Strategic Ensilage of Signal Grass Pastures in Two Seasons in a Tropical Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Treatments, and Experimental Design
2.2. Silage Preparation and Experimental Design
2.3. Fermentative Characteristics
2.4. Quantification of Microbial Populations
2.5. Chemical Composition
2.6. Statistical Analysis
3. Results
3.1. Trial 1: Ensilage in November 2018 (Dry–Water Transition)
3.1.1. Chemical Composition and Microbial Population of Forage before Ensiling
3.1.2. Fermentation Characteristics and Microbial Population of Silages
3.1.3. Chemical Composition of Silages
3.2. Trial 2: Ensilage in March 2019 (Water–Dry Transition)
3.2.1. Chemical Composition and Microbial Population before Ensiling
3.2.2. Fermentation Characteristics and Microbial Population of Silages
3.2.3. Chemical Composition of Silages
4. Discussion
4.1. Chemical Composition and Microbial Population before Ensiling
4.2. Fermentation Characteristics and Microbial Populations of Silages
4.3. Chemical Composition of Silages
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; McAllister, T.A.; Drouin, P.; Nussio, L.G.; Huhtanen, P.; Tremblay, G.F.; Bélanger, G.; Cai, Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef] [PubMed]
- Kung, L., Jr. Silage fermentation and additives. Lat. Am. Arch. Anim. Prod. 2018, 26, 3–4. Available online: https://ojs.alpa.uy/index.php/ojs_files/article/view/2677 (accessed on 14 December 2023).
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Berça, A.S.; Cardoso, A.D.S.; Longhini, V.Z.; Tedeschi, L.O.; Boddey, R.M.; Reis, R.A.; Ruggieri, A.C. Protein and carbohydrate fractions in warm-season pastures: Effects of nitrogen management strategies. Agronomy 2021, 11, 847. [Google Scholar] [CrossRef]
- Gurgel, A.L.C.; Difante, G.D.S.; Montagner, D.B.; de Araujo, A.R.; Dias, A.M.; Santana, J.C.S.; Rodrigues, J.G.; Pereira, M.D.G. Nitrogen fertilisation in tropical pastures: What are the impacts of this practice? Aust. J. Crop Sci. 2020, 14, 978–984. Available online: https://search.informit.org/doi/10.3316/informit.339455489008340 (accessed on 14 December 2023). [CrossRef]
- Zegler, C.H.; Brink, G.E.; Renz, M.J.; Ruark, M.D.; Casler, M.D. Management effects on forage productivity, nutritive value, and legume persistence in rotationally grazed pastures. Crop Sci. 2018, 58, 2657–2664. [Google Scholar] [CrossRef]
- Kakraliya, S.K.; Singh, U.; Bohar, A.; Choudhary, K.K.; Kumar, S.; Meena, R.S.; Jat, M.L. Nitrogen and Legumes: A Meta-analysis. In Legumes for Soil Health and Sustainable Management; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 277–314. [Google Scholar]
- Ferreira, T.C.; Aguilar, J.V.; Souza, L.A.; Justino, G.C.; Aguiar, L.F.; Camargos, L.S. pH effects on nodulation and biological nitrogen fixation in Calopogonium mucunoides. Braz. J. Bot. 2016, 39, 1015–1020. [Google Scholar] [CrossRef]
- Köppen, W. Klassification der Klimate nach Temperatur, Niederschlag und Jahreslauf; Petermanns Geographische Mitteilungen: Gotha, Germany, 1918; Volume 64, pp. 193–203. [Google Scholar]
- Chaves, C.S.; Ribeiro, K.G.; Pereira, O.G.; da Fonseca, D.M.; Cecon, P.R.; Gomide, C.A.D.M. Signal grass deferred pastures fertilized with nitrogen or intercropped with calopo. Agriculture 2021, 11, 804. [Google Scholar] [CrossRef]
- Kung, L., Jr. Preparation of Silage Water Extracts for Chemical Analysis: Standard Operating Procedure 0016.03.96; University of Delaware: Newark, DE, USA, 1996. [Google Scholar]
- Siegfried, R.; Ruckemann, H.; Stumpf, G. Method for the determination of organic-acids in silage by high-performance liquid-chromatography. Landwirtsch. Forsch. 1984, 37, 298–304. [Google Scholar]
- Okuda, H.; Fujii, S.; Kawashima, Y. A direct colorimetric determination of blood ammonia. Tokushima J. Exp. Med. 1965, 12, 11–23. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC: Arlington, VA, USA, 1990; Volume 1, Available online: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (accessed on 21 July 2020).
