Partial Substitution of Chemical N with Solid Cow Manure Improved Soil Ecological Indicators and Crop Yield in a Wheat–Rice Rotation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Plant Sample Collection and Analyses
2.4. Soil Sample Collection and Analyses
2.5. Data Analysis
3. Results
3.1. Crop Yield
3.2. Crop Grain Protein
3.3. Soil pH and CEC
3.4. Total and Available P in Soil
3.5. Total and Available K in Soil
3.6. Soil Ecological Risk
4. Discussion
4.1. Crop Yield
4.2. Crop Grain Protein
4.3. Soil pH and CEC
4.4. Total and Available P and K in Soil
4.5. Soil Ecological Risk
5. Environmental Implications
6. Future Research Needs
- Particle size distribution and chemical composition are the two major factors of animal manures affecting the soil holding capacities of different nutrients. Hence, future works should pay special attention to the effects of these two parameters on soil CEC both for top and subsoil layers. This, in particular, calls for long-term in situ trials for the determining the microbial decomposition of manure.
- Despite the good documentation of the effects of manure application on P accumulation in the study’s COIF-amended paddy soils (0–20 cm), future research should investigate the spatiotemporal subsurface leaching of both organic/inorganic and dissolved/particulate soil P in relation to the long term and the rate of soil cow manure application [58].
- It is of major importance to study the effects of the co-application of manure and chemical fertilizers on crop yield qualities in longer periods of time [18].
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, D.; Chen, Y.; Hu, M. Industrial value chain model and big data application for developing green agriculture in China. J. Phys. Conf. Ser. 2021, 1883, 012117. [Google Scholar] [CrossRef]
- Orner, K.D.; Smith, S.J.; Breunig, H.M.; Scown, C.D.; Nelson, K.L. Fertilizer demand and potential supply through nutrient recovery from organic waste digest ate in California. Water Res. 2021, 206, 117717. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook; National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2017.
- Zhong, Y.; Yan, W.; Shangguan, Z. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biol. Biochem. 2015, 92, 151–159. [Google Scholar] [CrossRef]
- Dong, L.; Wang, J.; Shen, M.; Zhang, H.; Wang, L.; Li, C.; Lu, C. Biochar combined with nitrogen fertilizer affects soil properties and wheat yield in medium-low-yield farmland. Soil Use Manag. 2022, 38, 584–595. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Y.; Petropoulos, E.; Cui, X.; Wang, S. Long-term manure amendment sustains black soil biodiversity by mitigating acidification induced by chemical N fertilization. Microorganisms 2023, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Peng, M.; Lu, W.; Hou, Z.; Li, J. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Sci. Total Environ. 2022, 851, 158132. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Luo, Y.; Yang, L.; Liu, X.; Wu, L.; Xu, J. Acidification and salinization of soils with different initial pH under greenhouse vegetable cultivation. J. Soils Sediments 2014, 14, 1683–1692. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Cang, L.; Wang, Y.; Zhou, D. Interactions between nitrogen application and soil properties and their impacts on the transfer of cadmium from soil to wheat (Triticum aestivum L.) grain. Geoderma 2020, 357, 113923. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, X.; Wei, D.; Zhao, B.; Ma, M.; Chen, S.; Cao, F.; Shen, D.; Guan, D.; Li, J. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Sci. Rep. 2017, 7, 3267. [Google Scholar] [CrossRef]
- Gao, R.; Duan, Y.; Zhang, J.; Ren, Y.; Li, H.; Liu, X.; Zhao, P.; Jing, Y. Effects of long-term application of organic manure and chemical fertilizer on soil properties and microbial communities in the agro-pastoral ecotone of North China. Front. Environ. Sci. 2022, 10, 1665. [Google Scholar] [CrossRef]
- Du, S.; Ma, Z.; Chen, J.; Xue, L.; Tang, C.; Shareef, T.M.E.; Siddique, K.H.M. Effects of organic fertilizer proportion on the distribution of soil aggregates and their associated organic carbon in a field mulched with gravel. Sci. Rep. 2022, 12, 11513. [Google Scholar] [CrossRef] [PubMed]
- Shan, A.; Pan, J.; Kang, K.J.; Pan, M.; Wang, G.; Wang, M.; He, Z.; Yang, X. Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: A field study of 2 consecutive wheat-rice cycles. Environ. Pollut. 2021, 288, 117741. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Zhan, W.; Zheng, K.; Wang, J.; Zhang, C.; Chen, R. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci. Total Environ. 2020, 729, 139060. [Google Scholar] [CrossRef] [PubMed]
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J.; Bernas, J.; Mukosha, C.E.; Hoang, T.N. Environmental assessment of dryland and irrigated winter wheat cultivation under compost fertilization strategies. Plants 2024, 13, 509. [Google Scholar] [CrossRef]
- Iqbal, A.; Ali, I.; Yuan, P.; Khan, R.; Liang, H.; Wei, S.; Jiang, L. Combined application of manure and chemical fertilizers alters soil environmental variables and improves soil fungal community composition and rice grain yield. Front. Microbiol. 2022, 13, 856355. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the People’s Republic of China. Organic Fertilizer; NY 525-2012; Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2012.
