sci. 2019, 10, 458. [Google Scholar] [CrossRef]
- Öztürk, Ö. Effects of source and rate of nitrogen fertilizer on yield, yield components and quality of winter rapeseed (Brassica napus L.). Chil. J. Agric. Res. 2010, 70, 132–141. [Google Scholar] [CrossRef]
- Litke, L.; Gaile, Z.; Ruža, A. Effect of nitrogen rate on nitrogen use efficiency in winter oilseed rape (Brassica napus). Res. Rural Develop. 2019, 2, 43–49. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Załuski, D.; Sokólski, M.M. Canola-quality white mustard: Agronomic management and seed yield. Ind. Crops Prod. 2020, 145, 112138. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2nd ed.; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2022; p. 132. [Google Scholar]
- Szatkowski, A.; Sokólski, M.; Załuski, D.; Jankowski, K.J. The effects of agronomic management in different tillage systems on the fall growth of winter oilseed rape. Agriculture 2023, 13, 440. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Załuski, D. Winter oilseed rape: Agronomic management in different tillage systems and energy balance. Energy 2023, 277, 127590. [Google Scholar] [CrossRef]
- STATSOFT INC. Statistica (Data Analysis Software System). 2017. Available online: http://www.statsoft.com (accessed on 28 October 2023).
- Mitchell, J.P.; Singh, P.N.; Wallender, W.W.; Munk, D.S.; Wroble, J.F.; Horwath, W.R.; Hogan, P.; Robert, R.; Hanson, B.R. No-tillage and high-residue practices reduce soil water evaporation. Calif. Agric. 2012, 66, 55–61. [Google Scholar] [CrossRef]
- Byrne, R.K.; McCabe, T.; Forristal, P.D. The impact of crop establishment systems in combination with applied nitrogen management on the establishment, growth and yield of winter oilseed rape in a mild Atlantic climate. Eur. J. Agron. 2022, 139, 126566. [Google Scholar] [CrossRef]
- Franek, M. Reacting of six winter oilseed rape cultivars to herbicides applied post sowing and post emergence. Rośliny Oleiste Oilseed Crops 2001, 22, 91–96. (In Polish) [Google Scholar]
- Miliuviene, L.; Novickiene, L.; Gaveliene, V.; Brazauskiene, I.; Pakalniskyte, L. Possibilities to use growth regulators in winter oilseed rape growing technology. The effect of retardant analogues on oilseed rape growth. Agron. Res. 2004, 2, 207–215. [Google Scholar]
- Ijaz, M.; Mahmood, K.; Honermeier, B. Interactive role of fungicides and plant growth regulator (Trinexapac) on seed yield and oil quality of winter rapeseed. Agronomy 2015, 5, 435–446. [Google Scholar] [CrossRef]
- Jankowski, K.J. Habitat, Agrotechnological and Economic Conditions of Winter Rapeseed Production for Consumption and Energy Purposes. Habilitation Thesis, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, 2007; pp. 1–174. (In Polish). [Google Scholar]
- Matysiak, K.; Kaczmarek, S.; Adamczewski, K. The influence of trinexapac-ethyl, chlorocholine chloride, metconazole and tebuconazole on plant morphology and yield of winter oilseed rape depending on time of application. Rośliny Oleiste Oilseed Crops 2010, 31, 361–372. (In Polish) [Google Scholar]