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Detmann, E.; Souza, M.A.; Valadares Filho, S.C.; Queiroz, A.C.; Berchielli, T.T.; Saliba, E.O.S.; Cabral, L.S.; Pina, D.S.; Ladeira, M.M. Métodos Para Análise de Alimentos; Instituto Nacional de Ciência e Tecnologia de Ciência Animal: Visconde do Rio Branco, Brazil, 2012; 214p. [Google Scholar]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Faria, B.M.; Morenz, M.J.F.; Paciullo, D.S.C.; Lopes, F.C.F.; Gomide, C.A.D.M. Growth and bromatological characteristics of Brachiaria decumbens and Brachiaria ruziziensis under shading and nitrogen. Rev. Ciência Agronômica 2018, 49, 529–536. [Google Scholar] [CrossRef]
- Wen, B.; Xiao, W.; Mu, Q.; Li, D.; Chen, X.; Wu, H.; Li, L.; Peng, F. How does nitrate regulate plant senescence? Plant Physiol. Biochem. 2020, 157, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.K.D.; Corrêa, D.C.D.C.; Cunha, A.M.; Rêgo, A.C.D.; Faturi, C.; Silva, W.L.D.; Domingues, F.N. Effect of nitrogen fertilization on production, chemical composition and morphogenesis of guinea grass in the humid tropics. Agronomy 2020, 10, 1840. [Google Scholar] [CrossRef]
- Leite, R.G.; Cardoso, A.D.S.; Fonseca, N.V.B.; Silva, M.L.C.; Tedeschi, L.O.; Delevatti, L.M.; Ruggieri, A.C.; Reis, R.A. Effects of nitrogen fertilization on protein and carbohydrate fractions of Marandu palisadegrass. Sci. Rep. 2021, 11, 14786. [Google Scholar] [CrossRef]
- Pereira, J.M.; Rezende, C.D.P.; Ferreira Borges, A.M.; Homem, B.G.C.; Casagrande, D.R.; Macedo, T.M.; Alves, B.J.R.; Cabral de Sant’Anna, S.A.; Urquiaga, S.; Boddey, R.M. Production of beef cattle grazing on Brachiaria brizantha (Marandu grass) Arachis pintoi (forage peanut cv. Belomonte) mixtures exceeded that on grass monocultures fertilized with 120 kg N/ha. Grass Forage Sci. 2020, 75, 28–36. [Google Scholar] [CrossRef]
- Faria, D.A.; Avelino, A.C.D.; Cabral, C.E.A.; Abreu, J.G.; Barros, L.V.; Cabral, C.H.A.; Abreu, J.G.; Barros, L.V.; Cabral, C.H.A.; Dantas, V.G.V.; et al. Investigating the optimal day for nitrogen fertilization on Piatã palisadegrass and Quênia guineagrass after defoliation. J. Exp. Agric. Int. 2019, 34, 1–11. Available online: http://hdl.handle.net/1843/52910 (accessed on 16 December 2023). [CrossRef]
- Ribas, W.F.G.; Monção, F.P.; Rocha Júnior, V.R.; Maranhão, C.M.D.A.; Ferreira, H.C.; Santos, A.S.D.; Gomes, V.M.; Rigueira, J.P.S. Effect of wilting time and enzymatic-bacterial inoculant on the fermentative profile, aerobic stability, and nutritional value of BRS capiaçu grass silage. Rev. Bras. Zootec. 2021, 50, e20200207. [Google Scholar] [CrossRef]
