Best Morpho-Physiological Parameters to Characterize Seed-Potato Plant Growth under Aeroponics: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Conditions
2.2. Aeroponic System
2.3. Design
2.4. Nutrient Solution
2.5. Data Collection
2.5.1. Morphological Aspects
2.5.2. Parameters of the fourth leaf
2.5.3. Physiological Aspects
2.5.4. Yield
2.6. Data Analysis
3. Results
3.1. Morphological Aspects
3.2. Physiological Aspects
3.3. Yield
3.4. Multivariate Analyses
4. Discussion
4.1. Morphological Aspects
4.2. Physiological Aspects
4.3. Yield
4.4. Multivariate Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otazú, V. Manual on Quality Seed Potato Production Using Aeroponics; International Potato Center (CIP): Lima, Perú, 2010; pp. 1–42. [Google Scholar]
- Tunio, M.H.; Gao, J.; Shaikh, S.A.; Lakhiar, I.A.; Qureshi, W.A.; Solangi, K.A.; Chandio, F.A. Potato production in aeroponics: An emerging food growing system in sustainable agriculture for food security. Chil. J. Agric. Res. 2020, 80, 118–132. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Garzón, J.; Montes, L.; Garzón, J.; Lampropoulos, G. Systematic review of technology in aeroponics: Introducing the technology adoption and integration in sustainable agriculture model. Agronomy 2023, 13, 2517. [Google Scholar] [CrossRef]
- Edmonds, J.W.; Sackett, J.D.; Lomprey, H.; Hudson, H.L.; Moser, D.P. The aeroponic rhizosphere microbiome: Community dynamics in early succession suggest strong selectional forces. Antonie Van Leeuwenhoek 2019, 113, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Otazú, V.C. Producción de semilla de papa de calidad por aeroponía. In Alternativas al Uso de Bromuro de Metilo en la Producción de Semilla de Papa de Calidad; Centro Internacional de la Papa: Lima, Peru, 2007. [Google Scholar]
- Silva Filho, J.B.; Fontes, P.C.R.; Cecon, P.R.; Ferreira, J.F.S.; McGiffen, M.E., Jr.; Montgomery, J.F. Yield of potato minitubers under aeroponics, optimized for nozzle type and spray direction. HortScience 2020, 55, 14–22. [Google Scholar] [CrossRef]
- Lemoine, R.; Camera, S.L.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hu, Y.; Li, P.; Feng, X.; Jiang, M.; Sui, Z. Single-cell transcriptome sequencing revealing the difference in photosynthesis and carbohydrate metabolism between epidermal cells and non-epidermal cells of Gracilariopsis lemaneiformis (Rhodophyta). Front. Plant Sci. 2022, 13, 968158. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R. Improving photosynthesis—A review. Plant Physiol. 2013, 162, 1780–1793. [Google Scholar] [CrossRef]
- Buckseth, T.; Sharma, A.K.; Pandey, K.K.; Singh, B.P.; Muthuraj, R. Methods of pre-basic seed potato production with special reference to aeroponics—A review. Sci. Hortic. 2016, 204, 79–87. [Google Scholar] [CrossRef]
- Broćić, Z.; Momčilović, I.; Poštić, D.; Oljača, J.; Veljković, B. Production of high-quality seed potato by aeroponics. In The Potato Crop: Management, Production, and Food Security; Villa, P.M., Ed.; Nova Science Publishers: New York, NY, USA, 2021; pp. 25–59. [Google Scholar]