- Kalkhajeh, Y.K.; He, Z.; Yang, X.; Lu, Y.; Zhou, J.; Gao, H.; Ma, C. Co-application of nitrogen and straw-decomposing microbial inoculant enhanced wheat straw decomposition and rice yield in a paddy soil. J. Agric. Food Res. 2021, 4, 100134. [Google Scholar] [CrossRef]
- Yang, C.; Du, W.; Zhang, L.; Dong, Z. Effects of sheep manure combined with chemical fertilizers on maize yield and quality and spatial and temporal distribution of soil inorganic Nitrogen. Complexity 2021, 2021, 4330666. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Gou, J.L.; Zhang, M.; Zhang, B.X.; Rao, Y.; Xiao, H.G. Nitrogen reduction combined with organic materials can stabilize crop yield and soil nutrients in winter rape seed and maize rotation in yellow soil. Sustainability 2021, 14, 7183. [Google Scholar] [CrossRef]
- Gao, H.; Xi, Y.; Wu, X.; Pei, X.; Liang, G.; Bai, J.; Song, X.; Zhang, M.; Liu, X.; Han, Z.; et al. Partial substitution of manure reduces nitrous oxide emission with maintained yield in a winter wheat crop. J. Environ. Manag. 2023, 326, 116794. [Google Scholar] [CrossRef]
- Lin, S.; Pi, Y.; Long, D.; Duan, J.; Zhu, X.; Wang, X.; He, J.; Zhu, Y. Impact of organic and chemical nitrogen fertilizers on the crop yield and fertilizer use efficiency of soybean—Maize intercropping systems. Agriculture 2022, 12, 1428. [Google Scholar] [CrossRef]
- Xiao, Z.; Gu, H.; Wu, H.; Jing, W.; Zhu, K.; Zhang, W.; Gu, J.; Liu, L.; Qian, X.; Wang, Z.; et al. Effects of planting density, levels, and forms of nitrogen application on the yield and nitrogen utilization of wheat following rice in East China. Agronomy 2022, 12, 2607. [Google Scholar] [CrossRef]
- Wang, G.L.; Zhang, J.H.; Wang, S.H.; Kou, X.M.; Xu, R.; Han, G.M.; Tang, H.J.; Zhu, L.Y.; Bi, J.H.; Wu, L.M. Effects of chemical fertilizer nitrogen substitution by biogas slurry on yield, quality and growth characteristics of winter wheat. J. Agric. Resour. Environ. 2018, 35, 467–475. (In Chinese) [Google Scholar]
- Han, Y.; Lv, F.; Lin, X.; Zhang, C.; Sun, B.; Yang, X.; Zhang, S. Crop yield and nutrient efficiency under organic manure substitution fertilizer in a double cropping system: A 6-year field experiment on an Anthrosol. Agronomy 2022, 12, 2047. [Google Scholar] [CrossRef]
- Brown, B.D.; Petrie, S. Irrigated hard winter wheat response to fall, spring, and late season applied nitrogen. Field Crops Res. 2006, 96, 260–268. [Google Scholar] [CrossRef]
- Qu, H.; Zhao, B.Q.; Chen, Y.H.; Liu, H.; Li, X.Y.; Zhang, F.D. Effect of long-term fertilization on wheat quality and yield in grey desert soil. Plant Nutr. Fertil. 2004, 10, 12–17. (In Chinese) [Google Scholar]
- Shi, R.-Y.; Liu, Z.-D.; Li, Y.; Jiang, T.; Xu, M.; Li, J.-Y.; Xu, R.-K. Mechanisms for increasing soil resistance to acidification by long-term manure application. Soil Tillage Res. 2019, 185, 77–84. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 2015, 15, 260–270. [Google Scholar] [CrossRef]
- Xiao, K.; Xu, J.; Tang, C.; Zhang, J.; Brookes, P.C. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biol. Biochem. 2013, 67, 70–84. [Google Scholar] [CrossRef]
- Khorshidi, M.; Lu, N. Intrinsic relation between soil water retention and cation exchange capacity. J. Geotech. Geoenviron. Eng. 2016, 143, 04016119. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Fu, M.; Cai, J.; Zhang, Y.; Wang, R.; Xu, Z.; Bai, Y.; Jiang, Y. Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia. J. Arid Land 2015, 7, 361–369. [Google Scholar] [CrossRef]
