Sustainability Potential of Marginal Areas for Food, Feed, and Non-Food Production in the Puglia Region, Southern Italy: Part II: A Review
Abstract
:1. Introduction
2. Research Methodology
3. Sustainability Potential of Puglia MAs
3.1. Economic Potential
3.1.1. Job Opportunities for Local Residents
3.1.2. Source of Biofuel Production
3.1.3. Cultivation and Wild Collection of Local Plants
3.1.4. Resilient Fruit Tree Systems
3.1.5. Eco-Certification of Food and Non-Food Products from MAs
3.2. Social Potential
3.2.1. Rural Tourism and Agrotourism
3.2.2. Social Events
3.2.3. Spirituality
- -
- Religious practices: people in MAs may find meaning and connection through religious practices. This could involve attending church, mosque, or synagogue, or it could include praying or meditating at home or in some intriguing locations.
- -
- Art: people in MAs may find expression and meaning through art. They may create art themselves that could be a source of additional income but, at the same time, can be a way to connect with others, explore their own identity, or express their feelings for their territory.
- -
- Music: it can be a powerful source of inspiration. It can provide comfort, relaxation, and a sense of community. People in MAs may enjoy listening to music, playing music, or singing alone or during social events.
3.2.4. Green Care and Therapy Farm Initiatives
3.3. Environmental Potential
3.3.1. Biodiversity Conservation
3.3.2. Restoration of Local Genetic Varieties
3.3.3. Reduction of GHG Emission and Climate Mitigation Potential through Carbon Sequestration
3.3.4. Optimization Potential for Agro-Ecosystem Services
4. Conclusions and Recommendations
- -
- Unused and unproductive lands in rural areas of the Puglia region are abundant but often overlooked or not exploited.
- -
- Evaluating the sustainability potential of MAs for food, feed, and non-food products is crucial for rural development.
- -
- MAs in Puglia can significantly contribute to the regional economy and food security.
- -
- Support for small-scale farms within MAs is essential for sustainable rural development.
- -
- Technological advancement applications can be the best management strategies for MAs.
- -
- Social aspects of farming in MAs are crucial to ensure their activation and revitalization.
- -
- Marginal lands should be recognized in future policy frameworks for sustainable development.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arshad, N.; Donnison, I.; Rowe, R. Marginal Lands: Concept, Classification Criteria and Management; Supergen Bioenergy Hub.: Birmingham, UK, 2021; Available online: https://www.supergen-bioenergy.net/wp-content/uploads/2021/09/Marginal-Land-Report.pdf (accessed on 22 November 2023).
- Arru, B.; Furesi, R.; Madau, F.A.; Pulina, P. Economic performance of agritourism: An analysis of farms located in a less favoured area in Italy. Agric. Food Econ. 2021, 9, 27. [Google Scholar] [CrossRef]
- Csikós, N.; Tóth, G. Concepts of agricultural marginal lands and their utilisation: A review. Agric. Syst. 2023, 204, 103560. [Google Scholar] [CrossRef]
- Muscat, A.; De Olde, E.M.; Candel, J.J.L.; de Boer, I.J.; Ripoll-Bosch, R. The Promised Land: Contrasting frames of marginal land in the European Union. Land Use Policy 2022, 112, 105860. [Google Scholar] [CrossRef]
- Moravcova, J.; Moravcova, V.; Pavlicek, T.; Novakova, N. Land Use Has Changed through the Last 200 Years in Various Production Areas of South Bohemia. Land 2022, 11, 1619. [Google Scholar] [CrossRef]
- Muscat, A.; De Olde, E.M.; de Boer, I.J.; Ripoll-Bosch, R. The battle for biomass: A systematic review of food-feed-fuel competition. Glob. Food Secur. 2020, 25, 100330. [Google Scholar] [CrossRef]
- Van Doorn, A.M.; Bakker, M.M. The destination of arable land in a marginal agricultural landscape in South Portugal: An exploration of land use change determinants. Landsc. Ecol. 2007, 22, 1073–1087. [Google Scholar] [CrossRef]
- James, L. Theory and Identification of Marginal Land and Factors Determining Land Use Change (No. 1097-2016-88829). Master’s Dissertation, Michigan State University, East Lansing, MI, USA, 2010; p. 99. [Google Scholar] [CrossRef]
- Colavitti, A.M.; Ilovan, O.R.; Mutică, P.; Serra, S. Rural areas as actors in the project of regional systems. Contesti. Città Territ. Progett. 2021, 2, 209–234. [Google Scholar]
- Food and Agricultural Organization of United Nations (FAO). FESLM: An International Framework for Evaluating Sustainable Land Management; World Resources Report; FAO: Rome, Italy, 1993; p. 73. [Google Scholar]
- Pieri, C.J.; Dumanski, J.; Hamblin, A.; Young, A. Land Quality Indicators; World Bank Discussion Papers; The World Bank: Washington, DC, USA, 1995; p. 315. [Google Scholar]
- Isac, N. Dimension of rural development. Agric. Manag. Lucr. Stiintifice Ser. I Manag. Agricol. 2009, 11, 8. [Google Scholar]
- Bosemark, N.O. The need for a comprehensive plant breeding strategy. In Plant Breeding: Principles and Prospects; Hayward, M.D., Bosemark, N.O., Ramagosa, I., Eds.; Chapman & Hall: London, UK, 1993; pp. 525–533. [Google Scholar]
- Conway, G. The Doubly Green Revolution: Food for All in the Twenty-First Century; Cornell University Press: Ithaca, NY, USA, 2019. [Google Scholar]
- Pinstrup-Andersen, P.; Cohen, M.J. The present situation and coming trends in world food protection and consumption. In Food Needs of the Developing World in the Early 21st Century, Proceedings of the Study-Week of the Pontificial Academy of Science, Vatican City, 27–30 January 1999; Chang, T.T., Ed.; The Academy: Cambridge, MA, USA, 2000; pp. 27–56. [Google Scholar]
- Veronesi, F.; Papa, R. Plant breeding and low-input agriculture. In Low Input Farming Systems: An Opportunity to Develop Sustainable Agriculture, Proceedings of the JRC Summer University, Ranco, Italy, 2–5 July 2007; Biala, K., Terres, J.M., Pointereau, P., Paracchini, M.L., Eds.; OPOCE: Luxembourg, 2007; pp. 2–5. [Google Scholar]
- Pohl, C. Jatropha: Money doesn’t grow on trees. Friends Earth Int. 2010, 120, 1815–1880. [Google Scholar]
- Altieri, M.A. Agroecology: The science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 2002, 93, 1–24. [Google Scholar] [CrossRef]
- Ahmadzai, H.; Tutundjian, S.; Elouafi, I. Policies for sustainable agriculture and livelihood in marginal lands: A review. Sustainability 2021, 13, 8692. [Google Scholar] [CrossRef]
- De Rossi, A. Riabitare l’Italia: Le Aree Interne tra Abbandoni e Riconquiste; Donzelli Editore: Roma, Italy, 2019. [Google Scholar]
- Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thrän, D.; Van Groenigen, K.J.; Weih, M.; et al. Bioenergy from “surplus” land: Environmental and socio-economic implications. BioRisk 2012, 7, 5–50. [Google Scholar] [CrossRef]
- Peira, G.; Beltramo, R.; Pairotti, M.B.; Bonadonna, A. Foodservice in a UNESCO site: The restaurateurs’ perception on communication and promotion tools. Sustainability 2018, 10, 2911. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CABI Rev. 2007, 14, 2. [Google Scholar] [CrossRef]
- ITA (The International Trade Administration). Country Commercial Guides, Italy-Agricultural Sector); Italy-Agricultural Sector: Rome, Italy, 2022. [Google Scholar]
- CREA (Consiglio per la Ricerca e L’economia Agricola). L’agricoltura Pugliese Conta. Crea Publication, 2023. Available online: https://www.crea.gov.it/web/politiche-e-bioeconomia/-/l-agricoltura-pugliese-conta-2023 (accessed on 14 December 2023).