- Slattery, R.A.; Ort, D.R. Photosynthetic energy conversion efficiency: Setting a baseline for gauging future improvements in important food and biofuel crops—A review. Plant Physiol. 2015, 168, 383–392. [Google Scholar] [CrossRef]
- Farran, I.; Mingo-Castel, A.M. Potato minituber production using aeroponics: Effect of plant density and harvesting intervals. Am. J. Potato Res. 2006, 83, 47–53. [Google Scholar] [CrossRef]
- Arora, K.; Kaur, P.; Kumar, P.; Singh, A.; Patel, S.K.S.; Li, X.; Yang, Y.H.; Bhatia, S.K.; Kulshrestha, S. Valorization of wastewater resources into biofuel and value-added products using microalgal system. Front. Energy Res. 2021, 9, 646571. [Google Scholar] [CrossRef]
- Çalışkan, M.E.; Yavuz, C.; Yağız, A.K.; Demirel, U.; Çalışkan, S. Comparison of aeroponics and conventional potato mini tuber production systems at different plant densities. Potato Res. 2021, 64, 41–53. [Google Scholar] [CrossRef]
- Anderson, M.S.; Barta, D.; Douglas, G.; Motil, B.; Massa, G.; Fritsche, R.; Quincy, C.; Romeyn, M.; Hanford, A. Key gaps for enabling plant growth in future missions. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017. [Google Scholar] [CrossRef]
- Golenberg, E.M.; West, N.W. Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am. J. Bot. 2013, 100, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Aphalo, P.J.; Sadras, V.O. Explaining pre-emptive acclimation by linking information to plant phenotype. J. Exp. Bot. 2022, 73, 5213–5234. [Google Scholar] [CrossRef]
- Oliveira, J.S.; Brown, H.E.; Moot, D.J. Assessing potato canopy growth and development at the individual leaf level to improve the understanding of the plant source–sink relations. New Zealand J. Crop Hortic. Sci. 2021, 49, 325–346. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.C.; Spetz, C.; Blystad, D.R. In vitro therapies for virus elimination of potato-valuable germplasm in Norway. Sci. Hortic. 2019, 249, 7–14. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Mathew, L.; Pathirana, R.; Wiedow, C.; Hunter, D.A.; McLachlan, A.; Khan, S.; Tang, J.; Nadarajan, J. Eradication of Potato Virus S, Potato Virus A, and Potato Virus M from infected in vitro-grown potato shoots using in vitro therapies. Front. Plant Sci. 2022, 13, 878733. [Google Scholar] [CrossRef]
- Silva Filho, J.B.; Fontes, P.C.R.; Ferreira, J.F.; Cecon, P.R.; Crutchfield, E. Optimal nutrient solution and dose for the yield of nuclear seed potatoes under aeroponics. Agronomy 2022, 12, 2820. [Google Scholar] [CrossRef]
- Wheeler, R.M.; Steffen, K.L.; Tibbitts, T.W.; Palta, J.P. Utilization of potatoes for life support systems II. The effects of temperature under 24-h and 12-h photoperiods. Am. Potato J. 1986, 63, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, R.M.; Tibbitts, T.W.; Fitzpatrick, A.H. Potato growth in response to relative humidity. HortScience 1989, 24, 482–484. [Google Scholar] [CrossRef]
- OSCS, Oregon Seed Certification Service. 2023 Oregon Potato Seed Certification Standards; Oregon State University: Corvallis, OR, USA, 2023; pp. 1–36. Available online: https://seedcert.oregonstate.edu/sites/seedcert.oregonstate.edu/files/2023-05/potato_standards23.pdf (accessed on 7 February 2024).
