Status of Sustainable Balance Regulation of Heavy Metals in Agricultural Soils in China: A Comprehensive Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input–Output Fluxes and Prediction Models
2.2. Strategies for Long-Term and Large-Scale Heavy Metal Regulation
3. Results and Discussion
3.1. Analysis of Heavy Metal Fluxes in Representative Areas
3.1.1. Input Fluxes
3.1.2. Output Fluxes
3.1.3. Net Fluxes and Prediction of Accumulation
3.1.4. Limitations and Prospects of the Balance Model
3.2. Heavy Metal Balance Regulation
3.2.1. Atmospheric Decomposition
3.2.2. Irrigation Water
3.2.3. Fertilizers (Including Manure)
3.2.4. Plant Uptake
- Hyperaccumulator and biomass (non-hyperaccumulator) plants
- Rotation, intercropping, and relay intercropping of plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hakeem, K.R.; Sabir, M.; Akhtar, J. Soil Science: Concepts and Applications; University of Agriculture: Faisalabad, Pakistan, 2017. [Google Scholar]
- Wei, L.L.; Chen, S.; Cui, J.; Ping, H.; Yuan, C.; Chen, Q. A meta-analysis of arable soil phosphorus pools response to manure application as influenced by manure types, soil properties, and climate. J. Environ. Manag. 2022, 313, 115006. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. World Food and Agriculture–Statistical Yearbook 2022; Food and Agriculture Organization of the United Nations: Rome, China, 2022. [Google Scholar]
- Wu, Y.; Li, X.; Yu, L.; Wang, T.; Wang, J.; Liu, T. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Gay, S.H.; Yu, W. China’s Grains Policy: Impacts of Alternative Reform Options; OECD Food, Agriculture and Fisheries Papers, No. 129; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Zhou, Y.; Dou, L.; You, J. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ. Pollut. 2018, 235, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pu, L.; Liao, Q.; Zhu, M.; Dai, X.; Xu, Y.; Zhang, L.; Hua, M.; Jin, Y. How anthropogenic activities affect soil heavy metal concentration on a broad scale: A geochemistry survey in Yangtze River Delta, Eastern China. Environ. Earth Sci. 2015, 73, 1823–1835. [Google Scholar] [CrossRef]
- Ren, S.; Song, C.; Ye, S.; Cheng, C.; Gao, P. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Sci. Total Environ. 2022, 806, 150322. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yang, M.; Mao, R.; Shao, H. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China. Sci. World J. 2014, 2014, 517020. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, C.; Ma, H.; Yang, Z.; Yang, K.; Liu, F.; Li, K.; Yang, Z.; Tang, S.; Guo, F.; et al. Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: Contamination assessment and source apportionment. J. Geochem. Explor. J. Assoc. Explor. Geochem. 2020, 208, 106403. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Fu, Z.; Li, Y.; Ni, H.; Chen, S.; Zhou, Y.; Jin, B.; Shi, Z. Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Sci. Total Environ. 2019, 658, 614–625. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, X.; Li, T.; Hu, S.; Ji, J.; Wang, C. Characteristics of heavy metal transfer and their influencing factors in different soil–crop systems of the industrialization region, China. Ecotoxicol. Environ. Saf. 2016, 126, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Cui, Y.; Yang, Z. Soil heavy metal concentrations and their typical input and output fluxes on the southern Song-nen Plain, Heilongjiang Province, China. J. Geochem. Explor. J. Assoc. Explor. Geochem. 2014, 139, 85–96. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, S.; Wu, S.; Wang, C.; Li, B.; Li, Y.; Wang, J. Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil. Chemosphere 2018, 204, 140. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Z.; Ma, X.; Yang, H.; Yue, R. Sources and Pollution Characteristics of Heavy Metals in Surface Soils of Harbin City. Res. Environ. Sci. 2017, 30, 1597–1606. [Google Scholar]