- EU. Commission implementing decision of 18 February setting out the list of regions eligible for funding from the European Regional Development Fund and the European Social Fund and of Member States eligible for funding from the Cohesion Fund for the period 2014–2020. Off. J. Eur. Union 2014, 57, 22–34. [Google Scholar]
- Labianca, M.; De Rubertis, S.; Belliggiano, A.; Salento, A. Innovation in rural development in Puglia, Italy: Critical issues and potentialities starting from empirical evidence. Stud. Agric. Econ. 2016, 118, 38–46. [Google Scholar] [CrossRef]
- Russo, P.; Tomaselli, G.; Pappalardo, G. Marginal periurban agricultural areas: A support method for landscape planning. Land Use Policy 2014, 41, 97–109. [Google Scholar] [CrossRef]
- Osti, G.; Carrosio, G. Nested markets in marginal areas: Weak prosumers and strong food chains. J. Rural Stud. 2020, 76, 305–313. [Google Scholar] [CrossRef]
- Carrosio, G.; Osti, G. Le aree marginali. In Fondamenti di Sociologia Economica; Egea: Utrecht, The Netherlands, 2017; pp. 303–316. [Google Scholar]
- Kusio, T.; Rosiek, J.; Conto, F. Urban–Rural Partnership Perspectives in the Conceptualization of Innovative Activities in Rural Development: On Example of Three-Case Study Analysis. Sustainability 2022, 14, 7309. [Google Scholar] [CrossRef]
- Cervelli, E.; di Perta, E.S.; Pindozzi, S. Energy crops in marginal areas: Scenario-based assessment through ecosystem services, as support to sustainable development. Ecol. Indic. 2020, 113, 106180. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Chapter 5: Food, fiber, and forest products. In IPCC Fourth Assessment Report (AR4)—Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bonadonna, A.; Rostagno, A.; Beltramo, R. Improving the landscape and tourism in marginal areas: The case of land consolidation associations in the North-West of Italy. Land 2020, 9, 175. [Google Scholar] [CrossRef]
- European Commission (EC). CAP Content Indicators 2014–2020; EC Report; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- SRM Centro Studi e Ricerche. Bollettino Mezzogiorno 1. Mezzogiorno Pubblicazioni, 2023. Available online: https://www.sr-m.it/it-cat-prod-322781-bollettino-mezzogiorno-1-2023.htm (accessed on 14 December 2023).
- De la Rúa, C.; Lechón, Y. An integrated Multi-Regional Input-Output (MRIO) Analysis of miscanthus biomass production in France: Socio-economic and climate change consequences. Biomass Bioenergy 2016, 94, 21–30. [Google Scholar] [CrossRef]
- Chazara, P.; Negny, S.; Montastruc, L. Quantitative method to assess the number of jobs created by production systems: Application to multi-criteria decision analysis for sustainable biomass supply chain. Sustain. Prod. Consum. 2017, 12, 134–154. [Google Scholar] [CrossRef]
- Panoutsou, C.; Chiaramonti, D. Socio-economic opportunities from Miscanthus cultivation in marginal land for bioenergy. Energies 2020, 13, 2741. [Google Scholar] [CrossRef]
- Kummitha, H.R.; Kolloju, N.; Jancsik, A.; Szalók, Z.C. Can Tourism Social Entrepreneurship Organizations Contribute to the Development of Ecotourism and Local Communities: Understanding the Perception of Local Communities. Sustainability 2021, 13, 11031. [Google Scholar] [CrossRef]
- Bieliková, H.; Ťažký, J.; Petrovič, F. Dispersed settlement as a factor of geotourism development in Nova Bana region. In Proceedings of the 16th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 30 June–6 July 2016; Volume 2, pp. 247–254. [Google Scholar]
- Chlachula, J. Geo-tourism perspectives in East Kazakhstan. Geogr. Environ. Sustain. 2019, 12, 29–43. [Google Scholar] [CrossRef]
- Ivona, A.; Rinella, A.; Rinella, F.; Epifani, F.; Nocco, S. Resilient rural areas and tourism development paths: A comparison of case studies. Sustainability 2021, 13, 3022. [Google Scholar] [CrossRef]
- Emery, I.; Mueller, S.; Qin, Z.; Dunn, J.B. Evaluating the potential of marginal land for cellulosic feedstock production and carbon sequestration in the United States. Environ. Sci. Technol. 2017, 51, 733–741. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of United Nations (FAO). A Framework for Bioenergy Environmental Impact Analysis; Öko-Institut, Ifeu-Institute, Copernicus Institute financed by the Food and Agriculture Organization (FAO): Rome, Italy, 2008. [Google Scholar]
- Nalepa, R.A.; Bauer, D.M. Marginal lands: The role of remote sensing in constructing landscapes for agrofuel development. J. Peasant. Stud. 2012, 39, 403–422. [Google Scholar] [CrossRef]
- Fargione, J.E.; Plevin, R.J.; Hill, J.D. The Ecological Impact of Biofuels. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 351–377. [Google Scholar] [CrossRef]
- Elbersen, B.S.; Fritsche, U.; Eerens, H.; Overmars, K.; Lesschen, J.P.; Staritsky, I.; Zulka, K.P.; Brodski, L.; Hennenberg, K.; Petersen, J.E.; et al. Review of the EU bioenergy potential from a resource efficiency perspective. In Background Report to EEA Study; ETCSIA: Malaga, Spain, 2013. [Google Scholar]
- Valin, H.; Peters, D.; Van den Berg, M.; Frank, S.; Havlik, P.; Forsell, N.; Hamelinck, C.; Pirker, J.; Mosnier, A.; Balkovic, J.; et al. The Land Use Change Impact of Biofuels Consumed in the EU: Quantification of Area and Greenhouse Gas Impacts; ECOFYS Netherlands B.V.: Utrecht, The Netherland, 2015. [Google Scholar]
- Elbersen, B.; Van Verzandvoort, M.; Boogaard, S.; Mucher, S.; Cicarelli, T.; Elbersen, W.; Mantel, S.; Bai, Z.; Mcal-lum, I.; Iqbal, Y. Deliverable 2.1 Definition and Classification of Marginal Lands Suitable for Industrial Crops in Europe; EU Horizon: Brussels, Belgium, 2020; p. 60. [Google Scholar]
- Pulighe, G.; Bonati, G.; Fabiani, S.; Barsali, T.; Lupia, F.; Vanino, S.; Nino, P.; Arca, P.; Roggero, P.P. Assessment of the agronomic feasibility of bioenergy crop cultivation on marginal and polluted land: A GIS-based suitability study from the Sulcis area, Italy. Energies 2016, 9, 895. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Panoutsou, C. Policy measures for sustainable sunflower cropping in EU-MED marginal lands amended by biochar: Case study in Tuscany, Italy. Biomass Bioenergy 2019, 126, 199–210. [Google Scholar] [CrossRef]
- Motti, R. Wild Plants Used as Herbs and Spices in Italy: An Ethnobotanical Review. Plants 2021, 10, 563. [Google Scholar] [CrossRef]
- Maikhuri, R.K.; Rao, K.S.; Chauhan, K.; Kandari, L.S.; Prasad, P.; Rajasekaran, C. Development of marketing of medicinal plants and other forest products: Can it be a path way for effective management and conservation? Indian For. 2003, 129, 169–178. [Google Scholar]