- Badoni, A.; Chauhan, J.S. In vitro sterilization protocol for micropropagation of Solanum tuberosum cv. ‘Kufri Himalini’. Academ. Arena 2010, 2, 24–27. [Google Scholar] [CrossRef]
- Kirkby, E.A.; Knight, A.H. Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiol. 1977, 60, 349–353. [Google Scholar] [CrossRef]
- Silva Filho, J.B.; Fontes, P.C.R.; Cecon, P.R.; McGiffen, M.E., Jr. Evaluation of “UFV aeroponic system” to produce basic potato seed minitubers. Am. J. Potato Res. 2018, 95, 443–450. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology, 2nd ed.; Springer Science Business Media, LLC: New York, NY, USA, 2008; pp. 321–374. [Google Scholar] [CrossRef]
- Hunt, R. Basic Growth Analysis: Plant Growth Analysis for Beginners; Unwin Hyman Ltd.: London, UK, 1990; pp. 35–54. [Google Scholar] [CrossRef]
- Radford, P.J. Growth analysis formulae—Their use and abuse. Crop Sci. 1967, 7, 171–175. [Google Scholar] [CrossRef]
- Evans, G.C. The Quantitative Analysis of Plant Growth; University of California Press: Berkeley, CA, USA, 1972. [Google Scholar]
- Li, L.; Qin, Y.; Liu, Y.; Hu, Y.; Fan, M. Leaf positions of potato suitable for determination of nitrogen content with a SPAD meter. Plant Prod. Sci. 2012, 15, 317–322. [Google Scholar] [CrossRef]
- Gardner, F.P.; Pearce, R.B.; Mitchell, R.L. Physiology of Crop Plants, 2nd ed.; Scientific Publishers: Jodhpur, India, 2019; pp. 187–208. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org (accessed on 7 February 2024).
- Ribeiro Junior, J.I.; Melo, A.L.P. Guia Prático Para Utilização Do SAEG; Folha Artes Graficas Ltd.a.: Viçosa, Brazil, 2008. [Google Scholar]
- Mobini, S.H.; Ismail, M.R.; Arouiee, H. The impact of aeration on potato (Solanum tuberosum L.) minituber production under soilless conditions. Afr. J. Biotechnol. 2015, 14, 910–921. [Google Scholar]
- Ritter, E.; Angulo, B.; Riga, P.; Herrán, C.; Relloso, J.; San Jose, M. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Res. 2001, 44, 127–135. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2015; p. 761. [Google Scholar]
- Malladi, A.; Burns, J.K. Communication by plant growth regulators in roots and shoots of horticultural crops. HortScience 2007, 42, 1113–1117. [Google Scholar] [CrossRef]
- Poštić, D.; Momirović, N.; Broćić, Z.; Dolijanović, Z.; Aleksić, G. The evaluation of biological viability of potato seed tubers grown at different altitudes. Afr. J. Agric. Res. 2012, 7, 3073–3080. [Google Scholar] [CrossRef]
- Singh, S.; Kumari, R.; Agrawal, M.; Agrawal, S.B. Growth, yield and tuber quality of Solanum tuberosum L. under supplemental ultraviolet-B radiation at different NPK levels. Plant Biol. 2011, 13, 508–516. [Google Scholar] [CrossRef]
- Sumarni, E.; Farid, N.; Soesanto, L. Effect of electrical conductivity (EC) in the nutrition solution on aeroponic potato seed production with root zone cooling application in tropical lowland, Indonesia. Agric. Eng. Int. CIGR J. 2019, 21, 70–77. [Google Scholar]
- Wohleb, C.H.; Knowles, N.R.; Pavek, M.J. Plant Growth and Development. In The Potato: Botany, Production, and Uses, 1st ed.; Navarre, R., Pavek, M.J., Eds.; CABI: Boston, MA, USA, 2014; pp. 64–82. [Google Scholar]
- Zhu, X.-G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef]