- Ijaz, M.; Honermeier, B. Effect of different fungicides on seed yield and grain quality of rapeseed under two levels of nitrogen fertilization. In Proceedings of the 13th International Rapeseed Congress, Prague, Czechia, 5–8 June 2011; pp. 11–15. [Google Scholar]
- Ijaz, M.; Honermeier, B. Effect of triazole and strobilurin fungicides on seed yield formation and grain quality of winter rapeseed (Brassica napus L.). Field Crops Res. 2012, 130, 80–86. [Google Scholar] [CrossRef]
- Butkutė, B.; Šidlauskas, G.; Brazauskienė, I. Seed yield and quality of winter oilseed rape as affected by nitrogen rates, sow-ing time, and fungicide application. Commun. Soil Sci. Plant Anal. 2006, 37, 2725–2744. [Google Scholar] [CrossRef]
- White, C.A.; Roques, S.E.; Berry, P.M. Effects of foliar-applied nitrogen fertilizer on oilseed rape. J. Agric. Sci. 2015, 153, 42–55. [Google Scholar] [CrossRef]
- Varényiová, M.; Ducsay, L. Effect of increasing spring doses of nitrogen on yield and oil content in seeds of oilseed rape (Brassica napus L.). Acta Fyto. Zoot. 2016, 19, 29–34. [Google Scholar] [CrossRef]
- Wielebski, F.; Wójtowicz, M.; Liersch, A. Response of new forms of winter oilseed rape with modified fatty acid composition to nitrogen and sulfur fertilization. J. Plant Nutr. 2022, 45, 2360–2379. [Google Scholar] [CrossRef]
- Fazili, I.S.; Masoodi, M.; Ahmad, S.; Jamal, A.; Khan, J.S.; Abdin, M.Z. Interactive effect of sulfur and nitrogen on growth and yield attributes of oilseed crops (Brassica campestris L. and Eruca sativa Mill.) differing in yield potential. J. Plant Nutri. 2010, 33, 1216–1228. [Google Scholar] [CrossRef]
- Santos, R.F.; Borsoi, A.; Secco, D.; de Souza, S.N.M.; Frigo, E.P. Nitrogen and sulfur sources in the culture of Brassica napus L. var. oleifera. J. Food Agric. Environ. 2012, 10, 516–518. [Google Scholar]
- Kozłowska-Strawska, J. Fat content and fatty acid composition in oilseed rape grown in the Lubelski Region under different levels of soil sulphur fertility. Ecol. Chem. Eng. 2012, 19, 191–201. [Google Scholar] [CrossRef]
- Barczak, B.; Barczak, T.; Skinder, Z.; Piotrowski, R. Proportions of nitrogen and sulphur in spring rapeseeds depending on fertilization with these elements. J. Elementol. 2020, 25, 1385–1398. [Google Scholar] [CrossRef]
- Sienkiewicz-Cholewa, U.; Kieloch, R. Effect of sulphur and micronutrients fertilization on yield and fat content in winter rape seeds (Brassica napus L.). Plant Soil Environ. 2015, 161, 64–170. [Google Scholar] [CrossRef]
- Pużyńska, K.; Kulig, B.; Halecki, W.; Lepiarczyk, L.; Pużyński, S. Response of oilseed rape leaves to sulfur and boron foliar application. Acta Physiol. Plant. 2018, 40, 169. [Google Scholar] [CrossRef]
Symbol | Agricultural Operation | Level | ||
---|---|---|---|---|