- Yang, X.; Ren, W.; Sun, B.; Zhang, S. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 2012, 177–178, 49–56. [Google Scholar] [CrossRef]
- Ma, X.; Wu, Z.; Chen, L.; Zhou, B.; Gao, Z.; Hao, X.; Zhang, J. Effect of long-term fertilization on the phosphorus content of black soil in Northeast China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 63, 156–161. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Zhao, H.; Gao, F.; Ji, G.; Hu, F.; Li, H. Similar positive effects of beneficial bacteria, nematodes and earthworms on soil quality and productivity. Appl. Soil Ecol. 2018, 130, 202–208. [Google Scholar] [CrossRef]
- Huang, J.; Qaswar, M.; Khan, M.N.; Liu, S.; Han, T.; Liu, K.; Li, D.; Zhang, H.; Gao, J. Long-term application of chemical and organic fertilizers over 35 years differentially affects interannual variation in soil inorganic Phosphorus fractions in acidic paddy soil. Eurasian Soil Sci. 2021, 54, 772–782. [Google Scholar] [CrossRef]
- Ahmed, W.; Jing, H.; Kaillou, L.; Qaswar, M.; Khan, M.N.; Jin, C.; Geng, S.; Qinghai, H.; Yiren, L.; Guangrong, L. Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China. PLoS ONE 2019, 14, e0216881. [Google Scholar] [CrossRef]
- Song, W.; Shu, A.; Liu, J.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere 2022, 32, 637–648. [Google Scholar] [CrossRef]
- Parham, J.A.; Deng, S.P.; Da, H.N.; Sun, H.Y.; Raun, W.R. Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biol. Fertil. Soils 2003, 38, 209–215. [Google Scholar] [CrossRef]
- Ye, D.; Liu, D.; Li, T.; Zhang, X.; Zheng, Z. Phosphorus accumulation characteristics in Polygonum hydropiper and rhizosphere properties affected by poultry manure application. Appl. Soil Ecol. 2018, 131, 12–21. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Sasaki, Y.; Kakuda, K.-I.; Fujii, H. Comparison of paddy soil fertility under conventional rice straw application versus cow dung compost application in mixed crop–livestock systems in a cold temperate region of Japan. Soil Sci. Plant Nutr. 2020, 66, 106–115. [Google Scholar] [CrossRef]
- Gosal, S.K.; Gill, G.K.; Sharma, S.; Walia, S.S. Soil nutrient status and yield of rice as affected by long-term integrated use of organic and inorganic fertilizers. J. Plant Nutr. 2017, 41, 539–544. [Google Scholar] [CrossRef]
- Hashim, M.; Dhar, S.; Vyas, A.; Singh, C. Yield trends and changes in physico-chemical properties of soil in maize-wheat cropping system under integrated nutrient management. J. Environ. Biol. 2017, 38, 727–734. [Google Scholar] [CrossRef]
- Xu, M.G.; Li, D.C.; Li, J.M. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Sci. Agric. Sin. 2008, 41, 3133–3139. [Google Scholar]
- Li, Y.; Sun, C.P.; Jing, Y.P.; Luo, J.; Zhang, Y.; Zhong, Z.; Sun, M.; Bo, L.; Liu, Z. Effect of long-term application of organic manure on soil fertility and nitrate-N transport in fluvo-aquic soil. J. Agro-Environ. Sci. 2017, 36, 1386–1394. (In Chinese) [Google Scholar]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P. Potassium fractions in soil and simple K balance in long-term fertilising experiments. Soil Water Res. 2020, 15, 211–219. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, H.; Liu, T.; Li, Y.; Huang, X.; Pi, J. Effects of long-term fertilization practices on heavy metal cadmium accumulation in the surface soil and rice plants of double-cropping rice system in Southern China. Ecol. Environ. Sci. 2018, 25, 19836–19844. (In Chinese) [Google Scholar] [CrossRef]