- Wei, M.; Pan, A.; Ma, R.; Wang, H. Distribution characteristics, source analysis and health risk assessment of heavy metals in farmland soil in Shiquan County, Shaanxi Province. Process Saf. Environ. Prot. 2023, 171, 225–237. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nieti, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Pham, V.V.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, Q.; Xie, J.; Du, S. The role and mechanism of cytokinin in phytoremediation of heavy metal contaminated soil. Acta Ecol. Sin. 2022, 42, 3056–3065. [Google Scholar]
- Six, L.; Smolders, E. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils. Sci. Total Environ. 2014, 485–486, 319–328. [Google Scholar] [CrossRef]
- Li, C.; Dong, P.; Yan, J.; Gong, R.; Meng, Q.; Yao, J.; Yu, H.; Ma, Y.; Liu, B.; Xie, R. Analytical study on heavy metal output fluxes and source apportionment of a non-ferrous smelter in southwest China. Environ. Pollut. 2023, 331, 121867. [Google Scholar] [CrossRef]
- Wang, H.; Cui, S.; Wu, D.; Yang, X.; Wang, Z. Effects of kinetin on arsenic speciation and antioxidative enzymes in fronds of the arsenic hyperaccumulator Pteris cretica var. nervosa and non-hyperaccumulator Pteris ensiformis. Environ. Exp. Bot. 2021, 191, 104622. [Google Scholar] [CrossRef]
- Moolenaar, S.W.; Lexmond, T.M. Heavy metal balances: Part I. General aspects of cadmium, copper, zinc and lead balance studies in agro-ecosystems. J. Ind. Ecol. 2010, 2, 45–60. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Yu, T. Annual net input fluxes of cadmium in paddy soils in karst and non-karst areas of Guangxi, China. J. Geochem. Explor. J. Assoc. Explor. Geochem. 2022, 241, 107072. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Pan, S.Y.; Syu, W.J.; Huang, H.P.; Wei, C.Y.; He, K.H. Systematic approach to source-sink apportionment of copper in paddy fields: Experimental observation, dynamic modeling and prevention strategy. J. Hazard. Mater. 2021, 417, 126045. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.H.; Zhu, J.; Liu, S.H.; Pan, S.F.; Ji, X.H. Input and output of cadmium (Cd) for paddy soil in central south China: Fluxes, mass balance, and model predictions. Environ. Sci. Pollut. Res. 2020, 27, 21847–21858. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs. Comprehensive Utilization of Crop Straw; Ministry of Agriculture and Rural Affairs: Beijing, China, 2021.
- Shi, T.; Ma, J.; Wu, F.; Ju, T.; Gong, Y.; Zhang, Y.; Wu, X.; Hou, H.; Zhao, L.; Shi, H. Mass balance-based inventory of heavy metals inputs to and outputs from agricultural soils in Zhejiang Province, China. Sci. Total Environ. 2018, 649, 1269–1280. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y.G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Peng, H.; Chen, Y.; Weng, L.; Ma, J.; Ma, Y.; Li, Y.; Islam, M.S. Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Sci. Total Environ. 2019, 660, 776–786. [Google Scholar] [CrossRef]
- Shao, X.; Cheng, H.; Li, Q.; Lin, C. Anthropogenic atmospheric emissions of cadmium in China. Atmos. Environ. 2013, 79, 155–160. [Google Scholar] [CrossRef]
- Yang, F.; Yuan, L.; Li, Y.; He, D.; Liu, X.; Wang, D. Pollution characteristics and ecological risk assessment of heavy metals in sediments of main water systems in Hunan Province. Acta Ecol. Sin. 2022, 42, 1934–1946. [Google Scholar]
- Yang, H.; Wang, F.; Yu, J.; Huang, K.; Fu, Z. An improved weighted index for the assessment of heavy metal pollution in soils in Zhejiang, China. Environ. Res. 2021, 192, 110246. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Zhan, Y.; Zhou, W.; Zhu, L. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. Environ. Pollut. 2016, 219, 329–336. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Planting Areas and Yield of Grains; National Bureau of Statistics of China: Beijing, China, 2022.