- Phondani, P.C.; Bhatt, I.D.; Negi, V.S.; Kothyari, B.P.; Bhatt, A.; Maikhuri, R.K. Promoting medicinal plants cultivation as a tool for biodiversity conservation and livelihood enhancement in Indian Himalaya. J. Asia-Pac. Biodivers. 2016, 9, 39–46. [Google Scholar] [CrossRef]
- Biscotti, N.; Pieroni, A. The hidden Mediterranean diet: Wild vegetables traditionally gathered and consumed in the Gargano area, Apulia, SE Italy. Acta Soc. Bot. Pol. 2015, 84, 327–338. [Google Scholar] [CrossRef]
- Urbano, M.; Tomaselli, V.; Bisignano, V.; Veronico, G.; Hammer, K.; Laghetti, G. Salicornia patula Duval-Jouve: From gathering of wild plants to some attempts of cultivation in Apulia region (southern Italy). Genet. Resour. Crop Evol. 2017, 64, 1465–1472. [Google Scholar] [CrossRef]
- Pappalardo, H.D.; Toscano, V.; Puglia, G.D.; Genovese, C.; Raccuia, S.A. Cynara cardunculus L. as a multipurpose crop for plant secondary metabolites production in marginal stressed lands. Front. Plant Sci. 2020, 11, 240. [Google Scholar] [CrossRef]
- Godini, A.; Contò, F. L’Olivicoltura marginale in Puglia. In Proceedings of the Il Futuro dei Sistemi Olivicoli in Aree Marginali: Aspetti Socioeconomici, Conservazione Delle Risorse Naturali e Produzioni di Qualità, Conference Proceedings, Matera, Italy, 12–13 October 2004. [Google Scholar]
- Palli, J.; Baliva, M.; Biondi, F.; Calcagnile, L.; Cerbino, D.; D’Elia, M.; Muleo, R.; Schettino, A.; Quarta, G.; Sassone, N.; et al. The Longevity of Fruit Trees in Basilicata (Southern Italy): Implications for Agricultural Biodiversity Conservation. Land 2023, 12, 550. [Google Scholar] [CrossRef]
- Piovesan, G.; Cannon, C.H.; Liu, J.; Munné-Bosch, S. Ancient trees: Irreplaceable conservation resource for ecosystem restoration. Trends Ecol. Evol. 2022, 37, 1025–1028. [Google Scholar] [CrossRef]
- Salimonti, A.; Simeone, V.; Cesari, G.; Lamaj, F.; Cattivelli, L.; Perri, E.; Desiderio, F.; Fanizzi, F.P.; Del Coco, L.; Zelasco, S. A first molecular investigation of monumental olive trees in Apulia region. Sci. Hortic. 2013, 162, 204–212. [Google Scholar] [CrossRef]
- Barbera, G.; Cullotta, S.; Rossi-Doria, I.; Rühl, J.; Rossi-Doria, B. I Paesaggi a Terrazze Della Sicilia. Metodologie per L’analisi, la Tutela e la Valorizzazione; Collana Studi e Ricerche dell’ARPA Sicilia; ARPA—Agenzia Regionale per la Protezione dell’Ambiente: Sicily, Italy, 2010; p. 525. ISBN 978-88-95813-07-3. [Google Scholar]
- Agnoletti, M.; Conti, L.; Frezza, L.; Santoro, A. Territorial Analysis of the Agricultural Terraced Landscapes of Tuscany (Italy): Preliminary Results. Sustainability 2015, 7, 4564–4581. [Google Scholar] [CrossRef]
- Bini, C.; Ferrarini, A.; Spiandorello, M.; Wahsha, M.; Zilioli, D.M. Landscape evolution and global soil change in alpine valleys: Impact of anthropedogenesis on terraced soils (Belluno, Northern Italy). EQA Int. J. Environ. Qual. 2017, 25, 1–17. [Google Scholar]
- Brunori, E.; Salvati, L.; Antogiovanni, A.; Biasi, R. Worrying about ‘vertical landscapes’: Terraced olive groves and ecosystem services in marginal land in central Italy. Sustainability 2018, 10, 1164. [Google Scholar] [CrossRef]
- Colantoni, A.; Mavrakis, A.; Sorgi, T.; Salvati, L. Towards a ‘polycentric’ landscape? Reconnecting fragments into an integrated network of coastal forests in Rome. Rend. Lincei 2015, 26, 615–624. [Google Scholar] [CrossRef]
- Kosmas, C.; Karamesouti, M.; Kounalaki, K.; Detsis, V.; Vassiliou, P.; Salvati, L. Land degradation and long-term changes in agro-pastoral systems: An empirical analysis of ecological resilience in Asteroussia—Crete (Greece). Catena 2016, 147, 196–204. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Vivaldi, G.A.; Garofalo, S.P.; Costanza, L.; Camposeo, S. Land Suitability Analysis of Six Fruit Tree Species Immune/Resistant to Xylella fastidiosa as Alternative Crops in Infected Olive-Growing Areas. Agronomy 2023, 13, 547. [Google Scholar] [CrossRef]
- ISTAT, 2023. Available online: http://dati.istat.it/Index.aspx?QueryId=33654 (accessed on 29 November 2023).
- Manetti, G.; Brunetti, A.; Lumia, V.; Sciarroni, L.; Marangi, P.; Cristella, N.; Faggioli, F.; Reverberi, M.; Scortichini, M.; Pilotti, M. Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum. J. Fungi 2023, 9, 292. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chimonyo, V.G.; Modi, A.T. Status of underutilised crops in South Africa: Opportunities for developing research capacity. Sustainability 2017, 9, 1569. [Google Scholar] [CrossRef]
- Camposeo, S.; Stellacci, A.M.; Romero Trigueros, C.; Alhajj Ali, S.; Vivaldi, G.A. Different Suitability of Olive Cultivars Resistant to Xylella fastidiosa to the Super-Intensive Planting System. Agronomy 2022, 12, 3157. [Google Scholar] [CrossRef]
- Padulosi, S.; Hodgkin, T.; Williams, J.T.; Haq, N. Underutilized crops: Trends, challenges and opportunities in the 21st century. In Managing Plant Genetic Diversity, Proceedings of the International Conference, Kuala Lumpur, Malaysia, 12–16 June 2000; CABI Publishing: Wallingford, UK, 2000; pp. 323–338. [Google Scholar]
- Pellegrini, G.; Ingrao, C.; Camposeo, S.; Tricase, C.; Contò, F.; Huisingh, D. Application of water footprint to olive growing systems in the Apulia region: A comparative assessment. J. Clean. Prod. 2016, 112, 2407–2418. [Google Scholar] [CrossRef]
- Dettori, S.; Barbera, G.; Deiana, P.; Inglese, P.; Santona, M.; Filigheddu, M.R. Olivicoltura Multifunzionale e Paesaggio; Collana divulgativa dell’Accademia. Realizzazione editorial; Accademia Nazionale dell’Olivo e dell’Olio: Spoleto, Italy, 2020; Volume XVII. [Google Scholar]
- Qin, B. Sustainable Development in Rural China: Field Survey and Sino-Japan Comparative Analysis; Springer: Berlin/Heidelberg, Germany, 2015; p. 105. [Google Scholar]
- Cole, M.T.; Doremus, J.M.; Hamilton, S.F. Import restrictions by eco-certification: Quantity effects on tropical timber production. J. Environ. Econ. Manag. 2021, 107, 102423. [Google Scholar] [CrossRef]
- Lambin, E.F.; and Furumo, P.R. Deforestation-Free Commodity Supply Chains: Myth or Reality? Annu. Rev. Environ. Resour. 2023, 48, 237–261. [Google Scholar] [CrossRef]
- Jonell, M.; Phillips, M.; Rönnbäck, P.; Troell, M. Eco-certification of farmed seafood: Will it make a difference? Ambio 2013, 42, 659–674. [Google Scholar] [CrossRef]