- Hussain, B.; Li, J.; Ma, Y.; Chen, Y.; Wu, C.; Ullah, A.; Tahir, N. A Field evidence of Cd, Zn and Cu accumulation in soil and rice grains after long-term (27 years) application of swine and green manures in a paddy soil. Sustainability 2021, 13, 2404. [Google Scholar] [CrossRef]
- Li, S.-H.; Zeng, X.-B.; Li, L.-F.; Bai, L.-Y.; Wang, D.-L. Distribution characteristics of heavy metals in soil profile of facility vegetable fields. J. Appl. Ecol. 2010, 21, 2397–2402. (In Chinese) [Google Scholar]
- Zhen, H.; Jia, L.; Huang, C.; Qiao, Y.; Li, J.; Li, H.; Chen, Q.; Wan, Y. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ. Pollut. 2020, 263, 114552. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Zhao, B.; Xin, X.; Zhang, C.; Zhang, H. The influence of long-term fertilization on cadmium (Cd) accumulation in soil and its uptake by crops. Environ. Sci. Pollut. Res. 2014, 21, 10377–10385. [Google Scholar] [CrossRef]
- Guan, D.-X.; Sun, F.-S.; Yu, G.-H.; Polizzotto, M.L.; Liu, Y.-G. Total and available metal concentrations in soils from six long-term fertilization sites across China. Environ. Sci. Pollut. Res. 2018, 25, 31666–31678. [Google Scholar] [CrossRef]
- Kalkhajeh, Y.K.; Huang, B.; Hu, W.; Holm, P.E.; Hansen, H.C.B. Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils. Chemosphere 2017, 172, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Kalkhajeh, Y.K.; Huang, B.; Hu, W. Impact of preferential flow pathways on phosphorus leaching from typical plastic shed vegetable production soils of China. Agric. Ecosyst. Environ. 2021, 307, 107218. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Hsu, L.-C.; Liu, Y.-T.; Wang, S.-L.; White, J.R.; Shaheen, S.M.; Chen, Q.; Rinklebe, J. Soil acidification enhances the mobilization of phosphorus under anoxic conditions in an agricultural soil: Investigating the potential for loss of phosphorus to water and the associated environmental risk. Sci. Total Environ. 2021, 793, 148531. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Kan, Z.; Qi, J.; Zhang, H. Effects of straw return mode on soil aggregates and associated carbon in the north China plain. Agronomy 2020, 10, 61. [Google Scholar] [CrossRef]
- Song, J.; Huang, J.; Gao, J.-S.; Wang, Y.-N.; Wu, C.-X.; Bai, L.-Y.; Zeng, X.-B. Effects of green manure planted in winter and straw returning on soil aggregates and organic matter functional groups in double cropping rice area. J. Appl. Ecol. 2021, 32, 564–570. [Google Scholar]
- Kalkhajeh, Y.K.; Huang, B.; Sørensen, H.; Holm, P.E.; Hansen, H.C.B. Phosphorus accumulation and leaching risk of greenhouse vegetable soils in Southeast China. Pedosphere 2021, 31, 683–693. [Google Scholar] [CrossRef]
pH | CEC (cmol kg−1) | TP (g kg−1) | AP (mg kg−1) | TK (g kg−1) | AK (mg kg−1) | Total Cd (mg kg−1) | DTPA Cd (mg kg−1) |
---|---|---|---|---|---|---|---|
7.52 | 23.1 | 0.31 | 16 | 8.89 | 157 | 0.033 | 0.006 |
Treatment | Organic Fertilizer | Urea | Superphosphate | Potassium Chloride | Converted to Major Nutrients | |||||
---|---|---|---|---|---|---|---|---|---|---|
Base Fertilizer | Topdressing | Base Fertilizer | Topdressing | Base Fertilizer | Topdressing | N | P2O5 | K2O | ||
CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CF | 0 | 237 | 158 | 937 | 0 | 187.5 | 0 | 181.5 | 112.5 | 112.5 |