- Chen, Y.; Yang, X.; Li, D.; Long, W. Status of vascular plant species on Hainan Island. Biodivers. Sci. 2016, 24, 948–956. [Google Scholar] [CrossRef]
- Wei, F.; Chen, J.; Wu, Y.; Zheng, C. Research on soil environmental background value in China. Environ. Sci. 1991, 12, 12–19. [Google Scholar]
- Feng, W.; Guo, Z.; Xiao, X.; Peng, C.; Xu, W. A dynamic model to evaluate the critical loads of heavy metals in agricultural soil. Ecotoxicol. Environ. Saf. 2020, 197, 110607. [Google Scholar] [CrossRef]
- Zhang, S.; Song, J.; Cheng, Y.; Mcbride, M.B. Derivation of regional risk screening values and intervention values for cadmium-contaminated agricultural land in the Guizhou Plateau. Land Degrad. Dev. 2018, 29, 2366–2377. [Google Scholar] [CrossRef]
- Che, W.; Li, Q.; Wang, Z.; Sun, Z. Spatial distribution characteristics and pollution assessment of heavy metals in farmland soil in China. Environ. Sci. 2020, 41, 12. [Google Scholar]
- Zhang, Y.; Ma, J.; Wei, H.; Shi, T. Heavy metal pollution and ecological risk assessment of typical farmland soil in Zhejiang Province. J. Ecol. Environ. 2019, 28, 9. [Google Scholar]
- Xiao, J.; Yuan, X.; Li, J. Characteristics of Heavy Metal Pollution in Soil and Rice of Yangtze River Delta Region. J. Anhui Agric. Sci. 2010, 19, 10206–10208+10211. [Google Scholar]
- Jiang, W.; Hou, Q.; Yang, Z.; Yu, T.; Zhong, C.; Yang, Y.; Fu, Y. Annual input fluxes of heavy metals in agricultural soil of Hainan Island, China. Environ. Sci. Pollut. Res. 2014, 21, 7876–7885. [Google Scholar] [CrossRef] [PubMed]
- Dragoja, R.; Svetlana, A.M.; Miodrag, J.; Mirjana, K. Content of heavymetals in Gentiana lutea L. roots and galenic forms. J. Serbian Chem. Soc. 2007, 72, 133–138. [Google Scholar]
- Quiterio, S.L.; Da Silva, C.R.S.; Arbilla, G.; Escaleira, V. Metals in airborne particulate matter in the industrial district of Santa Cruz, Rio de Janeiro, in an annual period. Atmos. Environ. 2004, 38, 321–331. [Google Scholar] [CrossRef]
- Tian, H.; Cheng, K.; Wang, Y.; Zhao, D.; Lu, L.; Jia, W.; Hao, J. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmos. Environ. 2012, 50, 157–163. [Google Scholar] [CrossRef]
- Wu, Y.; Streets, D.G.; Wang, S.X.; Hao, J.M. Uncertainties in estimating mercury emissions from coal-fired power plants in China. Atmos. Chem. Phys. 2010, 10, 2937–2946. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, L.; Meng, J.; Yu, Y.; Qi, J.; Shen, P.; Li, X.; Ding, P.; Chen, M.; Hu, G. Characteristics, Source Apportionment and Health Risk Assessment of Heavy Metals in Urban Dust of the Pearl River Delta, South China. Ecotoxicol. Environ. Safety. 2022, 236, 113490. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Huang, M.; Zhong, B.; Wang, X.; Tu, Q.; Sun, H.; Wang, C.; Wu, L.; Chang, M. Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region(China): Characteristics, ecological risk assessment, and source apportionment. J. Environ. Sci. Engl. Ed. 2018, 70, 106–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, S.; Wang, H.; Campana, P.E.; Yan, J. Evolution of China’s Urban Energy Consumption Structure—A Case Study in Beijing. Energy Procedia 2016, 88, 88–93. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J.; Zhang, Y.; Wei, H.; Feng, L. The impact and protective effect of highway green belts on heavy metal pollution patterns in roadside soil—Taking major highways in Shanxi Province as an example. J. Ecol. 2010, 9, 6218–6226. [Google Scholar]
- Fu, Y.; Li, F.; Guo, S.; Zhao, M. Cadmium concentration and its typical input and output fluxes in agricultural soil downstream of a heavy metal sewage irrigation area. J. Hazard. Mater. 2021, 412, 125203. [Google Scholar] [CrossRef] [PubMed]
- Hozhina, E.I.; Khramov, A.A.; Gerasimov, P.A.; Kumarkov, A.A. Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J. Geochem. Explor. 2001, 74, 153–162. [Google Scholar] [CrossRef]
- Mokhtar, H.; Morad, N.; Fizri, F.F.A. Hyperaccumulation of Copper by Two Species of Aquatic Plants. Int. Conf. Environ. Sci. Eng. 2011, 8, 115–118. [Google Scholar]
- Yao, Z.; Li, J.; Xie, H.; Yu, C. Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environ. Sci. 2012, 16, 722–729. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, B.; Chen, M.; Wu, P.; Lee, X.; Xing, Y. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resour. Conserv. Recycl. 2021, 164, 105204. [Google Scholar] [CrossRef]
- Ghosh, D.; Maiti, S.K. Invasive weed-based biochar facilitated the restoration of coal mine degraded land by modulating the enzyme activity and carbon sequestration. Restor. Ecol. 2023, 31, e13744. [Google Scholar] [CrossRef]
- Liu, S.; Luo, X.; Xing, Y. Natural bioaugmentation enhances the application potential of biochar for Cd remediation. Sep. Purif. Technol. 2022, 282, 119948. [Google Scholar] [CrossRef]
- GB 5084-2021; Standard for Irrigation Water Quality. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021.
