Soil Microorganisms in Agricultural Fields and Agronomic Regulation Pathways
Abstract
:1. Introduction
2. Functions of Agricultural Soil Microorganisms
2.1. Crop Growth
2.2. Nutrient Cycling in Agricultural Land
2.3. Stress Resistance
2.4. Climate Regulation
2.5. Pollutant Degradation
3. Roles of Agronomic Measures in Soil Microbial Regulation
3.1. Soil Cultivation
3.2. Cropping Systems
3.3. Water and Fertilizer Management
3.4. Pest and Weed Control
4. Pathways of Agronomic Measures to Regulate Soil Microorganisms
4.1. Nutrient Environment and Soil Microorganisms
4.2. Soil Structure and Microorganisms
4.3. Response of Soil Microorganisms to Other Environmental Changes
5. Future Development Directions
- Evolution of soil microorganisms: Investigating the development and succession of soil microorganisms can shed light on the formation of microbial community structures. Understanding how soil microorganisms evolve in farmland ecosystems and respond to agronomic measures is essential for optimizing agricultural measures.
- Interaction between soil microorganisms and crops: Soil, microorganisms, and crops form a cohesive unit, with microorganisms creating a conducive environment for crop growth and nutrient uptake. Exploring the interaction and co-evolution between soil microorganisms and crops reveals the microbial regulatory mechanisms affecting crop health, nutrient uptake, and pest resistance.
- Resource discovery and utilization of soil microorganisms: Soil harbors vast microbial resources with untapped potential. Identifying and harnessing new beneficial microbial resources and studying their applications in agriculture, energy, and healthcare offers promising avenues for sustainable development.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, S.; Nicklin, J.; Griffiths, C. Microbiology, 4th ed.; Garland Science: New York, NY, USA, 2011. [Google Scholar]
- Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H. Brock Biology of Microorganisms, 14th ed.; Pearson: Boston, MA, USA, 2015. [Google Scholar]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Cotton, T.E.A.; Pétriacq, P.; Cameron, D.D.; Meselmani, M.A.; Schwarzenbacher, R.; Rolfe, S.A.; Ton, J. Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J. 2019, 13, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bonkowski, M.; Shen, Y.; Griffiths, B.S.; Jiang, Y.J.; Wang, X.Y.; Sun, B. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome 2020, 8, 4. [Google Scholar] [CrossRef]
- Valencia, E.; Gross, N.; Quero, J.L.; Carmona, C.P.; Ochoa, V.; Gozalo, B.; Delgado-Baquerizo, M.; Dumack, K.; Hamonts, K.; Singh, B.K.; et al. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Chang. Biol. 2018, 24, 5642–5654. [Google Scholar] [CrossRef] [PubMed]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2019, 18, 35–46. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Veum, K.S.; Moorman, T.B.; Cambardella, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Zhang, Y.P.; Wang, Y.Z.; Zhang, H.F.; Zhu, Q.R.; Yan, B.J.; Fei, J.C.; Rong, X.M.; Peng, J.W.; Luo, G.W. Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Res. 2022, 287, 108666. [Google Scholar] [CrossRef]
- Park, I.; Seo, Y.S.; Mannaa, M. Recruitment of the rhizo-microbiome army: Assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front. Microbiol. 2023, 14, 1163832. [Google Scholar] [CrossRef]
- Zhao, X.; He, C.; Liu, W.S.; Liu, W.X.; Liu, Q.Y.; Bai, W.; Li, L.J.; Lal, R.; Zhang, H.L. Responses of soil pH to no-till and the factors affecting it: A global meta-analysis. Global Chang. Biol. 2022, 28, 154–166. [Google Scholar] [CrossRef]
