Sustainability in Food Production: A High-Efficiency Offshore Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. HVAC System
2.2. Covering Materials
Greenhouse Covering Materials Test
- = is the liminar resistances on the inner surface of the covering equal to 0.13 (m2·K·W−1);
- = is the liminar resistances on the outer surface of the covering equal to 0.04 (m2·K·W−1);
- and
- is the thermal conductance of the sample covering (W·m−2·K−1);
- is the density of heat flow rate (W·m−2);
- , are the temperatures on the hot and cold surfaces of the sample at time t (K).
- with = ideal value of parameter i
- = anti-ideal value of parameter i
2.3. Energy Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
U | thermal transmittance |
g-value | total solar energy transmittance |
Ein | internal solar radiation power |
Eext | external solar radiation power |
LT | light transmission |
Lin | indoor illuminance value |
Lout | indoor illuminance value |
Rsi | liminar resistances on the inner surface |
Rse | liminar resistances on the outer surface |
Ct | thermal conductance |
Φ | density of heat flow rate |
Th, Tc | temperatures on the hot and cold surfaces |
References
- European Commission. Farm to Fork Strategy, DG SANTE/Unit ‘Food Information and Composition, Food Waste’. 2020. Available online: https://food.ec.europa.eu/document/download/472acca8-7f7b-4171-98b0-ed76720d68d3_en?filename=f2f_action-plan_2020_strategy-info_en.pdf (accessed on 20 January 2024).
- Gifford, R.; Kormos, C.; McIntyre, A. Behavioral dimensions of climate change: Drivers, responses, barriers, and interventions. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 801–827. [Google Scholar] [CrossRef]
- Sims, R.; Flammini, A.; Puri, M.; Bracco, S. Opportunities for Agri-Food Chains to Become Energy-Smart; FAO: Rome, Italy; USAID: Washington, DC, USA, 2015; Available online: http://www.fao.org/3/a-i5125e.pdf (accessed on 20 January 2024).
- Hertel, T.W.; Burke, M.B.; Lobell, D.B. The poverty implications of climate-induced crop yield changes by 2030. Glob. Environ. Chang. 2010, 20, 577–585. [Google Scholar] [CrossRef]
- Iizumi, T.; Ramankutty, N. How do weather and climate influence cropping area and intensity? Glob. Food Secur. 2015, 4, 46–50. [Google Scholar] [CrossRef]
- Burki, T. Food security and nutrition in the world. Lancet Diabetes Endocrinol. 2022, 10, 622. [Google Scholar] [CrossRef]
- Rey, R. New Challenges and Opportunities for Mountain Agri-Food Economy in South Eastern Europe. A Scenario for Efficient and Sustainable Use of Mountain Product, Based on the Family Farm, in an Innovative, Adapted Cooperative Associative System—Horizon 2040. Procedia Econ. Financ. 2015, 22, 723–732. [Google Scholar] [CrossRef]
- Mohareb, E.; Heller, M.; Novak, P.; Goldstein, B.; Fonoll, X.; Raskin, L. Considerations for reducing food system energy demand while scaling up urban agriculture. Environ. Res. Lett. 2017, 12, 125004. [Google Scholar] [CrossRef]
- Barbaresi, A.; Torreggiani, D.; Benni, S.; Tassinari, P. Indoor air temperature monitoring: A method lending support tomanagement and design tested on a wine-aging room. Build. Environ. 2015, 86, 203–210. [Google Scholar] [CrossRef]
- Mitter, H.; Techen, A.-K.; Sinabell, F.; Helming, K.; Schmid, E.; Bodirsky, B.L.; Holman, I.; Kok, K.; Lehtonen, H.; Leip, A.; et al. Shared Socio-economic Pathways for European agriculture and food systems: The Eur-Agri-SSPs. Glob. Environ. Chang. 2020, 65, 102159. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, Z.; Lv, S.; Lin, X.; Li, T.; Yang, X. Changing maize hybrids helps adapt to climate change in Northeast China: Revealed by field experiment and crop modelling. Agric. For. Meteorol. 2023, 342, 109693. [Google Scholar] [CrossRef]
- Maureira, F.; Rajagopalan, K.; Stöckle, C.O. Evaluating tomato production in open-field and high-tech greenhouse systems. J. Clean. Prod. 2022, 337, 130459. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Aljabary, A.M.A.O.; Halshoy, H.S.; Hama, J.R.; Rashid, H.A.; Rashid, H.W. Soil-borne microbes, natural stimulants, and post-harvest treatments alter quality and phytochemicals of tomato fruit. Int. J. Veg. Sci. 2023, 1–13. [Google Scholar] [CrossRef]
- Choab, N.; Allouhi, A.; El Maakoul, A.; Kousksou, T.; Saadeddine, S.; Jamil, A. Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies. Sol. Energy 2019, 191, 109–137. [Google Scholar] [CrossRef]