- Hung, F.; Yang, Y.C.E. Assessing Adaptive Irrigation Impacts on Water Scarcity in Nonstationary Environments—A Multi-Agent Reinforcement Learning Approach. Water Resour. Res. 2021, 57, e2020WR029262. [Google Scholar] [CrossRef]
- Jiang, L.; Li, N.; Li, X.; Murati, H.; Hu, Y.; Su, Y. Phytoremediation of copper-contaminated soils by drip or sprinkling irrigation coupled with intercropping. Environ. Sci. Pollut. Res. 2023, 30, 81303–81313. [Google Scholar] [CrossRef] [PubMed]
- GB/T 23349-2020; Determination of Arsenic, Cadmium, Chromium, Lead and Mercury Contents for Fertilizers. State Administration for Market Regulation & Standardization Administration: Beijing, China, 2021.
- Wang, W.X.; Cao, S.P.; Li, G.K.; Zhang, Y.N. Analysis and Evaluation of Heavy Metal Elements in Common Fertilizers and Their Effects on Soil Environment. Tianjin Agric. Sci. 2017, 23, 19–22. [Google Scholar]
- Hu, W.; Huang, B.; Shi, X.; Chen, W.; Zhao, Y.; Jiao, W. Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol. Environ. Saf. 2013, 98, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.X.; Tian, X.H.; Jing, L.I.; Zhao, X.J.; Lv, J.-L. Effects of Combined Application of ALA and Sulfur on Maize Growth in Saline Soil. Arid. Zone Res. 2009, 26, 819–825. [Google Scholar] [CrossRef]
- Marini, M.; Caro, D.; Thomsen, M. The new fertilizer regulation: A starting point for cadmium control in European arable soils? Sci. Total Environ. 2020, 745, 140876. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhao, R.; Yang, Y.; Meng, Q.; Ying, H.; Cassman, K.; Cong, W.; Tian, X.; He, K.; Wang, Y.; et al. A steady-state N balance approach for sustainable smallholder farming. Proc. Natl. Acad. Sci. USA 2021, 118, e2106576118. [Google Scholar] [CrossRef]
- DB330185/T 005-2020; Limit Standard for Fertilizer Quota System for Major Crops. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2020.