- Woolford, M.K.; Pahlow, G. The silage fermentation. In Microbiology of Fermented Foods; Springer: Boston, MA, USA, 1998; pp. 73–102. [Google Scholar] [CrossRef]
- Rigueira, J.P.; Pereira, O.G.; Ribeiro, K.G.; Valadares Filho, S.D.C.; Cezário, A.S.; Silva, V.D.; Agarussi, M.C. Silage of marandu grass with levels of stylo legume treated or not with microbial inoculant. J. Agric. Sci. 2017, 9, 36–42. [Google Scholar] [CrossRef]
- Silva, V.P.; Pereira, O.G.; Leandro, E.S.; Paula, R.A.; Agarussi, M.C.; Ribeiro, K.G. Selection of lactic acid bacteria from alfalfa silage and its effects as inoculant on silage fermentation. Agriculture 2020, 10, 518. [Google Scholar] [CrossRef]
- Muck, R. Recent advances in silage microbiology. Agric. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Guan, H.; Huang, L.; Ma, X.; Peng, Y.; Li, Z.; Nie, G.; Zhou, J.; Yang, W.; et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 2019, 279, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Wambacq, E.; Vanhoutte, I.; Audenaert, K.; De Gelder, L.; Haesaert, G. Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: A review. J. Sci. Food Agric. 2016, 96, 2284–2302. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, C.; Xing, Y.; Zhou, W.; Pian, R.; Chen, X.; Zhang, Q. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresour. Technol. 2020, 296, 122336. [Google Scholar] [CrossRef]
- De Almeida, D.M.; da Silva, A.L.; Paulino, M.F.; da Silva, T.E.; Detmann, E.; Marcondes, M.I. Performance of Bos indicus beef cattle supplemented with mineral or with concentrates in tropical Urochloa decumbens pastures: A meta-regression approach. Anim. Feed Sci. Technol. 2022, 283, 115178. [Google Scholar] [CrossRef]
Growth Period | Item | |||
---|---|---|---|---|
Precipitation (mm) | Maximum T° (°C) | Mean T° (°C) | Minimum T° (°C) | |
1. Dry–water transition (27 June 2018 to 14 November 2018) | 360.2 | 25.7 | 18.8 | 14.3 |
2. Water–dry transition (24 January 2019 to 28 March 2019) | 286.8 | 29.9 | 22.9 | 18.8 |
Item 1 | Management 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
0 N | 50 N | 100 N | LEG | |||
DM (g kg−1 FM) | 220 | 206 | 213 | 214 | 3.8136 | 0.5801 |
CP (g kg−1 DM) | 66.5 b | 73.5 b | 80.7 b | 106 a | 2.4916 | 0.0002 |
NDFap (g kg−1 DM) | 653 ab | 662 a | 674 a | 621 b | 6.5540 | 0.0095 |
ADF (g kg−1 DM) | 367 | 367 | 384 | 368 | 3.7312 | 0.3331 |
WSC (g kg−1 DM) | 21.3 | 22.3 | 23,3 | 24.1 | 0.9530 | 0.7665 |
NDIN (%TN) | 19.3 b | 25.1 a | 25.7 a | 23.1 a | 0.7961 | 0.0025 |
ADIN (%TN) | 6.78 b | 7.31 ab | 6.90 b | 8.51 a | 0.2375 | 0.0235 |
LAB (log CFU g−1 FM) | 5.53 c | 6.55 a | 6.18 b | 6.20 b | 0.0966 | <0.001 |
ENT (log CFU g−1 FM) | 7.18 | 7.64 | 7.16 | 7.09 | 0.1368 | 0.4203 |
Yeast (log CFU g−1 FM) | 5.54 | 5.59 | 5.59 | 5.85 | 0.0871 | 0.6670 |