- Sabia, E.; Braghieri, A.; Pacelli, C.; Di Trana, A.; Coppola, A. Perception of Ecosystem Services from Podolian Farming System in Marginal Areas of Southern Italy. Agriculture 2023, 14, 28. [Google Scholar] [CrossRef]
- Signori, P.; Flint, D.J.; Golicic, S.L. Constrained innovation on sustainability in the global wine industry. J. Wine Res. 2017, 28, 71–90. [Google Scholar] [CrossRef]
- Rivera, M.; Knickel, K.; María Díaz-Puente, J.; Afonso, A. The role of social capital in agricultural and rural development: Lessons learnt from case studies in seven countries. Sociol. Rural. 2019, 59, 66–91. [Google Scholar] [CrossRef]
- Vanclay, F. The potential application of qualitative evaluation methods in European regional development: Reflections on the use of Performance Story Reporting in Australian natural resource management. Reg. Stud. 2015, 49, 1326–1339. [Google Scholar] [CrossRef]
- De Roest, K.; Ferrari, P. Extensive Pig Production Systems, Italy; RETHINK Case Study Report; Fondazione Studi e Ricerche (FSRC/CRPA): Reggio Emilia, Italy, 2015. [Google Scholar]
- Labianca, M. Proposal of a Method for Identifying Socio-Economic Spatial Concentrations for the Development of Rural Areas: An Application to the Apulia Region (Southern Italy). Sustainability 2023, 15, 3180. [Google Scholar] [CrossRef]
- Faccilongo, N.; La Sala, P.; Gariuolo, G.; Di Gioia, L. Models of management and organization of farms in social agriculture. In Cooperative Strategies and Value Creation in Sustainable Food Supply Chain, Proceedings of the 54th SIDEA Conference—25th SIEA Conference, Bisceglie/Trani, Italy, 13–16 September 2017; Franco Angeli: Milano, Italy, 2018; pp. 71–75, 320p. ISBN 9788891786883. [Google Scholar]
- Rochira, A.; De Simone, E.; Mannarini, T. Community resilience and continuous challenges: A qualitative analysis of the functioning of communities in the aftermath of persistent and ordinary stressors. J. Community Psychol. 2023, 51, 1106–1123. [Google Scholar] [CrossRef]
- Nicolosi, A.; Laganà, V.; Gregorio, D.; Privitera, D. Social Farming in the Virtuous System of the Circular Economy. An Exploratory Research. Sustainability 2021, 13, 989. [Google Scholar] [CrossRef]
- Borgi, M.; Marcolin, M.; Tomasin, P.; Correale, C.; Venerosi, A.; Grizzo, A.; Orlich, R.; Cirulli, F. Nature-Based Interventions for Mental Health Care: Social Network Analysis as a Tool to Map Social Farms and their Response to Social Inclusion and Community Engagement. Int. J. Environ. Res. Public Health 2019, 16, 3501. [Google Scholar] [CrossRef]
- García-Llorente, M.; Rossignoli, C.; Iacovo, F.; Moruzzo, R. Social Farming in the Promotion of Social-Ecological Sustainability in Rural and Periurban Areas. Sustainability 2016, 8, 1238. [Google Scholar] [CrossRef]
- Musolino, D.; Distaso, A.; Marciano, C. The Role of Social Farming in the Socio-Economic Development of Highly Marginal Regions: An Investigation in Calabria. Sustainability 2020, 12, 5285. [Google Scholar] [CrossRef]
- Gagliardi, C.; Santini, S.; Piccinini, F.; Fabbietti, P.; Rosa, M. A pilot programme evaluation of social farming horticultural and occupational activities for older people in Italy. Health Soc. Care Community 2018, 27, 207–214. [Google Scholar] [CrossRef]
- Bassi, I.; Nassivera, F.; Piani, L. Social farming: A proposal to explore the effects of structural and relational variables on social farm results. Agric. Food Econ. 2016, 4, 13. [Google Scholar] [CrossRef]
- Grashof-Bokdam, C.; Cormont, A.; Polman, N.; Westerhof, E.; Franke, J.; Opdam, P. Modelling shifts between mono- and multifunctional farming systems: The importance of social and economic drivers. Landsc. Ecol. 2017, 32, 595–607. [Google Scholar] [CrossRef]
- Pardini, A.; Longhi, F.; Natali, F. Pastoral systems and agro-tourism in marginal areas of Central Italy. Options Méditerranéennes 2008, 79, 102. [Google Scholar]
- OECD. Tourism Strategies and Rural Development; OECD: Paris, France, 1994; Available online: https://www.oecd.org/cfe/tourism/2755218.pdf (accessed on 9 October 2023).
- Streifeneder, T.; Hoffmann, C.; Corradini, P. The future of agritourism? A review of current trends of touristic commercialisation in rural areas. Ann. Reg. Sci. 2023, 71, 93–119. [Google Scholar] [CrossRef]
- Ciani, A.; Caruso, D. The role of agritourism as a tool to improve agriculture activity and driver toward the smart communities and smart territories. In Cooperative Strategies and Value Creation in Sustainable Food Supply Chain, Proceedings of the 54th SIDEA Conference—25th SIEA Conference, Bisceglie/Trani, Italy, 13–16 September 2017; Franco Angeli: Milano, Italy, 2008; pp. 81–85, 320p. ISBN 9788891786883. [Google Scholar]
- Mercuri, A.M.; Allevato, E.; Arobba, D.; Mazzanti, M.B.; Bosi, G.; Caramiello, R.; Castiglioni, E.; Carra, M.L.; Celant, A.; Costantini, L.; et al. Pollen and macroremains from Holocene archaeological sites: A dataset for the understanding of the bio-cultural diversity of the Italian landscape. Rev. Palaeobot. Palynol. 2015, 218, 250–266. [Google Scholar] [CrossRef]
- Giordano, S. Agrarian landscapes: From marginal areas to cultural landscapes—Paths to sustainable tourism in small villages—The case of Vico Del Gargano in the club of the Borghi più belli d’Italia. Qual. Quant. 2020, 54, 1725–1744. [Google Scholar] [CrossRef]
- ISTAT. 2018. Available online: https://www.istat.it/en/archivio/222794 (accessed on 29 November 2023).
- Schiavone, F.; El Bilali, H.; Berjan, S.; Zheliaskov, A. Rural Tourism in Apulia Region, Italy: Results of 2007–2013 Rural Development Programme and 2020 Perspectives. Agrofor 2016, 1, 16–29. [Google Scholar] [CrossRef]
- Shah, G.D.; Gumaste, R.; Shende, K. Allied Farming-Agro tourism is the tool of revenue generation for rural economic and social development analyzed with the help of a case study in the region of Maharashtra. Sustain. Agri Food Environ. Res. 2023, 11, 1–15. [Google Scholar]
- Testa, R.; Galati, A.; Schifani, G.; Di Trapani, A.M.; Migliore, G. Culinary Tourism Experiences in Agri-Tourism Destinations and Sustainable Consumption—Understanding Italian Tourists’ Motivations. Sustainability 2019, 11, 4588. [Google Scholar] [CrossRef]
- Statista. Number of Agritourism Establishments in Italy from 2012 to 2022. Statista Research Department. 2023. Available online: https://www.statista.com/statistics/795702/number-of-agritourism-facilities-in-taly/#:~:text=The%20number%20of%20agritourism%20establishments,around%2020.3%20thousand%20in%202018 (accessed on 21 November 2023).