- Kuo, S.B.R. Release of cadmium from a triple superphosphate and a phosphate rock in soil. Soil Sci. 2007, 172, 257–265. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Wang, D.M.; Qiao, Y.; Zhang, X.; Li, J. Analyze on the heavy metals content in China commodity organic fertilizer. Environ. Pollut. Control 2012, 34, 72–76. [Google Scholar]
- Xiong, X.; Li, Y.; Li, W.; Lin, C.; Han, W.; Yang, M. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resour. Conserv. Recycl. 2010, 54, 985–990. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Ou Yang, Z.; Zhang, H. Implications of feed mineral reduction and enhancement for China’s feed standards. Resour. Conserv. Recycl. 2021, 168, 105342. [Google Scholar] [CrossRef]
- Tang, W.; Xiao, X.; Tang, H.; Zhang, H.; Chen, F.; Chen, Z.; Xue, J.; Yang, G. Effects of long-term different tillage and straw return on soil nutrient storage capacity and heavy metal Cd. J. Appl. Ecol. 2015, 26, 9. [Google Scholar]
- GB15618-2018; Environmental Quality Standards for Agricultural Land Soil. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Kazemi-Dinan, A.; Sauer, J.; Stein, R.J.; Krmer, U.; Müller, C. Is there a trade-off between glucosinolate-based organic and inorganic defences in a metal hyperaccumulator in the field? Oecologia 2015, 178, 369–378. [Google Scholar] [CrossRef]
- Lochlainn, S.Ó.; Bowen, H.C.; Fray, R.G.; Hammond, J.P.; King, G.J.; White, P.J.; Graham, N.S.; Broadley, M.R. Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens. PLoS ONE 2011, 6, e17814. [Google Scholar] [CrossRef]
- Souza, L.A.; Piotto, F.A.; Nogueirol, R.C.; Azevedo, R.A. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci. Agric. 2013, 70, 290–295. [Google Scholar] [CrossRef]
- Leitenmaier, B.; Küpper, H. Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 2013, 4, 374. [Google Scholar] [CrossRef]
- Jaffré, T.; Brooks, R.R.; Lee, J.; Reeves, R.D. A hyperaccumulator of nickel from New Caledonia. Science 1976, 193, 579–580. [Google Scholar] [CrossRef]
- Ijaz, M.; Rasul, B.; Zaib, P.; Masoud, M.S.; Mahmood-ur-Rahman. Genetics of metal hyperaccumulation in plants. In Handbook of Bioremediation; Academic Press: Cambridge, MA, USA, 2021; pp. 329–340. [Google Scholar]
- Wu, D.; Zhang, L.; Ren, X.; Li, D. New research progress for hyperaccumulator. J. Henan Inst. Sci. Technol. (Nat. Sci. Ed.) 2011, 39, 55–59. [Google Scholar]
- Zhang, X.; Lin, L.; Chen, M.; Zhu, Z.; Yang, W.; Chen, B.; Yang, X.; An, Q. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J. Hazard. Mater. 2012, 229–230, 361–370. [Google Scholar] [CrossRef]
- Zhuang, P.; Yang, Q.W.; Wang, H.B.; Shu, W.S. Phytoextraction of Heavy Metals by Eight Plant Species in the Field. Water Air and Soil Pollution. 2007, 184, 235–242. [Google Scholar] [CrossRef]
- D’Aquino, L.; Staiano, M.; Gambale, E.; Basile, A.; Tommasi, F. Uptake and distribution of several inorganic ions in Nephrolepis cordifolia (L.) C. Presl grown on contaminated soil. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 59–69. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Geng, Y.; Wang, Z.; Cao, S. Effect of Cd~(2+) stress on seed germination characteristics of ryegrass, indian mustard and grain amaranth. Environ. Eng. Manag. J. 2019, 18, 1873–1884. [Google Scholar]
- Lei, M.; Wan, X.; Guo, G.; Yang, J.; Chen, T. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: Comprehensive evaluation of remediation efficiency correcting for atmospheric depositions. Environ. Sci. Pollut. Res. 2016, 25, 124–131. [Google Scholar] [CrossRef]