- Li, Y.Z.; Li, T.; Zhao, D.Q.; Wang, Z.T.; Liao, Y.C. Different tillage practices change assembly, composition, and co-occurrence patterns of wheat rhizosphere diazotrophs. Sci. Total Environ. 2021, 767, 144252. [Google Scholar] [CrossRef]
- Wang, Z.T.; Li, T.; Li, Y.Z.; Zhao, D.Q.; Han, J.; Liu, Y.; Liao, Y.C. Relationship between the microbial community and catabolic diversity in response to conservation tillage. Soil Till Res. 2020, 196, 104431. [Google Scholar] [CrossRef]
- Zhou, G.P.; Fan, K.K.; Li, G.L.; Gao, S.J.; Chang, D.N.; Liang, T.; Li, S.; Liang, H.; Zhang, J.D.; Che, Z.X.; et al. Synergistic effects of diazotrophs and arbuscular mycorrhizal fungi on soil biological nitrogen fixation after three decades of fertilization. iMeta 2023, 2, e81. [Google Scholar] [CrossRef]
- Li, B.B.; Roley, S.S.; Duncan, D.S.; Guo, J.R.; Quensen, J.F.; Yu, H.Q.; Tiedje, J.M. Long-term excess nitrogen fertilizer increases sensitivity of soil microbial community to seasonal change revealed by ecological network and metagenome analyses. Soil Biol. Biochem. 2021, 160, 108349. [Google Scholar] [CrossRef]
- Linton, N.F.; Machado, P.V.F.; Deen, B.; Wagner-Riddle, C.; Dunfield, K.E. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem. 2020, 149, 107917. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, D.V.A.; Kobayashi, T.; Dastogeer, K.M.G.; Yasuda, M.; Sarkodee-Addo, E.; Ratu, S.T.N.; Xu, Q.C.; Miki, T.; Matsuura, E.; Okazaki, S. Diversity and function of soybean rhizosphere microbiome under nature farming. Front. Microbiol. 2023, 14, 1130969. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.B.; Wang, H.J.; Xie, H.T.; Bao, X.L.; He, H.B.; Zhang, X.D.; Liang, C. Low-disturbance farming regenerates healthy deep soil toward sustainable agriculture—Evidence from long-term no-tillage with stover mulching in Mollisols. Sci. Total Environ. 2022, 825, 153929. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2023, 22, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.C.; Fu, R.X.; Luo, J.Y.; Hou, X.Q.; Gao, K.; Su, L.; Xu, Y.; Miao, Y.Z.; Liu, Y.P.; Xu, Z.H.; et al. Listening to plant’s Esperanto via root exudates: Reprogramming the functional expression of plant growth-promoting rhizobacteria. New Phytol. 2023, 239, 2307–2319. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Pang, Z.Q.; Chen, J.; Wang, T.H.; Gao, C.S.; Li, Z.M.; Guo, L.T.; Xu, J.P.; Cheng, Y. Linking plant secondary metabolites and plant microbiomes: A review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.T.; Fang, Y.; Chen, Y.R.; Kong, X.S.; Yang, J.B.; Alharbi, H.; Kuzyakov, Y.; Tian, X.J. Synergy of saprotrophs with mycorrhiza for litter decomposition and hotspot formation depends on nutrient availability in the rhizosphere. Geoderma 2022, 410, 115662. [Google Scholar] [CrossRef]
- Jiao, S.; Peng, Z.H.; Qi, J.J.; Gao, J.M.; Wei, G.H. Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling. mSystems 2021, 6, e01052-20. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; van Agtmaal, M.; et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, F.; Abalos, D.; Luo, Y.Q.; Hui, D.F.; Hungate, B.A.; Garcia-Palacios, P.; Kuzyakov, Y.; Olesen, J.E.; Jorgensen, U.; et al. Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N2O emission. Global Chang. Biol. 2022, 28, 2158–2168. [Google Scholar] [CrossRef]
- Yang, Y.L.; Xie, H.T.; Mao, Z.; Bao, X.L.; He, H.B.; Zhang, X.D.; Liang, C. Fungi determine increased soil organic carbon more than bacteria through their necromass inputs in conservation tillage croplands. Soil Biol. Biochem. 2022, 167, 108587. [Google Scholar] [CrossRef]
- Xu, L.; Coleman-Derr, D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr. Opin. Microbiol. 2019, 49, 1–6. [Google Scholar] [CrossRef]