Mold (log CFU g−1 FM) | 5.50 | 5.41 | 5.58 | 5.52 | 0.0778 | 0.6469 |
pH | 5.85 | 6.05 | 5.92 | 6.04 | 0.0671 | 0.6442 |
Inoculant 1 | Management 2 | Item 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
pH | LA | AA | BA | ET | NH3-N (%TN) | LAB | ENT | ||
WI | 0 N | 4.90 | 21.5 | 13.5 bA | 7.90 aA | 10.38 aA | 13.7 bcA | 7.63 | 3.17 |
50 N | 4.85 | 26.9 | 14.8 abA | 5.97 aA | 9.41 abA | 12.5 cB | 8.08 | 3.91 | |
100 N | 4.77 | 20.9 | 20.0 aA | 2.33 bB | 6.47 bA | 18.1 aA | 7.98 | ND | |
LEG | 4.90 | 24.3 | 17.8 abA | 7.60 aA | 10.75 aA | 16.0 abA | 7.54 | 3.04 | |
I | 0 N | 4.91 | 27.9 | 13.4 bA | 7.77 aA | 7.85 aB | 13.4 bA | 8.00 | 2.58 |
50 N | 4.86 | 22.9 | 15.5 abA | 2.77 bB | 4.88 bB | 16.7 aA | 7.88 | 2.84 | |
100 N | 4.95 | 24.8 | 12.8 bB | 4.87 abA | 7.65 abA | 16.9 aA | 7.62 | 3.41 | |
LEG | 4.76 | 27.6 | 20.3 aA | 2.55 bB | 7.50 abB | 16.9 aA | 8.03 | 2.98 | |
SEM 1 | 0.0646 | 1.331 | 1.0998 | 0.6616 | 0.5945 | 0.4499 | 0.127 | 0.204 | |
General average for inoculant (I) | |||||||||
WI | 4.85 | 23.10 | 16.46 | 5.94 | 9.25 | 15.06 | 7.81 | 3.37 A | |
I | 4.87 | 26.00 | 15.33 | 4.48 | 6.97 | 15.96 | 7.87 | 2.91 B | |
General average for management (M) | |||||||||
0 N | 4.90 | 24.69 | 13.44 | 7.83 | 9.11 | 13.51 | 7.81 | 2.82 | |
50 N | 4.86 | 24.90 | 15.07 | 4.37 | 7.14 | 14.56 | 7.99 | 3.30 | |
100 N | 4.86 | 22.57 | 16.96 | 3.59 | 7.06 | 17.50 | 7.80 | 3.41 | |
LEG | 4.83 | 25.93 | 19.08 | 5.07 | 9.12 | 16.46 | 7.79 | 3.01 | |
p-value | |||||||||
I | 0.8384 | 0.1762 | 0.3672 | 0.0188 | 0.0005 | 0.1319 | 0.613 | 0.007 | |
M | 0.9199 | 0.5868 | 0.0130 | 0.0004 | 0.0127 | 0.0002 | 0.780 | 0.102 | |
M × I | 0.5875 | 0.1563 | 0.0275 | 0.0008 | 0.0096 | 0.0215 | 0.166 | 0.127 |
Inoculant 1 | Management 2 | Item 3 | ||||||
---|---|---|---|---|---|---|---|---|
DM (g kg−1 FM) | CP | NDFap | ADF | NDIN (%TN) | ADIN (%TN) | iNDF | ||
WI | 0 N | 202 | 45.8 | 651 | 380 | 18.3 aB | 7.96 aB | 202.30 |
50 N | 205 | 47.7 | 640 | 384 | 17.6 aA | 10.4 aA | 202.90 | |
100 N | 189 | 51.9 | 656 | 380 | 21.9 aA | 9.97 aB | 189.06 | |
LEG | 212 | 52.6 | 640 | 385 | 18.3 aA | 8.83 aA | 221.97 | |
I | 0 N | 205 | 45.8 | 665 | 394 | 22.9 aA | 11.4 bA | 201.15 |
50 N | 207 | 50.6 | 679 | 386 | 17.5 bA | 9.97 bA | 194.05 | |
100 N | 182 | 48.7 | 636 | 386 | 22.4 aA | 15.2 aA | 196.36 | |
LEG | 217 | 53.4 | 642 | 384 | 16.8 bA | 8.96 bA | 191.70 | |
SEM 1 | 6.8256 | 1.2053 | 5.1616 | 2.2901 | 0.8888 | 0.8469 | 0.5350 | |
General average for inoculant (I) | ||||||||
WI | 202 | 49.5 | 647 | 382 | 19.0 | 9.30 | 205 | |
I | 203 | 49.6 | 656 | 388 | 19.9 | 11.4 | 196 | |
General average for management (M) | ||||||||
0 N | 203 | 45.8 b | 658 ab | 387 | 20.6 | 9.69 | 202 | |