- Bessudo, G.; Agrosì, A.; Al–Hroub, H.; Andreis, S.; Barros, H.; David, S.; Madeira, M.; Shaked, D.; Slakmon, M.; Raz, A. Best Practices for Promoting Local Sustainable Economic Development. Ed. Proj. Wealth 2015, 83. [Google Scholar]
- Giarè, F.; Borsotto, P.; Signoriello, I. Social Farming in Italy. Analysis of an «inclusive model». Ital. Rev. Agric. Econ. 2018, 73, 89–105. [Google Scholar]
- Galluzzo, N. An Exploration of the Agro-town in the Italian Countryside and Rural Districts. Trakia J. Sci. 2022, 20, 181–188. [Google Scholar] [CrossRef]
- Sims, R. Food, Place and Authenticity: Local Food and the Sustainable Tourism Experience. J. Sustain. Tour. 2009, 17, 321–336. [Google Scholar] [CrossRef]
- Bruflodt, M.; Atkinson, R.; Cabrera, J.; Knudson, A.; Moynihan, M. Rural Response to Farmer Mental Health and Suicide Prevention; Rural Health Information Hub.: Grand Forks, ND, USA, 2021; Available online: https://www.ruralhealthinfo.org/topics/farmer-mental-health (accessed on 26 November 2023).
- Ivona, A. Agriculture and New Forms of Restoration of the Territory. In Handbook of Research on Agricultural Policy, Rural Development, and Entrepreneurship in Contemporary Economies; Jean Vasile, A., Subic, J., Grubor, A., Privitera, D., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 1–20. [Google Scholar]
- Das, A.; Gujre, N.; Devi, R.J.; Mitra, S. A review on traditional ecological knowledge and Its role in natural resources management: Northeast India, a cultural paradise. Environ. Manag. 2021, 72, 113–134. [Google Scholar] [CrossRef]
- Ranđelović, D.; Pandey, V.C. Bioenergy Crop-Based Ecological Restoration of Degraded Land. In Bio-Inspired Land Remediation; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–29. [Google Scholar]
- Bird, W. Natural Thinking: Investigating the Links between the Natural Environment, Biodiversity and Mental Health, Royal Society for the Protection of Birds, 2007. Available online: http://www.rspb.org.uk/Images/naturalthinking_tcm9-161856.pdf (accessed on 22 November 2023).
- Burls, A. People and green spaces: Promoting public health and mental well-being through ecotherapy. J. Public Ment. Health 2007, 6, 24–39. [Google Scholar] [CrossRef]
- Mind. Ecotherapy: The Green Agenda for Mental Health, Mindweek Report, 2007. Available online: http://www.mind.org.uk/NR/rdonlyres/D9A930D2-30D4-4E5B-BE79-1D401B804165/0/ecotherapy.pdf (accessed on 16 December 2023).
- Salvatore, F.P.; Contò, F. How can assessment systems be used to evaluate healthcare activities in the care farms? Eur. J. Manag. Issues 2018, 26, 39–47. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Hartig, T.; Evans, G.W.; Jamner, L.D.; Davis, D.S.; Garling, T. Tracking restoration in natural and urban field settings. J. Environ. Psychol. 2003, 23, 109–123. [Google Scholar] [CrossRef]
- Louv, R. Last Child in the Woods: Saving Our Children from NatureDeficit Disorder; Algonquin Books: Chapel Hill, NC, USA, 2005. [Google Scholar]
- Pretty, J.; Griffin, M.; Peacock, J.; Hine, R.; Sellens, M.; South, N. A Countryside for Health and Wellbeing; The Physical and Mental Health Benefits of Green Exercise; Countryside Recreation Network, Sheffield Hallum University: Sheffield, UK, 2005; p. 128. [Google Scholar]
- Peacock, J.; Hine, R.; Pretty, J. Got the Blues, then Find Some Greenspace: The Mental Health Benefits of Green Exercise Activities and Green Care. University of Essex Report for MIND Week, February 2007. Available online: https://www.calameo.com/read/0009143747c40eedd7eeb (accessed on 12 December 2023).
- Hine, R.; Peacock, J.; Pretty, J. Green Lungs for the East of England. Report for the National Trust. 2008. Available online: http://www.nationaltrust.org.uk/ (accessed on 12 December 2023).
- Genova, A.; Maccaroni, M.; Viganò, E. Social farming: Heterogeneity in social and agricultural relationships. Sustainability 2020, 12, 4824. [Google Scholar] [CrossRef]
- Hassink, J.; De Bruin, S.; Berget, B.; Elings, M. Exploring the Role of Farm Animals in Providing Care at Care Farms. Animals 2017, 7, 45. [Google Scholar] [CrossRef]
- Sempik, J.; Hine, R.; Wilcox, D. Green Care: A Conceptual Framework, COST Action 866, Green Care in Agriculture; Centre for Child and Family Research, Loughborough University: Loughborough, UK, 2010. [Google Scholar]
- Fritze, J.G.; Blashki, G.A.; Burke, S.; Wiseman, J. Hope, despair and transformation: Climate change and the promotion of mental health and wellbeing. Int. J. Ment. Health Syst. 2008, 2, 13. [Google Scholar] [CrossRef]
- Sempik, J.; Aldridge, J.; Becker, S. Social and Therapeutic Horticulture: Evidence and Messages from Research; Thrive and Loughborough; CCFR: Reading, UK, 2003. [Google Scholar]
- Hine, R.; Peacock, J.; Pretty, J. Care Farming in the UK: A Scoping Study, Report for NCFI(UK), 2008. Available online: http://www.ncfi.org.uk/documents/Care%20farming%20in%20the%20UK%20FINAL%20Report%20Jan%2008.pdf (accessed on 16 November 2023).
- Loue, S.; Karges, R.R.; Carlton, C. The therapeutic farm community: An innovative intervention for mental illness. Procedia-Soc. Behav. Sci. 2014, 149, 503–507. [Google Scholar] [CrossRef]
- Berget, B.; Braastad, B.O. Animal-assisted therapy with farm animals for persons with psychiatric disorders. Ann. Dell’istituto Super. Di Sanita 2011, 47, 384–390. [Google Scholar]
- Koo, H.D.; Kim, S.J.; Bae, S.J.; Kim, D.S. Demand analysis of agro-healing virtual reality therapy system factors considering the characteristics of respondents. J. Korean Soc. Precis. Eng. 2022, 28, 1–15. [Google Scholar]
- Elsen, S.; Fazzi, L. Extending the concept of social farming: Rural development and the fight against organized crime in disadvantaged areas of southern Italy. J. Rural Stud. 2021, 84, 100–107. [Google Scholar] [CrossRef]
- Fløysand, A.; Jakobsen, S.E. Commodification of rural places: A narrative of social fields, rural development, and football. J. Rural Stud. 2007, 23, 206–221. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Lucia, L.M. Ethnobotanical remarks on central and southern Italy. J. Ethnobiol. Ethnomed. 2007, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Post, W.M.; Nichols, J.A.; Wang, D.; West, T.O.; Bandaru, V.; Izaurralde, R.C. Marginal lands: Concept, assessment and management. J. Agric. Sci. 2013, 5, 129. [Google Scholar] [CrossRef]
- Milbrandt, A.; Overend, R.P. Assessment of Biomass Resources from Marginal Lands in APEC Economies (No. APEC# 209-RE-01.4; NREL/TP-6A2-46209); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar]
- Vuichard, N.; Ciais, P.; Wolf, A. Soil carbon sequestration or biofuel production: New land-use opportunities for mitigating climate over abandoned soviet farmlands. Environ. Sci. Technol. 2009, 43, 8678–8683. [Google Scholar] [CrossRef] [PubMed]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.H. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2009, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Qualset, C.O.; McGuire, P.E.; Warburton, M.L. In California: ‘agrobiodiversity’ key to agricultural productivity. Calif. Agric. 1995, 49, 45–49. [Google Scholar] [CrossRef]