- Jiao, S.; Chu, H.Y.; Zhang, B.G.; Wei, X.R.; Chen, W.M.; Wei, G.H. Linking soil fungi to bacterial community assembly in arid ecosystems. iMeta 2022, 1, e2. [Google Scholar] [CrossRef]
- Yang, X.F.; Jiang, N.X.; Sun, D.S. Dry-wet cycles induce the decoupling of carbon and nitrogen mineralization at high temperatures in semi-arid grassland soil. Soil Biol. Biochem. 2023, 188, 109227. [Google Scholar] [CrossRef]
- Wu, D.; Wang, W.X.; Yao, Y.P.; Li, H.T.; Wang, Q.; Niu, B. Microbial interactions within beneficial consortia promote soil health. Sci. Total Environ. 2023, 900, 165801. [Google Scholar] [CrossRef]
- Petters, S.; Groß, V.; Söllinger, A.; Pichler, M.; Reinhard, A.; Bengtsson, M.; Urich, T. The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? ISME J. 2021, 15, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.X.; Zhan, C.F.; Pan, Q.Q.; Xu, H.R.; Fang, H.D.; Wang, M.C.; Matsumoto, H. Plant pathogenesis: Toward multidimensional understanding of the microbiome. iMeta 2023, 2, e129. [Google Scholar] [CrossRef]
- Cai, Y.F.; Zheng, Y.; Bodelier, P.L.E.; Conrad, R.; Jia, Z.J. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 2016, 7, 11728. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, A.; Bowker, M.A.; Delgado-Baquerizo, M.; Durán, J.; Singh, B.K.; Maestre, F.T. Global drivers of methane oxidation and denitrifying gene distribution in drylands. Glob. Ecol. Biogeogr. 2019, 28, 1230–1243. [Google Scholar] [CrossRef]
- Del Grosso, S.; Ogle, S.; Nevison, C.; Gurung, R.; Parton, W.J.; Wagner-Riddle, C.; Smith, W.; Winiwarter, W.; Grant, B.; Tenuta, M.; et al. A gap in nitrous oxide emission reporting complicates long-term climate mitigation. Proc. Natl. Acad. Sci. USA 2022, 119, e2200354119. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Chen, S.F.; Chen, W.J.; Zhu, X.X.; Mishra, S.; Bhatt, P.; Chen, S.H. Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chem. Eng. J. 2023, 469, 143863. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Qi, L.L.; Yuan, J.; Zhang, W.J.; Liu, H.Y.; Li, Z.P.; Bol, R.; Zhang, S.X. Metagenomics reveals the underestimated role of bacteria in the decomposition of downed logs in forest ecosystems. Soil Biol. Biochem. 2023, 187, 109185. [Google Scholar] [CrossRef]
- Sokol, N.W.; Slessarev, E.; Marschmann, G.L.; Nicolas, A.; Blazewicz, S.J.; Brodie, E.L.; Firestone, M.; Foley, M.M.; Hestrin, R.; Hungate, B.A.; et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 2022, 20, 415–430. [Google Scholar] [CrossRef]
- Rillig, M.C.; Kim, S.W.; Zhu, Y.G. The soil plastisphere. Nat. Rev. Microbiol. 2023, 22, 64–74. [Google Scholar] [CrossRef]
- Wang, X.S.; Wang, X.N.; Wu, F.; Zhang, J.W.; Ai, S.H.; Liu, Z.T. Microbial community composition and degradation potential of petroleum-contaminated sites under heavy metal stress. J. Hazard. Mater. 2023, 457, 131814. [Google Scholar] [CrossRef] [PubMed]
- Bano, S.; Wu, X.G.; Zhang, X.J. Towards sustainable agriculture: Rhizosphere microbiome engineering. Appl. Microbiol. Biotechnol. 2021, 105, 7141–7160. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.T.; Liu, L.; Chen, Q.; Wen, X.X.; Liao, Y.C. Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron. Sustain. Dev. 2016, 36, 28. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Y.; Zheng, H.; Olesen, J.E.; Rees, R.M.; Zou, J.; Zhang, L.; Hu, S.; Qiao, B.; Wang, X.; et al. Excessive N applications reduces yield and biological N fixation of summer-peanut in the North China Plain. Field Crop Res. 2023, 302, 109021. [Google Scholar] [CrossRef]