50 N | 206 | 49.2 ab | 668 a | 385 | 17.5 | 10.2 | 198 | |
100 N | 186 | 50.3 ab | 638 b | 383 | 22.1 | 12.6 | 193 | |
LEG | 214 | 52.9 a | 641 ab | 385 | 18.4 | 8.90 | 207 | |
p-value | ||||||||
I | 0.9022 | 0.9576 | 0.2509 | 0.2968 | 0.2705 | 0.0026 | 0.1713 | |
M | 0.0967 | 0.0547 | 0.0309 | 0.9464 | 0.0008 | 0.0031 | 0.4371 | |
M × I | 0.9439 | 0.6587 | 0.6011 | 0.7256 | 0.0375 | 0.0110 | 0.1696 |
Item 1 | Management 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
0 N | 50 N | 100 N | LEG | |||
DM (g kg−1 FM) | 264 a | 233 b | 211 b | 218 b | 6.2796 | 0.0016 |
CP (g kg−1 DM) | 48.9 d | 62.9 c | 76.5 b | 93.5 a | 2.8344 | <0.0001 |
NDFap (g kg−1 DM) | 665 | 648 | 648 | 628 | 5.5211 | 0.1314 |
ADF (g kg−1 DM) | 383 | 380 | 373 | 376 | 3.0402 | 0.7221 |
WSC (g kg−1 DM) | 21.9 | 24.7 | 24.5 | 18.1 | 1.0562 | 0.0749 |
NDIN (%TN) | 23.9 | 23.4 | 22.8 | 24.9 | 0.5604 | 0.6816 |
ADIN (%TN) | 11.9 a | 7.32 c | 8.87 b | 8.77 b | 0.4453 | <0.0001 |
LAB (log CFU g−1 FM) | 7.47 bc | 7.00 c | 8.06 a | 7.80 a | 0.1226 | 0.0031 |
ENT (log CFU g−1 FM) | 7.17 | 6.98 | 7.62 | 7.49 | 0.1034 | 0.0959 |
Yeast (log CFU g−1 FM) | 6.02 a | 5.89 a | 5.72 b | 5.67 b | 0.0407 | 0.0004 |
Mold (log CFU g−1 FM) | 5.64 a | 5.52 ab | 5.08 c | 5.29 bc | 0.0692 | 0.0063 |
pH | 6.03 | 6.03 | 6.16 | 6.16 | 0.0491 | 0.6445 |
Inoculant 1 | Management 2 | Item 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
pH | LA | AA | BA | ET | NH3-N (%TN) | LAB | ENT | ||
WI | 0 N | 4.90 | 26.2 | 13.5 | 6.11 | 3.33 | 17.3 | 8.02 | 4.06 |
50 N | 4.99 | 22.9 | 17.6 | 5.44 | 4.95 | 16.1 | 7.99 | 3.78 | |
100 N | 4.74 | 32.6 | 16.6 | 6.41 | 3.73 | 18.4 | 7.86 | 4.50 | |
LEG | 5.08 | 29.1 | 20.9 | 6.14 | 5.40 | 18.9 | 7.82 | 4.95 | |
I | 0 N | 4.86 | 29.1 | 14.5 | 3.99 | 3.48 | 15.1 | 7.99 | 3.64 |
50 N | 5.04 | 19.2 | 14.6 | 3.76 | 4.43 | 15.9 | 7.93 | 4.18 | |
100 N | 4.86 | 26.1 | 16.9 | 5.98 | 4.90 | 19.5 | 7.86 | 4.16 | |
LEG | 5.04 | 28.4 | 21.6 | 7.81 | 6.60 | 17.1 | 7.88 | 3.84 | |
SEM 1 | 0.0724 | 1.3673 | 1.0899 | 0.5612 | 0.4951 | 0.6424 | 0.0525 | 0.2854 | |
General average for inoculant (I) | |||||||||
WI | 4.93 | 27.4 | 17.0 | 6.02 | 4.35 | 17.7 | 7.92 | 4.32 | |
I | 4.95 | 25.7 | 16.8 | 5.38 | 4.85 | 16.9 | 7.92 | 3.95 | |
General average for management (M) | |||||||||
0 N | 4.88 | 27.7 a | 13.8 b | 5.05 | 3.40 | 16.2 | 8.00 | 3.85 | |
50 N | 5.01 | 21.1 b | 16.3 ab | 4.60 | 4.69 | 16.0 | 7.96 | 3.98 | |
100 N | 4.80 | 29.9 a | 16.7 ab | 6.19 | 4.32 | 18.9 | 7.86 | 4.32 | |
LEG | 5.06 | 27.7 a | 20.8 a | 6.97 | 5.99 | 18.0 | 7.85 | 4.39 | |
p-value | |||||||||
I | 0.7622 | 0.3495 | 0.8492 | 0.5510 | 0.5657 | 0.4121 | 0.9394 | 0.3785 | |