0 | 1 | 2 | ||
A | Tillage | strip-till | low-till | conventional tillage |
B | Weed control † | pre-emergent (0–2 days after sowing) | Foliar (BBCH 12–14 †) | sequential (0–2 days after sowing and BBCH 12–14) |
C | Growth regulation †† | none | one treatment (BBCH 14–15) | two treatments (BBCH 14–15 and 30–31) |
D | Spring nitrogen rate (kg N ha−1) ††† | 160 (120 + 40) (BBCH 20 + 50) | 200 (120 + 80) (BBCH 20 + 50) | 240 (120 + 120) (BBCH 20 + 50) |
E | Spring sulfur rate (kg S ha−1) †††† | 0 | 40 (BBCH 20) | 80 (BBCH 20) |
Parameter | Growing Season | Period | |||
---|---|---|---|---|---|
Fall Growth | Winter Dormancy | Spring Growth | Entire Growing Season | ||
Number of days | 2016/2017 | 75 | 140 | 120 | 335 |
2017/2018 | 97 | 121 | 99 | 317 | |
2018/2019 | 95 | 129 | 109 | 333 | |
1981–2010 | 76 | 152 | 102 | 330 | |
Total temperature (°C) | 2016/2017 | 773 | 56 | 1548 | 2377 |
2017/2018 | 978 | −61 | 1544 | 2461 | |
2018/2019 | 1079 | 168 | 1504 | 2745 | |
1981–2010 | 865 | −3 | 1360 | 2222 | |
Mean daily temperature (°C) | 2016/2017 | 10.3 | 0.4 | 12.9 | 8.2 |
2017/2018 | 10.1 | −0.5 | 15.6 | 7.8 | |
2018/2019 | 11.3 | 1.3 | 13.8 | 7.1 | |
1981–2010 | 11.4 | 0.0 | 13.3 | 6.7 | |
Total precipitation (mm) | 2016/2017 | 152 | 258 | 245 | 655 |
2017/2018 | 419 | 153 | 135 | 707 | |
2018/2019 | 91 | 180 | 200 | 471 | |
1981–2010 | 143 | 171 | 200 | 514 |
Agronomic Factor | Level | Plants m−2 | Siliques Plant−1 | Seeds Silique−1 | 1000-Seed Weight (g) |
---|---|---|---|---|---|
Tillage | strip-till | 25 c | 196 a | 26.3 a | 5.18 b |
low-till | 27 b | 180 b | 25.8 b | 5.28 a | |
conventional tillage | 28 a | 183 b | 25.6 b | 5.29 a | |
Weed control | pre-emergent | 27 | 190 | 25.9 | 5.17 b |
foliar | 26 | 185 | 26 | 5.30 a | |
sequential | 27 | 184 | 25.8 | 5.29 a | |
Growth regulation | none | 26.5 | 186.6 | 26.1 | 5.23 |
BBCH 14–15 | 26.4 | 186.7 | 25.7 | 5.29 | |
BBCH 14–15 and 30–31 | 26.6 | 186.2 | 25.8 | 5.23 | |
Spring nitrogen rate (kg N ha−1) | 160 | 27 | 180 b | 25.9 | 5.20 b |
200 | 26 | 191 a | 25.9 | 5.23 b | |
240 | 27 | 189 a | 25.8 | 5.32 a | |
Spring sulfur rate (kg S ha−1) | 0 | 27 | 174 b | 25.6 | 5.40 a |
40 | 26 | 194 a | 25.9 | 5.19 b | |
80 | 26 | 192 a | 26.1 | 5.17 b |
Weed Control | Tillage System | ||
---|---|---|---|
Strip-Till | Low-Till | Strip-Till | |
Pre-emergent | 5.15 c | 5.19 bc | 5.19 bc |
Foliar | 5.24 b | 5.27 b | 5.38 a |
Sequential | 5.16 c | 5.37 a | 5.32 ab |
Growing Season | Tillage System | ||
---|---|---|---|
Strip-Till | Low-Till | Conventional Tillage | |
2016/2017 | 6.13 a | 5.89 ab | 5.83 b |
2017/2018 | 5.79 b | 5.45 c | 5.92 ab |
2018/2019 | 5.93 ab | 6.10 a | 5.95 ab |
Mean | 5.95 a | 5.81 b | 5.90 ab |
Spring Sulfur Rate (kg S ha−1) | Tillage System | ||
---|---|---|---|
Strip-Till | Low-Till | Conventional Tillage | |
0 | 5.62 b | 5.27 c | 5.56 b |
40 | 6.12 a | 6.12 a | 6.03 a |
80 | 6.12 a | 6.05 a | 6.12 a |