- Struik, P.C. Responses of the potato plant to temperature. In Potato Biology and Biotechnology Advances and Perspectives, 1st ed.; Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., Mackerron, D.K.L., Taylor, M.A., Ross, H.A., Eds.; Elsevier: Oxford, UK, 2007; pp. 367–393. [Google Scholar]
- Bojacá, C.R.; García, S.J.; Schrevens, E. Analysis of potato canopy coverage as assessed through digital imagery by nonlinear mixed effects models. Potato Res. 2011, 54, 237–252. [Google Scholar] [CrossRef]
- Chang, D.C.; Cho, I.C.; Suh, J.T.; Kim, S.J.; Lee, Y.B. Growth and yield response of three aeroponically grown potato cultivars (Solanum tuberosum L.) to different electrical conductivities of nutrient solution. Am. J. Potato Res. 2011, 88, 450–458. [Google Scholar] [CrossRef]
- Chang, D.C.; Park, C.S.; Kim, S.Y.; Lee, Y.B. Growth and tuberization of hydroponically grown potatoes. Potato Res. 2012, 55, 69–81. [Google Scholar] [CrossRef]
- Roosta, H.R.; Rashidi, M.; Karimi, H.R.; Alaei, H.; Tadayyonnejhad, M. Comparison of vegetative growth and minituber yield in three potato cultivars in aeroponics and classic hydroponics with three different nutrient solutions. J. Sci. Technol. Greenh. Cult. 2013, 4, 80–87. [Google Scholar]
- Lambers, H.; Oliveira, R.S. Growth and Allocation. In Plant Physiological Ecology, 3rd ed.; Lambers, H., Oliveira, R.S., Eds.; Springer: Cham, Switzerland, 2019; pp. 385–449. [Google Scholar] [CrossRef]
- Ascione, S.; Ruggiero, C.; Vitale, C. Contribution of growth components on relative, plant, crop, and tuber growth rate of nine potato cultivars in Southern Italy. Int. J. Sci. 2013, 2, 1–11. [Google Scholar]
- Poorter, H.; Remkes, C. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 1990, 83, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Jongschaap, R.E. Run-time calibration of simulation models by integrating remote sensing estimates of leaf area index and canopy nitrogen. Eur. J. Agron. 2006, 24, 316–324. [Google Scholar] [CrossRef]
- Bangemann, L.W.; Sieling, K.; Kage, H. The effect of nitrogen and late blight on crop growth, solar radiation interception and yield of two potato cultivars. Field Crops Res. 2014, 155, 56–66. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. Crop biomass evaluation using radiometric measurements. Photogrammetria 1989, 43, 241–256. [Google Scholar] [CrossRef]
- Fernandes, G.S.T.; Lopes, P.M.O.; Moura, G.B.A.; Silva, M.V.; Galvincio, J.D.; Santos, A. Balance of photosynthetically active radiation by remote sensing in a seasonally dry tropical forest in Northeastern Brazil. Rev. Bras. Geogr. Fís. 2021, 14, 2486–2509. [Google Scholar] [CrossRef]
- Wang, C.C.; Wang, X.Y.; Wang, K.X.; Hu, J.J.; Tang, M.X.; He, W.; Vander Zaag, P. Manipulating aeroponically grown potatoes with gibberellins and calcium nitrate. Am. J. Potato Res. 2018, 95, 351–361. [Google Scholar] [CrossRef]
- Tekalign, T.; Hammes, P.S. Growth and productivity of potato as influenced by cultivar and reproductive growth: II. Growth analysis, tuber yield and quality. Sci. Hortic. 2005, 105, 29–44. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Scavroni, J.; Silva, J.R.V.; Cataneo, A.C.; Martins, D.; Boaro, C.S.F. Copper oxychloride fungicide and its effect on growth and oxidative stress of potato plants. Pestic. Biochem. Physiol. 2014, 112, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Hilty, J.; Muller, B.; Pantin, F.; Leuzinger, S. Plant growth: The what, the how, and the why. New Phytol. 2021, 232, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 2006, 20, 565–574. [Google Scholar] [CrossRef]