- Ebbs, S.; Lasat, M.; Brady, D.J.; Kochian, L. Phytoextraction of Cadmium and Zinc from a Contaminated Soil. J. Environ. Qual. 1997, 26, 1424–1430. [Google Scholar] [CrossRef]
- Nakbanpote, W.; Meesungnoen, O.; Majeti, P.N.V. Bioremediation and Bioeconomy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Bian, F.; Zhong, Z.; Wu, S.; Zhang, X.; Yang, C.; Xiong, X. Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil. Int. J. Phytoremediat. 2018, 20, 490–498. [Google Scholar] [CrossRef]
- Bian, F.; Zhong, Z.; Zhang, X.; Yang, C.; Gai, X. Bamboo—An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 2019, 246, 125750. [Google Scholar] [CrossRef]
- Cai, Q.H.; Zhang, Y.; Luo, X.G. Tolerance and Enrichment Characteristics of Moso Bamboo to Complex Heavy Metal–Contaminated Soil. J. Soil Sci. Plant Nutr. 2023, 23, 2913–2926. [Google Scholar] [CrossRef]
- Baldantoni, D.; Cicatelli, A.; Bellino, A.; Castiglione, S. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. J. Environ. Manag. 2014, 146, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Akram, M.; Abbas, G.; Murtaza, B.; Niazi, N.K. Arsenic tolerance and phytoremediation potential of Conocarpus erectus L. and Populus deltoides L. Int. J. Phytoremediat. 2017, 19, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, D.; Pitre, F.E.; Nissim, W.G.; Labrecque, M. Differential uptake of silver, copper and zinc suggests complementary species-specific phytoextraction potential. Int. J. Phytoremediat. 2015, 18, 598–604. [Google Scholar] [CrossRef]
- Rahman, S.U.; Yasin, G.; Nawaz, M.F.; Cheng, H.; Azhar, M.F.; Riaz, L.; Javed, A.; Lu, Y. Evaluation of heavy metal phytoremediation potential of six tree species of Faisalabad city of Pakistan during summer and winter seasons. J. Environ. Manag. 2022, 320, 115801. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Huang, F.; Guo, Z.; Xiao, X.; Peng, C. Physiological responses of Morus alba L in heavy metal(loid)-contaminated soil and its associated improvement of the microbial diversity. Environ. Sci. Pollut. Res. Int. 2020, 27, 4294–4308. [Google Scholar] [CrossRef]
- Abbasi, H.; Pourmajidian, M.R.; Hodjati, S.M.; Fallah, A.; Nath, S. Effect of soil-applied lead on mineral contents and biomass in Acer cappadocicum, Fraxinus excelsior and Platycladus orientalis seedlings. iForest 2017, 10, 722–728. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, K.; Zheng, J.; Liu, Z.; Shen, W.; Fan, H.; Jin, Z. Physiological and Biochemical Characteristics of Cinnamomum camphora in Response to Cu- and Cd-Contaminated Soil. Water Air Soil Pollut. 2019, 230, 15. [Google Scholar] [CrossRef]
- Wang, M.; Sheng, G.; Wang, R. Progress in plant disposal technology for soil heavy metal pollution remediation. J. Agric. Resour. Environ. 2021, 38, 151–159. [Google Scholar]
- Li, F.Z.; Teng, Y.T.; Zhang, Y.P.; Liu, Y. Research Progress of Disposal Technology for Heavy Metal Hyperaccumulator Plants. Environ. Sci. Technol. 2018, 41, 213–220. [Google Scholar]
- Liu, Z.; Tran, K.Q. A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicol. Environ. Saf. 2021, 226, 112821. [Google Scholar] [CrossRef] [PubMed]
Source | Elements | China | Hunan | Zhejiang | Yangtze River Delta | Hainan | Elements |
---|---|---|---|---|---|---|---|
Balance | Straw removal | Pb | 247.13327 | 586.6057 | 236.28527 | 141.05 | 106.7 |
Cr | 223.20229 | 603.1575 | 182.94731 | 121.87 | −3.7 | ||
Cd | 6.4834825 | 10.64694 | 4.5475813 | 6.86 | 0.41 | ||
As | 36.789913 | 222.424 | 29.912599 | 26.92 | 44.5 | ||
Hg | 0.9444088 | 0.29388 | 1.1661539 | 0.299 | 3 | ||
Balance | Straw return | Pb | 248.27603 | 712.9502 | 255.98173 | 141.6748 | 160.38 |
Cr | 228.73893 | 190.6696 | 202.31951 | 123.102 | 112.6 | ||