- Barot, S.; Allard, V.; Cantarel, A.; Enjalbert, J.; Gauffreteau, A.; Goldringer, I.; Lata, J.C.; Le Roux, X.; Niboyet, A.; Porcher, E. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 2017, 37, 13. [Google Scholar] [CrossRef]
- Leakey, R.R.B. Multifunctional Agricultura: Achieving Sustainable Development in Africa; Academic: London, UK, 2017. [Google Scholar]
- Reiss, E.R.; Drinkwater, L.E. Cultivar mixtures: A meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 2018, 28, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef]
- Miazzi, M.M.; di Rienzo, V.; Mascio, I.; Montemurro, C.; Sion, S.; Sabetta, W.; Vivaldi, G.A.; Camposeo, S.; Caponio, F.; Squeo, G.; et al. Re. Ger. OP: An integrated project for the recovery of ancient and rare olive germplasm. Front. Plant Sci. 2020, 11, 73. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Berry, P.M.; Harrison, P.A. Future environmental change impacts on rural land use and biodiversity: A synthesis of the ACCELERATES project. Environ. Sci. Policy 2006, 9, 93–100. [Google Scholar] [CrossRef]
- Stoate, C.; Báldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; Van Doorn, A.; De Snoo, G.R.; Rakosy, L.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- CEAS Consultants (Wye) Ltd; European Forum on Nature Conservation and Pastoralism. The Environmental Impact of Dairy Production in the EU: Practical Options for the Improvement of the Environmental Impact; Report for DG Environment; European Commission: Brussels, Belgium, 2000; 176p. [Google Scholar]
- Plieninger, T.; Höchtl, F.; Spek, T. Traditional land-use and nature conservation in European rural landscapes. Environ. Sci. Policy 2006, 9, 317–321. [Google Scholar] [CrossRef]
- Streifeneder, T.; Ruffini, F.V. Selected aspects of the agricultural structure change in the Alps-A comparison of harmonised agristructural indicators at municipality level within the Alpine Convention area. Berichte Uber Landwirtsch. 2007, 85, 406–440. [Google Scholar]
- Lindborg, R.; Bengtsson, J.; Berg, A.; Cousins, S.A.O.; Eriksson, O.; Gustafsson, T.; Hasund, K.P.; Lenoir, L.; Pihlgren, A.; Sjödin, E. A landscape perspective on conservation of semi-natural grasslands. Agric. Ecosyst. Environ. 2008, 125, 213–222. [Google Scholar] [CrossRef]
- Dallimer, M.; Tinch, D.; Acs, S.; Hanley, N.; Southall, H.R.; Gaston, K.J.; Armsworth, P.R. 100 years of change: Examining agricultural trends, habitat change and stakeholder perceptions through the 20th century. J. Appl. Ecol. 2009, 46, 334–343. [Google Scholar] [CrossRef]
- Tappeiner, U.; Tappeiner, G.; Hilbert, A.; Mattanovich, E. The EU Agricultural Policy and the Environment: Evaluation of the Alpine Region; Blackwell: Berlin, Germany, 2003. [Google Scholar]
- Acs, S.; Hanley, N.; Dallimer, M.; Robertson, P.; Wilson, P.; Gaston, K.J.; Armsworth, P.R. The effect of decoupling on marginal agricultural systems: Implications for farm incomes, land use and upland ecology. Land Use Policy 2010, 27, 550–563. [Google Scholar] [CrossRef]
- IEEP (Institute of European Environmental Policy). Evaluation of the Environmental Impacts of CAP (Common Agricultural Policy) Measures Related to the Beef and Veal Sector and the Milk Sector; Report prepared for DG Agriculture; European Commission: Brussels, Belgium, 2007; p. 290. [Google Scholar]
- Alliance Environment. Evaluation of the Environmental Impacts of Milk Quotas; Report for DG Environment; European Commission: Brussels, Belgium, 2008; 187p. [Google Scholar]
- Hammer, K.; Perrino, P. Plant genetic resources in south Italy and Sicily—Studies towards in situ and onfarm conservation. Plant Genet. Resour. Newsl. 1995, 103, 19–23. [Google Scholar]
- Galluzzi, G.; Eyzaguirre, P.; Negri, V. Home gardens: Neglected hotspots of agro-biodiversity and cultural diversity. Biodivers. Conserv. 2010, 19, 3635–3654. [Google Scholar] [CrossRef]
- Laghetti, G.; Bisignano, V.; Urbano, M. Genetic resources of vegetable crops and their safeguarding in Italy. Hortic. Int. J. 2018, 2, 72–74. [Google Scholar]
- Shahid, S.A.; Al-Shankiti, A. Sustainable food production in marginal lands—Case of GDLA member countries. J. Soil Water Conserv. 2013, 1, 24–38. [Google Scholar] [CrossRef]
- Hammer, K.; Montesano, V.; Direnzo, P.; Laghetti, G. Conservation of crop genetic resources in Italy with a focus on vegetables and a case study of a neglected race of Brassica oleracea. Agriculture 2018, 8, 105. [Google Scholar] [CrossRef]
- Veteläinen, M.; Negri, V.; Maxted, N. (Eds.) European Landraces: On-Farm Conservation, Management and Use (No. 15); Bioversity International: Rome, Italy, 2009. [Google Scholar]
- Bellon, M.R.; van Etten, J. Climate change and on-farm conservation of crop landraces in centres of diversity. In Plant Genetic Resources and Climate Change; Jackson, M., Ford-Lloyd, B., Parry, M.L., Eds.; CAB International: Wallingford, UK, 2014; pp. 137–150. [Google Scholar]
- Ningbo, C.; Taisheng, D.; Shaozhong, K.; Fusheng, L.; Jianhua, Z.; Mixia, W.; Zhijun, L. Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees. Agric. Water Manag. 2008, 95, 489–497. [Google Scholar]
- Fereres, E.; Goldhamer, D.A.; Sadras, V.O. Yield response to water of fruit trees and vines: Guidelines. In Crop Yield Response to Water; Steduto, P., Hsiao, T.C., Fereres, E., Raes, D., Eds.; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 2012; Volume 66, pp. 246–497. [Google Scholar]
- Intrigliolo, D.S.; Bonet, L.; Nortes, P.A.; Puert, H.; Nicolas, E.; Bartual, J. Pomegranate trees performance under sustained and regulated deficit irrigation. Irrig. Sci. 2013, 31, 959–970. [Google Scholar] [CrossRef]
- Romero, P.; Gil Munoz, R.; Fernandez-Fernandez, J.I.; Del Amor, F.M.; Martinez Cutillas, A.; Garcia-Garcia, J. Improvement of yeld, and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation in comparison with regulated deficit irrigation. Agric. Water Manag. 2015, 149, 55–73. [Google Scholar] [CrossRef]
- Kapazoglou, A.; Gerakari, M.; Lazaridi, E.; Kleftogianni, K.; Sarri, E.; Tani, E.; Bebeli, P.J. Crop wild relatives: A valuable source of tolerance to various abiotic stresses. Plants 2023, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.A.; Abrisqueta, J.M.; Hernansaez, A.; Moreno, F. Water balance in a young almond orchard under drip irrigation with water of low-quality. Agric. Water Manag. 2000, 43, 75–98. [Google Scholar] [CrossRef]
- Sion, S.; Taranto, F.; Montemurro, C.; Mangini, G.; Camposeo, S.; Falco, V.; Gallo, A.; Mita, G.; Saddoud Debbabi, O.; Ben Amar, F.; et al. Genetic characterization 1575 of Apulian olive germplasm as potential source in new breeding programs. Plants 2019, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- PV Magazine. Agrivoltaic for Pear Orchards, 2020. Available online: https://www.pv-magazine.com/2020/10/02/agrivoltaics-for-pear-orchards/ (accessed on 3 October 2023).