M | 0.0879 | 0.0196 | 0.0113 | 0.3944 | 0.2308 | 0.0940 | 0.3725 | 0.7294 | |
M × I | 0.8694 | 0.2334 | 0.6766 | 0.5958 | 0.8567 | 0.5088 | 0.9203 | 0.6111 |
Inoculant 1 | Management 2 | Item 3 | ||||||
---|---|---|---|---|---|---|---|---|
DM (g kg−1 FM) | CP | NDFap | ADF | NDIN (%TN) | ADIN (%TN) | iNDF | ||
WI | 0 N | 248 | 44.0 | 676 | 399 | 18.4 | 8.98 | 21.7 |
50 N | 227 | 48.4 | 661 | 381 | 22.5 | 9.86 | 21.2 | |
100 N | 214 | 69.6 | 635 | 381 | 13.4 | 7.44 | 19.1 | |
LEG | 215 | 53.7 | 639 | 393 | 19.5 | 11.1 | 19.7 | |
I | 0 N | 243 | 48.7 | 699 | 399 | 17.1 | 7.64 | 21.4 |
50 N | 220 | 55.8 | 663 | 390 | 19.8 | 8.78 | 21.8 | |
100 N | 214 | 74.3 | 634 | 376 | 13.0 | 6.02 | 18.7 | |
LEG | 221 | 55.5 | 671 | 394 | 18.9 | 10.7 | 20.7 | |
SEM 1 | 5.5876 | 2.6594 | 6.4942 | 2.9545 | 0.8807 | 0.6042 | 0.5320 | |
General average for inoculant (I) | ||||||||
WI | 226 | 53.9 B | 653 | 388 | 18.4 | 9.35 A | 20.4 | |
I | 225 | 58.6 A | 667 | 390 | 17.2 | 8.29 B | 20.7 | |
General average for management (M) | ||||||||
0 N | 245 | 46.3 c | 688 a | 399 a | 17.7 b | 8.21 b | 21.6 a | |
50 N | 224 | 52.1 bc | 662 ab | 386 ab | 21.2 a | 9.32 b | 21.5 ab | |
100 N | 214 | 71.9 a | 635 b | 378 b | 13.2 c | 6.73 c | 18.9 b | |
LEG | 218 | 54.6 b | 655 ab | 394 ab | 19.2 ab | 10.9 a | 20.2 ab | |
p-value | ||||||||
I | 0.8888 | 0.04043 | 0.1522 | 0.7367 | 0.0908 | 0.0021 | 0.7268 | |
M | 0.7765 | <0.0001 | 0.0073 | 0.0225 | <0.0001 | <0.0001 | 0.0297 | |
M × I | 0.9620 | 0.8486 | 0.5316 | 0.7557 | 0.6164 | 0.6607 | 0.8816 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silveira, T.C.; Ribeiro, K.G.; Roseira, J.P.S.; Alves, W.S.; Coutinho, D.N.; dos Anjos, A.J.; Pereira, O.G. Strategic Ensilage of Signal Grass Pastures in Two Seasons in a Tropical Region. Agronomy 2024, 14, 822. https://doi.org/10.3390/agronomy14040822
da Silveira TC, Ribeiro KG, Roseira JPS, Alves WS, Coutinho DN, dos Anjos AJ, Pereira OG. Strategic Ensilage of Signal Grass Pastures in Two Seasons in a Tropical Region. Agronomy. 2024; 14(4):822. https://doi.org/10.3390/agronomy14040822
Chicago/Turabian Styleda Silveira, Tâmara Chagas, Karina Guimarães Ribeiro, João Paulo Santos Roseira, Wagner Sousa Alves, Danielle Nascimento Coutinho, Albert José dos Anjos, and Odilon Gomes Pereira. 2024. "Strategic Ensilage of Signal Grass Pastures in Two Seasons in a Tropical Region" Agronomy 14, no. 4: 822. https://doi.org/10.3390/agronomy14040822
APA Styleda Silveira, T. C., Ribeiro, K. G., Roseira, J. P. S., Alves, W. S., Coutinho, D. N., dos Anjos, A. J., & Pereira, O. G. (2024). Strategic Ensilage of Signal Grass Pastures in Two Seasons in a Tropical Region. Agronomy, 14(4), 822. https://doi.org/10.3390/agronomy14040822