- Tan, G.Y.; Tan, W.K. Net assimilation rate and relative nitrogen assimilation rate in relation to the dry matter production of alfalfa cultivars. Plant Soil 1981, 59, 185–192. [Google Scholar] [CrossRef]
- Daminee, D.V.; Ramteke, L.K. Morpho-physiological attributes of wheat (Triticum aestivum L.) as influenced by plant growth regulators and fertilizer application. Pharm. Innov. J. 2022, 11, 5111–5135. [Google Scholar]
- Kloosterman, B.; Bachem, C. Tuber Development. In The Potato: Botany, Production, and Uses, 1st ed.; Navarre, R., Pavek, M.J., Eds.; CABI: Boston, MA, USA, 2014; pp. 45–63. [Google Scholar]
- Kreuze, J.F.; Souza-Dias, J.A.C.; Jeevalatha, A.; Figueira, A.R.; Valkonen, J.P.T.; Jones, R.A.C. Viral Diseases in Potato. In The Potato Crop Its Agricultural, Nutritional and Social Contribution to Humankind, 1st ed.; Campos, H., Ortiz, O., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 389–430. [Google Scholar] [CrossRef]
- Caporale, A.G.; Paradiso, R.; Liuzzi, G.; Palladino, M.; Amitrano, C.; Arena, C.; Arouna, N.; Verrillo, M.; Cozzolino, V.; De Pascale, S.; et al. Green compost amendment improves potato plant performance on Mars regolith simulant as substrate for cultivation in space. Plant Soil 2023, 486, 217–233. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson India Education Services Pvt. Ltd.: Tamil Nadu, India, 2020; pp. 476–527. [Google Scholar]
- Liu, K.; Hammermeister, A.M.; Patriquin, D.G.; Martin, R.C. Assessing organic potato cropping systems at the end of the first cycle of four-year rotations using principal component analysis. Can. J. Soil Sci. 2008, 88, 543–552. [Google Scholar] [CrossRef]
Nutrient | Concentration | |
---|---|---|
Up to 35 DAT | 36 to 63 DAT | |
mmolc L−1 | ||
Nitrate | 9.80 | 7.60 |
Ammonium | 4.40 | 2.20 |
Phosphorus | 2.60 | 2.60 |
Potassium | 5.40 | 5.40 |
Calcium | 1.30 | 1.30 |
Magnesium | 1.00 | 1.00 |
Sulfur | 1.00 | 1.00 |
µmol L−1 | ||
Iron (Chelated) | 151.97 | 151.97 |
Manganese | 8.74 | 8.74 |
Boron | 98.15 | 98.15 |
Zinc | 2.75 | 2.75 |
Copper | 2.83 | 2.83 |
Molybdenum | 0.13 | 0.13 |
Electrical Conductivity (dS m−1) | 1.60 | 1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Filho, J.B.; Fontes, P.C.R.; Ferreira, J.F.d.S.; Cecon, P.R.; Santos, M.F.S.d. Best Morpho-Physiological Parameters to Characterize Seed-Potato Plant Growth under Aeroponics: A Pilot Study. Agronomy 2024, 14, 517. https://doi.org/10.3390/agronomy14030517
Silva Filho JB, Fontes PCR, Ferreira JFdS, Cecon PR, Santos MFSd. Best Morpho-Physiological Parameters to Characterize Seed-Potato Plant Growth under Aeroponics: A Pilot Study. Agronomy. 2024; 14(3):517. https://doi.org/10.3390/agronomy14030517
Chicago/Turabian StyleSilva Filho, Jaime Barros, Paulo C. R. Fontes, Jorge Freire da Silva Ferreira, Paulo R. Cecon, and Marllon Fernando Soares dos Santos. 2024. "Best Morpho-Physiological Parameters to Characterize Seed-Potato Plant Growth under Aeroponics: A Pilot Study" Agronomy 14, no. 3: 517. https://doi.org/10.3390/agronomy14030517
APA StyleSilva Filho, J. B., Fontes, P. C. R., Ferreira, J. F. d. S., Cecon, P. R., & Santos, M. F. S. d. (2024). Best Morpho-Physiological Parameters to Characterize Seed-Potato Plant Growth under Aeroponics: A Pilot Study. Agronomy, 14(3), 517. https://doi.org/10.3390/agronomy14030517