OF | 0 | 249.6 | 166.4 | 625 | 0 | 131 | 0 | 191.4 | 75 | 78.75 |
T1 | 2815 | 187.2 | 124.8 | 353 | 0 | 72.1 | 0 | 191.4 | 75 | 78.75 |
T2 | 5629 | 124.8 | 83.2 | 81 | 0 | 13 | 0 | 191.4 | 75 | 78.75 |
M1 | 2815 | 187.2 | 124.8 | 625 | 0 | 131 | 0 | 191.4 | 107.6 | 114.2 |
M2 | 5629 | 124.8 | 83.2 | 625 | 0 | 131 | 0 | 191.4 | 140.29 | 149.7 |
Treatment | Organic Fertilizer | Urea | Superphosphate | Potassium Chloride | Converted to Major Nutrients | |||||
---|---|---|---|---|---|---|---|---|---|---|
Base Fertilizer | Topdressing | Base Fertilizer | Topdressing | Base Fertilizer | Topdressing | N | P2O5 | K2O | ||
CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CF | 0 | 196 | 130 | 562.5 | 0 | 112.5 | 0 | 150 | 67.5 | 67.5 |
OF | 0 | 274 | 183 | 500 | 0 | 150 | 0 | 210 | 60 | 90 |
T1 | 3088 | 205 | 137 | 201.5 | 0 | 85 | 0 | 210 | 60 | 90 |
T2 | 6176 | 137 | 92 | 0 | 0 | 20 | 0 | 210 | 72 | 90 |
M1 | 3088 | 205 | 137 | 500 | 0 | 150 | 0 | 210 | 96 | 129 |
M2 | 6176 | 137 | 92 | 500 | 0 | 150 | 0 | 210 | 132 | 168 |
Treatment | Effective Spike (×104 ha−1) | Grains per Panicle (No) | 1000-Grain Weight (g) | Grain Yield (kg ha−1) |
---|---|---|---|---|
CK | 268 ± 13.3 d | 30 ± 0.75 e | 41.8 ± 0.25 a | 3800 ± 82.3 f |
CF | 294 ± 5.25 cd | 34 ± 0.34 d | 42.1 ± 0.25 a | 4390 ± 80.1 e |
OF | 385 ± 24.6 a | 38.2 ± 1.39 ab | 41.8 ± 0.28 a | 5300 ± 63.7 a |
T1 | 349 ± 8.36 ab | 34 ± 0.38 d | 42.5 ± 0.40 a | 4970 ± 73.8 bc |
T2 | 284 ± 13.8 cd | 40.4 ± 0.52 a | 42.2 ± 0.18 a | 4670 ± 81.8 d |
M1 | 365 ± 11.9 ab | 35.6 ± 0.46 cd | 41.5 ± 0.30 a | 5200 ± 84.6 ab |
M2 | 324 ± 13.5 bc | 36.6 ± 0.64 bc | 42.5 ± 0.32 a | 4860 ± 81.8 cd |
Treatment | Effective Spike (106 ha−1) | Grains per Panicle (No) | 1000-Grain Weight (g) | Grain Yield (kg ha−1) |
---|---|---|---|---|
CK | 1.99 ± 0.08 d | 121 ± 3.11 d | 24.1 ± 0.25 d | 6220 ± 90 d |
CF | 2.34 ± 0.04 c | 126 ± 1.29 c | 24.6 ± 0.25 bcd | 6670 ± 50 c |
OF | 2.37 ± 0.08 c | 132 ± 2.63 bc | 24.5 ± 0.28 cd | 6840 ± 140 c |
T1 | 2.64 ± 0.07 ab | 135 ± 1.76 bc | 25.2 ± 0.18 abc | 7520 ± 50 ab |
T2 | 2.57 ± 0.09 bc | 132 ± 3.30 bc | 25.4 ± 0.28 ab | 7380 ± 50 b |
M1 | 2.87 ± 0.10 a | 143 ± 1.99 a | 25.5 ± 0.32 a | 7900 ± 220 a |
M2 | 2.68 ± 0.03 ab | 139 ± 2.43 b | 24.6 ± 0.30 bcd | 7710 ± 150 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhang, C.; Wang, X.; Li, H.; Kalkhajeh, Y.K.; Hu, H. Partial Substitution of Chemical N with Solid Cow Manure Improved Soil Ecological Indicators and Crop Yield in a Wheat–Rice Rotation System. Agronomy 2024, 14, 700. https://doi.org/10.3390/agronomy14040700
Yu J, Zhang C, Wang X, Li H, Kalkhajeh YK, Hu H. Partial Substitution of Chemical N with Solid Cow Manure Improved Soil Ecological Indicators and Crop Yield in a Wheat–Rice Rotation System. Agronomy. 2024; 14(4):700. https://doi.org/10.3390/agronomy14040700
Chicago/Turabian StyleYu, Jintao, Chun Zhang, Xuan Wang, Hongchuan Li, Yusef Kianpoor Kalkhajeh, and Hongxiang Hu. 2024. "Partial Substitution of Chemical N with Solid Cow Manure Improved Soil Ecological Indicators and Crop Yield in a Wheat–Rice Rotation System" Agronomy 14, no. 4: 700. https://doi.org/10.3390/agronomy14040700
APA StyleYu, J., Zhang, C., Wang, X., Li, H., Kalkhajeh, Y. K., & Hu, H. (2024). Partial Substitution of Chemical N with Solid Cow Manure Improved Soil Ecological Indicators and Crop Yield in a Wheat–Rice Rotation System. Agronomy, 14(4), 700. https://doi.org/10.3390/agronomy14040700