Growing Season | Weed Control | ||
---|---|---|---|
Pre-Emergent | Foliar | Sequential | |
2016/2017 | 4.84 d | 4.85 d | 4.95 d |
2017/2018 | 5.56 b | 5.87 a | 5.74 a |
2018/2019 | 5.12 c | 5.17 c | 5.17 c |
Growing Season | Weed Control | ||
---|---|---|---|
Pre-Emergent | Foliar | Sequential | |
2016/2017 | 5.93 ab | 6.01 a | 5.92 ab |
2017/2018 | 5.86 ab | 5.54 c | 5.75 b |
2018/2019 | 5.97 a | 5.98 a | 6.04 a |
Mean | 5.92 | 5.85 | 5.90 |
Weed Control | Tillage System | ||
---|---|---|---|
Strip-Till | Low-Till | Conventional Tillage | |
Pre-emergent | 5.87 b | 5.88 b | 6.00 ab |
Foliar | 6.06 a | 5.72 c | 5.75 bc |
Sequential | 5.93 b | 5.83 b | 5.95 b |
Growing Season | Spring Nitrogen Rate (kg N ha−1) | ||
---|---|---|---|
160 | 200 | 240 | |
2016/2017 | 165 c | 193 b | 188 b |
2017/2018 | 136 d | 137 d | 138 d |
2018/2019 | 239 a | 242 a | 240 a |
Growing Season | Spring Nitrogen Rate (kg N ha−1) | ||
---|---|---|---|
160 | 200 | 240 | |
2016/2017 | 5.66 bc | 6.03 ab | 6.17 a |
2017/2018 | 5.57 c | 5.76 bc | 5.82 b |
2018/2019 | 5.89 b | 6.02 ab | 6.07 ab |
Mean | 5.71 b | 5.94 a | 6.02 a |
Spring Sulfur Rate (kg S ha−1) | Spring Nitrogen Rate (kg N ha−1) | ||
---|---|---|---|
160 | 200 | 240 | |
0 | 5.45 d | 5.53 c | 5.46 d |
40 | 5.90 b | 6.10 ab | 6.26 a |
80 | 5.78 bc | 6.18 ab | 6.33 a |
Growing Season | Spring Sulfur Rate (kg S ha−1) | ||
---|---|---|---|
0 | 40 | 80 | |
2016/2017 | 4.94 d | 4.84 d | 4.86 d |
2017/2018 | 6.06 a | 5.58 b | 5.53 b |
2018/2019 | 5.18 c | 5.16 c | 5.11 c |
Growing Season | Spring Sulfur Rate (kg S ha−1) | ||
---|---|---|---|
0 | 40 | 80 | |
2016/2017 | 5.37 d | 6.22 ab | 6.27 a |
2017/2018 | 5.15 d | 6.05 b | 5.95 c |
2018/2019 | 5.93 c | 5.99 bc | 6.07 b |
Mean | 5.48 b | 6.09 a | 6.10 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, K.J.; Sokólski, M.; Szatkowski, A.; Załuski, D. The Effects of Tillage Systems on the Management of Agronomic Factors in Winter Oilseed Rape Cultivation: A Case Study in North-Eastern Poland. Agronomy 2024, 14, 437. https://doi.org/10.3390/agronomy14030437
Jankowski KJ, Sokólski M, Szatkowski A, Załuski D. The Effects of Tillage Systems on the Management of Agronomic Factors in Winter Oilseed Rape Cultivation: A Case Study in North-Eastern Poland. Agronomy. 2024; 14(3):437. https://doi.org/10.3390/agronomy14030437
Chicago/Turabian StyleJankowski, Krzysztof Józef, Mateusz Sokólski, Artur Szatkowski, and Dariusz Załuski. 2024. "The Effects of Tillage Systems on the Management of Agronomic Factors in Winter Oilseed Rape Cultivation: A Case Study in North-Eastern Poland" Agronomy 14, no. 3: 437. https://doi.org/10.3390/agronomy14030437
APA StyleJankowski, K. J., Sokólski, M., Szatkowski, A., & Załuski, D. (2024). The Effects of Tillage Systems on the Management of Agronomic Factors in Winter Oilseed Rape Cultivation: A Case Study in North-Eastern Poland. Agronomy, 14(3), 437. https://doi.org/10.3390/agronomy14030437