- Meng, L.; Haiyu, L.; Ming, G. Effect of conservation tillage on the abundance and diversities of soil diazotrophic communities in different soil layers of Mollisol. Soils Crops 2022, 11, 273–281. [Google Scholar]
- Li, Y.; Chang, S.X.; Tian, L.H.; Zhang, Q.P. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- Wang, M.R.; Dungait, J.A.J.; Wei, X.M.; Ge, T.D.; Hou, R.X.; Ouyang, Z.; Zhang, F.S.; Tian, J. Long-term warming increased microbial carbon use efficiency and turnover rate under conservation tillage system. Soil Biol. Biochem. 2022, 172, 108770. [Google Scholar] [CrossRef]
- Li, Y.Z.; Song, D.P.; Liang, S.H.; Dang, P.F.; Qin, X.L.; Liao, Y.C.; Siddique, K.H.M. Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis. Soil Till. Res. 2020, 204, 104721. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, H.; Hafeez, M.B.; Zhang, Q.; Yu, Q.; Wang, R.; Wang, X.L.; Li, J. No-tillage and subsoiling increased maize yields and soil water storage under varied rainfall distribution: A 9-year site-specific study in a semi-arid environment. Field Crops Res. 2020, 255, 107867. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Pérez-Rodríguez, P.; Insolia, E.; Soto Gómez, D.; Fernández-Calviño, D.; Zornoza, R. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agric. Ecosyst. Environ. 2022, 329, 107867. [Google Scholar] [CrossRef]
- Guangzhou, W.; Li, X.; Xi, X.; Cong, W.-F. Crop diversification reinforces soil microbiome functions and soil health. Plant Soil 2022, 476, 375–383. [Google Scholar]
- Li, P.; Liu, J.; Saleem, M.; Li, G.; Luan, L.; Wu, M.; Li, Z. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems. Microbiome 2022, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Breza, L.C.; Mooshammer, M.; Bowles, T.M.; Jin, V.L.; Schmer, M.R.; Thompson, B.; Grandy, A.S. Complex crop rotations improve organic nitrogen cycling. Soil Biol. Biochem. 2022, 177, 108911. [Google Scholar] [CrossRef]
- Hao, J.Q.; Feng, Y.Z.; Wang, X.; Yu, Q.; Zhang, F.; Yang, G.H.; Ren, G.X.; Han, X.H.; Wang, X.J.; Ren, C.J. Soil microbial nitrogen-cycling gene abundances in response to crop diversification: A meta-analysis. Sci. Total Environ. 2022, 838, 156621. [Google Scholar] [CrossRef] [PubMed]
- Qing, L.; Zhao, Y.X.; Li, T.; Chen, L.; Chen, Y.Q.; Sui, P. Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: A global synthesis. Appl. Soil Ecol. 2023, 186, 104815. [Google Scholar]
- Yang, X.; Hu, H.W.; Yang, G.W.; Cui, Z.L.; Chen, Y.L. Crop rotational diversity enhances soil microbiome network complexity and multifunctionality. Geoderma 2023, 436, 116562. [Google Scholar] [CrossRef]
- Li, L.; Nijs, I.; De Boeck, H.; Vindušková, O.; Reynaert, S.; Donnelly, C.; Zi, L.; Verbruggen, E. Longer dry and wet spells alter the stochasticity of microbial community assembly in grassland soils. Soil Biol. Biochem. 2023, 178, 108969. [Google Scholar] [CrossRef]
- Yu, T.B.; Fang, X.Y.; Liu, Y.; Zang, H.D.; Zeng, Z.H.; Yang, Y.D. Irrigation rather than fertilization drives the abundance, community structure and assembly process of soil denitrifiers. Agric. Ecosyst. Environ. 2023, 357, 108688. [Google Scholar] [CrossRef]
- Chen, L.; Feng, Q.; Li, C.; Wei, Y.; Zhao, Y.; Feng, Y.; Zheng, H.; Li, F.; Li, H. Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions. Sci. Rep. 2017, 7, 11193. [Google Scholar] [CrossRef]
- Dang, Q.; Tan, W.; Zhao, X.; Li, D.; Li, Y.; Yang, T.; Li, R.; Zu, G.; Xi, B. Linking the response of soil microbial community structure in soils to long-term wastewater irrigation and soil depth. Sci. Total Environ. 2019, 688, 26–36. [Google Scholar] [CrossRef]
- Chopyk, J.; Nasko, D.J.; Allard, S.M.; Bui, A.; Treangen, T.J.; Pop, M.; Mongodin, E.F.; Sapkota, A.R. Comparative metagenomic analysis of microbial taxonomic and functional variations in untreated surface and reclaimed waters used in irrigation applications. Water Res. 2019, 169, 115250. [Google Scholar] [CrossRef]