Cd | 8.5467546 | 27.71675 | 9.7529278 | 7.256 | 5.1332 | ||
As | 38.635851 | 388.757 | 34.681575 | 27.756 | 480.52 | ||
Hg | 1.0014687 | 1.08558 | 1.638969 | 0.34124 | 30.5356 |
China | Pb | Cr | Cd | As | Hg |
---|---|---|---|---|---|
Average values of topsoil (mg/kg) a | 35.24 | 72.59 | 0.29 | 12.98 | 0.29 |
Background values (mg/kg) b | 26 | 61 | 0.097 | 11.2 | 0.065 |
Maximum permissible limits (mg/kg) c,* | 90 | 150 | 0.3 | 40 | 1.8 |
Time required (straw removal) (year) | 510 | 798 | 4 | 1689 | 3678 |
Time required (straw return) (year) | 507 | 778 | 3 | 1608 | 3468 |
Hunan | Pb | Cr | Cd | As | Hg |
---|---|---|---|---|---|
Average values of topsoil (mg/kg) a | 42.78 | 59.97 | 0.381 | 13.39 | 0.201 |
Background values (mg/kg) a | 29.7 | 71.4 | 0.126 | 15.7 | 0.116 |
Maximum permissible limits (mg/kg) | 90 | 150 | 0.3 | 40 | 1.8 |
Time required (straw removal) (year) | 185 | / b | / | 275 | 12514 |
Time required (straw return) (year) | 152 | 1086 | / | 157 | 3388 |
Zhejiang | Pb | Cr | Cd | As | Hg |
---|---|---|---|---|---|
Average values of topsoil (mg/kg) a | 47.14 | 47.42 | 0.23 | 7.27 | 0.12 |
Background values (mg/kg) b | 33.14 | 67.29 | 0.2 | 8.47 | 0.13 |
Maximum permissible limits (mg/kg) | 90 | 150 | 0.3 | 40 | 1.8 |
Time required (straw removal) (year) | 417 | 1290 | 36 | 2517 | 3313 |
Time required (straw return) (year) | 385 | 1166 | 16 | 2170 | 2358 |
Yangtze River Delta | Pb | Cr | Cd | As | Hg |
---|---|---|---|---|---|
Average values of topsoil (mg/kg) a | 37.63 | 74.52 | 0.226 | 7.8 | 0.14 |
Background values (mg/kg) b | 24.3 | 70.94 | 0.14 | 8 | 0.16 |
Maximum permissible limits (mg/kg) | 90 | 150 | 0.3 | 40 | 1.8 |
Time required (straw removal) (year) | 854 | 1425 | 25 | 2751 | 12769 |
Time required (straw return) (year) | 850 | 1410 | 23 | 2668 | 11189 |
Hainan | Pb | Cr | Cd | As | Hg |
---|---|---|---|---|---|
Average values of topsoil (mg/kg) a | 33.62 | 46.44 | 0.288 | 9.87 | 0.08 |
Background values (mg/kg) b | 24 | 22 | 0.061 | 2 | 0.03 |
Maximum permissible limits (mg/kg) | 90 | 150 | 0.3 | 40 | 1.8 |
Time required (straw removal) (year) | 1215 | / | 67 | 1557 | 1319 |
Time required (straw return) (year) | 808 | 2115 | 5 | 144 | 130 |
Ornamental Plant Species | Sources |
---|---|
Bamboo (e.g., moso bamboo and lei bamboo) | [91,92,93] |
Poplar (e.g., Eastern cottonwood, Populus deltoides) | [94,95] |
Willow (e.g., Salix miyabeana) | [96] |
Eucalypti (e.g., Eucalyptus camaldulensis) | [97] |
Morus (e.g., Morus alba) | [97,98] |
Maple (e.g., Acer cappadocicum) | [99] |
Camphor (e.g., Cinnamomum camphora) | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, A.; Jia, J.; Chang, P.; Wang, S. Status of Sustainable Balance Regulation of Heavy Metals in Agricultural Soils in China: A Comprehensive Review and Meta-Analysis. Agronomy 2024, 14, 450. https://doi.org/10.3390/agronomy14030450
Wei A, Jia J, Chang P, Wang S. Status of Sustainable Balance Regulation of Heavy Metals in Agricultural Soils in China: A Comprehensive Review and Meta-Analysis. Agronomy. 2024; 14(3):450. https://doi.org/10.3390/agronomy14030450
Chicago/Turabian StyleWei, Anni, Jin Jia, Pengyan Chang, and Songliang Wang. 2024. "Status of Sustainable Balance Regulation of Heavy Metals in Agricultural Soils in China: A Comprehensive Review and Meta-Analysis" Agronomy 14, no. 3: 450. https://doi.org/10.3390/agronomy14030450
APA StyleWei, A., Jia, J., Chang, P., & Wang, S. (2024). Status of Sustainable Balance Regulation of Heavy Metals in Agricultural Soils in China: A Comprehensive Review and Meta-Analysis. Agronomy, 14(3), 450. https://doi.org/10.3390/agronomy14030450