- Chahidi, L.O.; Fossa, M.; Priarone, A.; Mechaqrane, A. Greenhouse cultivation in Mediterranean climate: Dynamic energy analysis and experimental validation. Therm. Sci. Eng. Prog. 2021, 26, 101102. [Google Scholar] [CrossRef]
- García, M.L.; Medrano, E.; Sánchez-Guerrero, M.C.; Lorenzo, P. Climatic effects of two cooling systems in greenhouses in the Mediterranean area: External mobile shading and fog system. Biosyst. Eng. 2011, 108, 133–143. [Google Scholar] [CrossRef]
- Brækken, A.; Sannan, S.; Jerca, I.O.; Bădulescu, L.A. Assessment of heating and cooling demands of a glass greenhouse in Bucharest, Romania. Therm. Sci. Eng. Prog. 2023, 41, 101830. [Google Scholar] [CrossRef]
- Grygierek, K.; Ferdyn-Grygierek, J. Analysis of the Environmental Impact in the Life Cycle of a Single-Family House in Poland. Atmosphere 2022, 13, 245. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Aljaghoub, H.; Alami, A.H.; Olabi, A.G. Selection criteria of cooling technologies for sustainable greenhouses: A comprehensive review. Therm. Sci. Eng. Prog. 2023, 38, 101666. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ramadan, M.; Pullen, K.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A.-G.; Naher, S. A review of grout materials in geothermal energy applications. Int. J. Thermofluids 2021, 10, 100070. [Google Scholar] [CrossRef]
- Goddek, S.; Körner, O.; Keesman, K.J.; Tester, M.A.; Lefers, R.; Fleskens, L.; Joyce, A.; van Os, E.; Gross, A.; Leemans, R. How greenhouse horticulture in arid regions can contribute to climate-resilient and sustainable food security. Glob. Food Secur. 2023, 38, 100701. [Google Scholar] [CrossRef]
- Luqman, M.; Mahmood, F.; Al-Ansari, T. Supporting sustainable global food security through a novel decentralised offshore floating greenhouse. Energy Convers. Manag. 2023, 277, 116577. [Google Scholar] [CrossRef]
- Karanisa, T.; Amato, A.; Richer, R.; Majid, S.A.; Skelhorn, C.; Sayadi, S. Agricultural Production in Qatar’s Hot Arid Climate. Sustainability 2021, 13, 4059. [Google Scholar] [CrossRef]
- Fayezizadeh, M.R.; Ansari, N.A.Z.; Albaji, M.; Khaleghi, E. Effects of hydroponic systems on yield, water productivity and stomatal gas exchange of greenhouse tomato cultivars. Agric. Water Manag. 2021, 258, 107171. [Google Scholar] [CrossRef]
- Wang, M.; Dong, C.; Gao, W. Evaluation of the growth, photosynthetic characteristics, antioxidant capacity, biomass yield and quality of tomato using aeroponics, hydroponics and porous tube-vermiculite systems in bio-regenerative life support systems. Life Sci. Space Res. 2019, 22, 68–75. [Google Scholar] [CrossRef]
- Liu, Y.; Zhuang, Z.; Zhou, Y.; Zhao, S.; Wang, D.; Liu, H. Heat transfer performance analysis of seawater heat exchange pipelines in deep seawater closed cooling air conditioning system. Appl. Therm. Eng. 2022, 212, 118582. [Google Scholar] [CrossRef]
- Fassin, M.; Traverso, P. Ambiente Marino Profondo; La Metallurgia Italiana: Milan, Italy, 2008; Volume 1, pp. 29–38. [Google Scholar]
- Ceccarelli, M.; Barbaresi, A.; Menichetti, G.; Santolini, E.; Bovo, M.; Tassinari, P.; Barreca, F.; Torreggiani, D. Simulations in agricultural buildings: A machine learning approach to forecast seasonal energy need. In Proceedings of the 2022 IEEE Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2022-Proceedings, Perugia, Italy, 3–5 November 2022; pp. 116–120. [Google Scholar] [CrossRef]
- Hebert, D.; Boonekamp, J.; Parrish, C.H.; Ramasamy, K.; Makarov, N.S.; Castañeda, C.; Schuddebeurs, L.; McDaniel, H.; Bergren, M.R. Luminescent quantum dot films improve light use efficiency and crop quality in greenhouse horticulture. Front. Chem. 2022, 10, 988227. [Google Scholar] [CrossRef] [PubMed]
- Barreca, F.; Praticò, P. Environmental indoor thermal control of extra virgin olive oil storage room with phase change materials. J. Agric. Eng. 2019, 50, 208–214. [Google Scholar] [CrossRef]
- Moghaddam, S.A.; Simões, N.; da Silva, M.G. Review of the experimental methods for evaluation of windows’ solar heat gain coefficient: From standardized tests to new possibilities. Build. Environ. 2023, 242, 110527. [Google Scholar] [CrossRef]
- ISO 9869-1; Thermal Insulation—Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance—Part 1: Heat Flow Meter Method 2014. ISO: Geneva, Switzerland, 2014.