- Cui, J.W.; Zhu, R.L.; Wang, X.Y.; Xu, X.P.; Ai, C.; He, P.; Liang, G.Q.; Zhou, W.; Zhu, P. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. J. Environ. Manag. 2022, 303, 114155. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Tan, G.C.; Wang, H.Y.; Gai, X.P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Rasool, S.; Rasool, T.; Gani, K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Xie, J.; Wicaksono, W.A.; Lv, Z.; Berg, G.; Cernava, T.; Ge, B. Rhizosphere bacteria show a stronger response to antibiotic-based biopesticide than to conventional pesticides. J. Hazard. Mater. 2023, 458, 132035. [Google Scholar] [CrossRef]
- Wallace, A.K. Treating the untreatable: Precision microbials for crop protection. Trends Biotechnol. 2023, 41, 1096–1097. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Santos-Medellin, C.; Nguyen, B.; Kilmer, J.; Liechty, Z.; Veliz, E.; Ni, J.D.; Phillips, G.; Sundaresan, V. Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biol. 2019, 20, 221. [Google Scholar] [CrossRef]
- Xia, Q.; Rufty, T.; Shi, W. Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biol. Biochem. 2020, 149, 107953. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Sokolova, E.; Mishukova, O.; Hlistun, I.; Tromenschleger, I.; Tikunov, A.; Manakhov, A.; Rogaev, E.; Savenkov, O.; Buyanova, M.; Ivanov, I.; et al. The Effectiveness of Co-Inoculation by Consortia of Microorganisms Depends on the Type of Plant and the Soil Microbiome. Plants 2023, 13, 116. [Google Scholar] [CrossRef]
- Yuan, L.; Li, Z.; Cui, S.; Jagadamma, S.; Qingping, Z. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Till. Res. 2019, 194, 104292. [Google Scholar]
- Yudina, A.; Kuzyakov, Y. Dual nature of soil structure: The unity of aggregates and pores. Geoderma 2023, 434, 116478. [Google Scholar] [CrossRef]
- Liu, C.G.; Jin, Y.Q.; Lin, F.M.; Jiang, C.; Zeng, X.L.; Feng, D.F.; Huang, F.Z.; Tang, J.W. Land use change alters carbon and nitrogen dynamics mediated by fungal functional guilds within soil aggregates. Sci. Total Environ. 2023, 902, 166080. [Google Scholar] [CrossRef]
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Semenov, M.; Manucharova, N.; Krasnov, G.; Nikitin, D.; Stepanov, A. Biomass and Taxonomic Structure of Microbial Communities in Soils of the Right-Bank Basin of the Oka River. Eurasian Soil Sci. 2019, 52, 971–981. [Google Scholar] [CrossRef]
- Naylor, D.; Sadler, N.; Bhattacharjee, A.; Graham, E.B.; Anderton, C.R.; McClure, R.; Lipton, M.; Hofmockel, K.S.; Jansson, J.K. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 2020, 45, 29–59. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Chai, Q.; Dou, X.; Zhao, C.; Yin, W.; Li, H.; Wei, J. Soil Microorganisms in Agricultural Fields and Agronomic Regulation Pathways. Agronomy 2024, 14, 669. https://doi.org/10.3390/agronomy14040669
Wang Q, Chai Q, Dou X, Zhao C, Yin W, Li H, Wei J. Soil Microorganisms in Agricultural Fields and Agronomic Regulation Pathways. Agronomy. 2024; 14(4):669. https://doi.org/10.3390/agronomy14040669
Chicago/Turabian StyleWang, Qiming, Qiang Chai, Xuecheng Dou, Cai Zhao, Wen Yin, Hanting Li, and Jingui Wei. 2024. "Soil Microorganisms in Agricultural Fields and Agronomic Regulation Pathways" Agronomy 14, no. 4: 669. https://doi.org/10.3390/agronomy14040669
APA StyleWang, Q., Chai, Q., Dou, X., Zhao, C., Yin, W., Li, H., & Wei, J. (2024). Soil Microorganisms in Agricultural Fields and Agronomic Regulation Pathways. Agronomy, 14(4), 669. https://doi.org/10.3390/agronomy14040669