- Ferrara, G.; Boselli, M.; Palasciano, M.; Mazzeo, A. Effect of shading determined by photovoltaic panels installed above the vines on the performance of cv. Corvina (Vitis vinifera L.). Sci. Hortic. 2023, 308, 111595. [Google Scholar] [CrossRef]
- Lepaja, K.; Kullaj, E.; Lepaja, L.; Krasniqi, N. Influence of PRD and mulching on nutrient contents of raspberry. Acta Hortic. 2018, 1217, 137–144. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Schultz, H.R.; de Cortazar-Atauri, I.G.; Duchene, E.; Ollat, N.; Pieri, P.; Bois, B.; Goutouly, J.P.; Quénol, H.; Touzard, J.M.; et al. Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc. Natl. Acad. Sci. USA 2013, 110, E3051–E3052. [Google Scholar] [CrossRef]
- De Giovanni, C.; Di Rienzo, V.; Miazzi, M.; Fanelli, V.; Blanco, A.; Montemurro, C. A DNA methylation survey of NCED genes in Vitis vinifera L. under stress conditions. Acta Hortic. 2015, 1082, 277–284. [Google Scholar] [CrossRef]
- Marrano, L.; Grzeskowiak, P.; Sanz, M.; Lorenzi, S.; Prazzoli, M.L.; Arzumano, A.; Amanova, M.; Failla, O.; Maghradze, D.; Grando, M.S. Genetic diversity and relationships in the grapevine germplasm collection from Central Asia. Vitis 2015, 54, 233–237. [Google Scholar]
- Fanelli, V.; Savoia, M.A.; Gadaleta, S.; Piarulli, L.; Montemurro, C.; La Notte, P.; Miazzi, M.M.; Bruno, M.; Falbo, M.; Petrillo, F.; et al. Molecular characterization of wine grape cultivars from Calabria. In XII International Conference on Grapevine Breeding and Genetics; Acta Horticulturae: Leuven, Belgium, 2019; Volume 1248, pp. 281–286. [Google Scholar]
- Scarano, A.; Semeraro, T.; Chieppa, M.; Santino, A. Neglected and Underutilized Plant Species (NUS) from the Apulia Region Worthy of Being Rescued and Re-Included in Daily Diet. Horticulturae 2021, 7, 177. [Google Scholar] [CrossRef]
- Marconi, G.; Ferradini, N.; Russi, L.; Concezzi, L.; Veronesi, F.; Albertini, E. Genetic characterization of the apple germplasm collection in central Italy: The value of local varieties. Front. Plant Sci. 2018, 9, 1460. [Google Scholar] [CrossRef]
- Gadaleta, A.; Mangini, G.; Mulè, G.; Blanco, A. Characterization of dinucleotide and trinucleotide EST-derived microsatellites in the wheat genome. Euphytica 2007, 153, 73–85. [Google Scholar] [CrossRef]
- Ferrara, G.; Giancaspro, A.; Mazzeo, A.; Giove, S.L.; Matarrese, A.M.S.; Pacucci, C.; Punzi, R.; Trani, A.; Gambacorta, G.; Blanco, A.; et al. Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region, Southeastern Italy. Sci. Hortic. 2014, 178, 70–78. [Google Scholar] [CrossRef]
- Giancaspro, A.; Giove, S.L.; Marcotuli, I.; Ferrara, G.; Gadaleta, A. Datasets for genetic diversity assessment in a collection of wild and cultivated pomegranates (Punica granatum L.) by microsatellite markers. Data Brief 2023, 49, 109346. [Google Scholar] [CrossRef] [PubMed]
- Montesano, V.; Negro, D.; Sarli, G.; Logozzo, G.; Spagnoletti Zeuli, P. Landraces in inland areas of the Basilicata region, Italy: Monitoring and perspectives for on farm conservation. Genet. Resour. Crop Evol. 2012, 59, 701–716. [Google Scholar] [CrossRef]
- Yannam, V.R.R.; Rufo, R.; Marcotuli, I.; Gadaleta, A.; Lopes, M.S.; Soriano, J.M. Discovering Loci for Breeding Prospective and Phenology in Wheat Mediterranean Landraces by Environmental and eigenGWAS. Int. J. Mol. Sci. 2023, 24, 1700. [Google Scholar] [CrossRef]
- Perrino, E.V.; Perrino, P. Crop wild relatives: Know how past and present to improve future research, conservation and utilization strategies, especially in Italy: A review. Genet. Resour. Crop Evol. 2020, 67, 1067–1105. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Pacucci, C.; Matarrese, A.M.S.; Tarantino, A.; Crisosto, C.; Incerti, O.; Marcotuli, I.; Nigro, D.; Blanco, A.; et al. Characterization of edible fig germplasm from Puglia, southeastern Italy: Is the distinction of three fig types (Smyrna, San Pedro and Common) still valid? Sci. Hortic. 2016, 205, 52–58. [Google Scholar] [CrossRef]
- Marcotuli, I.; Mandrone, M.; Chiocchio, I.; Poli, F.; Gadaleta, A.; Ferrara, G. Metabolomics and genetics of reproductive bud development in Ficus carica var. sativa (edible fig) and in Ficus carica var. caprificus (caprifig): Similarities and differences. Front. Plant Sci. 2023, 14, 1192350. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.E.; Pascual, U.; Brussaard, L.; de Ruiter, P.; Bawa, K.S. Biodiversity in agricultural landscapes: Investing without losing interest. Agric. Ecosyst. Environ. 2007, 121, 193–195. [Google Scholar] [CrossRef]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Cifarelli, S.; Losavio, F.; Sonnante, G.; Elia, A. Exploring on-farm agro-biodiversity: A study case of vegetable landraces from Puglia region (Italy). Biodivers. Conserv. 2020, 29, 747–770. [Google Scholar] [CrossRef]
- Brush, S.B.; Meng, E. Farmers’ valuation and conservation of crop genetic resources. Genet. Resour. Crop Evol. 1998, 45, 139–150. [Google Scholar] [CrossRef]
- Negri, V. Landraces in central Italy: Where and why they are conserved and perspectives for their on-farm conservation. Genet. Resour. Crop Evol. 2003, 50, 871–885. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Russo, G.; Melucci, F.M. Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming. Sustainability 2022, 14, 6389. [Google Scholar] [CrossRef]
- Buckwell, A.; Nordang Uhre, A.; Williams, A.; Polakova, J.; Blum, W.; Schiefer, J.; Lair, G.; Heissenhuber, A.; Schieβl, P.; Krämer, C.; et al. Sustainable Intensification of European Agriculture; Rise Foundation: Memphis, TN, USA, 2014; Available online: https://ieep.eu/uploads/articles/attachments/a39b547e-8abe-49d8-94ec-77f751378e34/111120_BROCH_SUST_INTENS_DEF.pdf?v=63664509854 (accessed on 10 April 2022).