- Barreca, F.; Praticò, P.; Cardinali, G.D. A low-energy storage container for food and agriculture products. J. Agric. Eng. 2021, 52, 1174. [Google Scholar] [CrossRef]
- Pakari, A.; Ghani, S. Evaluation of a novel greenhouse design for reduced cooling loads during the hot season in subtropical regions. Sol. Energy 2019, 181, 234–242. [Google Scholar] [CrossRef]
- Bhattacharjee, V.; Roy, P.K.; Chattoraj, C. Optimal design of forced-draft counter-flow evaporative-cooling towers through single and multi-objective optimizations using oppositional chaotic artificial hummingbird algorithm. Therm. Sci. Eng. Prog. 2023, 46, 102178. [Google Scholar] [CrossRef]
- Zi, Z.; Ji, D.; Jie, L.; Di, W.; Guanghao, C. Enhancing energy–climate–economy sustainability in coastal cities through integration of seawater and solar energy. Renew. Sustain. Energy Rev. 2023, 183, 113477. [Google Scholar] [CrossRef]
- Benni, S.; Torreggiani, D.; Barbaresi, A.; Tassinari, P. Thermal Performance Assessment for Energy-Efficient Design of Farm Wineries. Trans. ASABE 2013, 56, 1483–1491. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef]
Parameters | TG | SG | P4 | P6 | UG | CB | TGUG | SGUG | P4UG | P6UG | TGCB | SGCB | P4CB | P6CB | IDEAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g-value (%) | 85.35 | 83.91 | 77.83 | 71.11 | 88.94 | 69.46 | 76.69 | 75.00 | 68.63 | 64.46 | 59.61 | 55.01 | 53.02 | 50.96 | 50.96 |
Light transmission (%) | 90.66 | 91.18 | 73.31 | 68.26 | 83.72 | 60.69 | 76.50 | 88.87 | 62.20 | 59.21 | 56.46 | 53.37 | 42.52 | 40.36 | 91.18 |
U (Wm−2K−1) | 5.81 | 5.79 | 4.10 | 3.56 | 2.15 | 5.88 | 2.14 | 2.14 | 1.86 | 1.74 | 5.81 | 5.78 | 4.10 | 3.56 | 3.44 |
SWAC COOLING | TOWER COOLING | |||
---|---|---|---|---|
P6UG | P6CB | P6UG | P6CB | |
Cooling (kWh) | 3047.00 | 2751.00 | 3534.14 | 3176.00 |
Heating (kWh) | 428.00 | 1288.00 | 427.42 | 1286.00 |
System Pumps (kWh) | 63.51 | 57.00 | 64.00 | 58.00 |
System Fans (kWh) | 897.48 | 962.00 | 897.48 | 962.42 |
TOTAL (kWh) | 4435.99 | 5058.00 | 4923.04 | 5482.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreca, F. Sustainability in Food Production: A High-Efficiency Offshore Greenhouse. Agronomy 2024, 14, 518. https://doi.org/10.3390/agronomy14030518
Barreca F. Sustainability in Food Production: A High-Efficiency Offshore Greenhouse. Agronomy. 2024; 14(3):518. https://doi.org/10.3390/agronomy14030518
Chicago/Turabian StyleBarreca, Francesco. 2024. "Sustainability in Food Production: A High-Efficiency Offshore Greenhouse" Agronomy 14, no. 3: 518. https://doi.org/10.3390/agronomy14030518
APA StyleBarreca, F. (2024). Sustainability in Food Production: A High-Efficiency Offshore Greenhouse. Agronomy, 14(3), 518. https://doi.org/10.3390/agronomy14030518