- Cervelli, E.; Recchi, P.F.; Scotto di Perta, E.; Pindozzi, S. Land Use Change Scenario Building Combining Agricultural Development Policies, Landscape-Planning Approaches, and Ecosystem Service Assessment: A Case Study from the Campania Region (Italy). Land 2023, 12, 1865. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Li, G.; Messina, J.P.; Peter, B.G.; Snapp, S.S. Mapping land suitability for agriculture in Malawi. Land Degrad. Dev. 2017, 28, 2001–2016. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Barca, E.; Iovino, M. Application of multivariate analysis techniques for selecting soil physical quality indicators: A case study in long-term field experiments in Apulia (Southern Italy). Soil Sci. Soc. Am. J. 2019, 83, 707–720. [Google Scholar] [CrossRef]
- Popolizio, S.; Stellacci, A.M.; Giglio, L.; Barca, E.; Spagnuolo, M.; Castellini, M. Seasonal and Soil Use Dependent Variability of Physical and Hydraulic Properties: An Assessment under Minimum Tillage and No-Tillage in a Long-Term Experiment in Southern Italy. Agronomy 2022, 12, 3142. [Google Scholar] [CrossRef]
- Pranagal, J.; Wozniak, A. 30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem. Agric. Water Manag. 2021, 243, 106408. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Stellacci, A.M.; Castellini, M.; Diacono, M.; Rossi, R.; Gattullo, C.E. Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators. Appl. Sci. 2021, 11, 5099. [Google Scholar] [CrossRef]
- Ferrara, R.M.; Mazza, G.; Muschitiello, C.; Castellini, M.; Stellacci, A.M.; Navarro, A.; Lagomarsino, A.; Vitti, C.; Rossi, R.; Rana, G. Short-term effects of conversion to no-tillage on respiration and chemical-physical properties of the soil: A case study in a wheat cropping system in semi-dry environment. Ital. J. Agrometeorol. 2017, 1, 47–58. [Google Scholar]
- Alhajj Ali, S.; Tedone, L.; De Mastro, G. A comparison of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy. Energy 2013, 61, 308–318. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F. Sustainability of agro-ecological practices in organic horticulture: Yield, energy-use and carbon footprint. Agroecol. Sustain. Food Syst. 2020, 44, 726–746. [Google Scholar] [CrossRef]
- Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy. Eur. J. Agron. 2016, 77, 188–198. [Google Scholar] [CrossRef]
- Garcia, C.; Hernandez, T.; Coll, M.D.; Ondoño, S. Organic amendments for soil restoration in arid and semiarid areas: A review. AIMS Environ. Sci. 2017, 4, 640–676. [Google Scholar] [CrossRef]
- Schröder, P.; Beckers, B.; Daniels, S.; Gnädinger, F.; Maestri, E.; Marmiroli, N.; Mench, M.; Millan, R.; Obermeier, M.M.; Oustriere, N.; et al. Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Sci. Total Environ. 2018, 616, 1101–1123. [Google Scholar] [CrossRef] [PubMed]
- Leogrande, R.; Vitti, C. Use of organic amendments to reclaim saline and sodic soils: A review. Arid. Land Res. Manag. 2019, 33, 1–21. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kogel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Zhang, M.; Ok, Y.S. Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Manag. 2014, 5, 255–257. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Gurwick, N.P.; Moore, L.A.; Kelly, C.; Elias, P. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS ONE 2013, 8, e75932. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Mininni, C.; Santamaria, P.; Abdelrahman, H.M.; Cocozza, C.; Miano, T.; Montesano, F.; Parente, A. Posidonia-based compost as a peat substitute for lettuce transplant production. HortScience 2012, 47, 1438–1444. [Google Scholar] [CrossRef]
- Gattullo, C.E.; Mininni, C.; Parente, A.; Montesano, F.F.; Allegretta, I.; Terzano, R. Effects of municipal solid waste—And sewage sludge-compost-based growing media on the yield and heavy metal content of four lettuce cultivars. Environ. Sci. Pollut. Res. 2017, 24, 25406–25415. [Google Scholar] [CrossRef] [PubMed]
- Castro, H.; Castro, P. Mediterranean marginal lands in face of climate change: Biodiversity and ecosystem services. In Climate Change-Resilient Agriculture and Agroforestry: Ecosystem Services and Sustainability; Springer: Berlin/Heidelberg, Germany, 2019; pp. 175–187. [Google Scholar]
- Bassignana, C.F.; Merante, P.; Belliére, S.R.; Vazzana, C.; Migliorini, P. Assessment of Agricultural Biodiversity in Organic Livestock Farms in Italy. Agronomy 2022, 12, 607. [Google Scholar] [CrossRef]
- Vinogradovs, I.; Nikodemus, O.; Avotiņš, A.; Zariņa, A. Distribution of ecosystem service potential in marginal agroecosystems in a mosaic-type landscape under exploratory scenarios. J. Land Use Sci. 2023, 18, 356–373. [Google Scholar] [CrossRef]
- Lam, S.T.; Conway, T.M. Ecosystem services in urban land use planning policies: A case study of Ontario municipalities. Land Use Policy 2018, 77, 641–651. [Google Scholar] [CrossRef]
- Clements, H.S.; De Vos, A.; Bezerra, J.C.; Coetzer, K.; Maciejewski, K.; Mograbi, P.J.; Shackleton, C. The relevance of ecosystem services to land reform policies: Insights from South Africa. Land Use Policy 2021, 100, 104939. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of decision support tools to operationalize the ecosystem services concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef]
- Beaumont, N.J.; Mongruel, R.; Hooper, T. Practical application of the Ecosystem Service Approach (ESA): Lessons learned and recommendations for the future. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 68–78. [Google Scholar] [CrossRef]
- Bouwma, I.; Schleyer, C.; Primmer, E.; Winkler, K.J.; Berry, P.; Young, J.; Carmen, E.; Špulerová, J.; Bezák, P.; Preda, E.; et al. Adoption of the ecosystem services concept in EU policies. Ecosyst. Serv. 2018, 29, 213–222. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’connor, T.; O’farrell, P.; Smith, H.G.; Lindborg, R. Grasslands—More important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Anderson, E.; Mammides, C. Changes in land-cover within high nature value farmlands inside and outside Natura 2000 sites in Europe: A preliminary assessment. Ambio 2020, 49, 1958–1971. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.; Daim, T.U.; Jetter, A. A review of scenario planning. Futures 2013, 46, 23–40. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Burland, A.; von Cossel, M. Towards Managing Biodiversity of European Marginal Agricultural Land for Biodiversity-Friendly Biomass Production. Agronomy 2023, 13, 1651. [Google Scholar] [CrossRef]
- Chen, D.; Hu, W. Temporal and Spatial Effects of Heavy Metal-Contaminated Cultivated Land Treatment on Agricultural Development Resilience. Land 2023, 12, 945. [Google Scholar] [CrossRef]
Physical Constraints | Climate Constraints | Biophysical Constraints | Socio-Economic Constraints |
---|---|---|---|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.A.; Vivaldi, G.A.; Tallou, A.; Lopriore, G.; Stellacci, A.M.; Montesano, F.F.; Mazzeo, A.; Ferrara, G.; Gadaleta, A.; Camposeo, S. Sustainability Potential of Marginal Areas for Food, Feed, and Non-Food Production in the Puglia Region, Southern Italy: Part II: A Review. Agronomy 2024, 14, 472. https://doi.org/10.3390/agronomy14030472
Ali SA, Vivaldi GA, Tallou A, Lopriore G, Stellacci AM, Montesano FF, Mazzeo A, Ferrara G, Gadaleta A, Camposeo S. Sustainability Potential of Marginal Areas for Food, Feed, and Non-Food Production in the Puglia Region, Southern Italy: Part II: A Review. Agronomy. 2024; 14(3):472. https://doi.org/10.3390/agronomy14030472
Chicago/Turabian StyleAli, Salem Alhajj, Gaetano Alessandro Vivaldi, Anas Tallou, Giuseppe Lopriore, Anna Maria Stellacci, Francesco Fabiano Montesano, Andrea Mazzeo, Giuseppe Ferrara, Agata Gadaleta, and Salvatore Camposeo. 2024. "Sustainability Potential of Marginal Areas for Food, Feed, and Non-Food Production in the Puglia Region, Southern Italy: Part II: A Review" Agronomy 14, no. 3: 472. https://doi.org/10.3390/agronomy14030472
APA StyleAli, S. A., Vivaldi, G. A., Tallou, A., Lopriore, G., Stellacci, A. M., Montesano, F. F., Mazzeo, A., Ferrara, G., Gadaleta, A., & Camposeo, S. (2024). Sustainability Potential of Marginal Areas for Food, Feed, and Non-Food Production in the Puglia Region, Southern Italy: Part II: A Review. Agronomy, 14(3), 472. https://doi.org/10.3390/agronomy14030472