Analysis of Tobacco Straw Return to the Field to Improve the Chemical, Physical, and Biological Soil Properties and Rice Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Testing
2.2. Experimental Design
2.3. Test Items and Measurement Methods
2.3.1. Soil Sampling
2.3.2. Determination of Soil Bulk Density and Porosity
2.3.3. Determination of Soil Aggregates
2.3.4. Determination of Soil Nutrients
2.3.5. Measurement of Soil Enzyme Activities
2.3.6. Soil Microbial Diversity Detection
2.4. Statistical Analysis
3. Results
3.1. Effect on the Soil Bulk Density and Porosity of Paddy Fields
3.1.1. Impact on Soil Bulk Density
3.1.2. Effects on Soil Porosity
3.2. Effects on the Particle Size Distribution and Stability of Rice Field Soil Aggregates
Effect on the Particle Size Distribution of Soil Aggregates
3.3. Effect on Soil Nutrients in Rice Fields
3.4. Impact on the Biological Properties of Paddy Soil
3.4.1. Impact on Sucrase and Urease Activities in Paddy Soil
3.4.2. Impact on Soil Microbial Alpha Diversity in Paddy Fields
3.4.3. Impact on the Structure of Soil Fungal Communities in Paddy Fields
3.4.4. Impact on the Structure of Soil Bacterial Communities in Rice Fields
3.4.5. Impact on Soil Fungal Beta Diversity in Paddy Fields
3.4.6. Impact on Soil Fungal Beta Diversity in Paddy Fields
3.5. Effect on the Dry Matter Quality of Rice
3.6. Impact on Rice Yield and Its Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Z.; Liang, W.; Li, Y.; Wang, X. Effect of Continuous and Multiple Cropping of Tobacco-Rice on Economic Attributes and Quality of Flue-cured Tobacco. Chin. Tob. Sci. 2014, 35, 22–27. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, T.; Ding, H.; Li, C.; Yu, M.; Liu, J.; Cao, C. The effects of straw returning and nitrogen fertilizer application on soil labile organic carbon fractions and carbon pool management index in a rice-wheat rotation system. Pedobiologia 2023, 101, 150913. [Google Scholar] [CrossRef]
- Gao, Y.; Shao, Y.; Wang, J.; Hu, B.; Feng, H.; Qu, Z.; Liu, Z.; Zhang, M.; Li, C.; Liu, Y. Effects of straw returning combined with blended controlled-release urea fertilizer on crop yields, greenhouse gas emissions, and net ecosystem economic benefits: A nine-year field trial. J. Environ. Manag. 2024, 356, 120633. [Google Scholar] [CrossRef]
- Ibrahim, M.; Cao, C.G.; Zhan, M.; Li, C.F.; Iqbal, J. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 2013, 12, 263–274. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Shangguan, Z.P.; Deng, L. Variations in soil aggregate stability due to land use changes from agricultural land on the Loess Plateau, China. Catena 2021, 200, 105181. [Google Scholar] [CrossRef]
- Zhao, H.L.; Shar, A.G.; Li, S.; Chen, Y.L.; Shi, J.L.; Zhang, X.Y.; Tian, X.H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Li, Y.; Abalos, D.; Arthur, E.; Feng, H.; Siddique, K.H.M.; Chen, J. Different straw return methods have divergent effects on winter wheat yield, yield stability, and soil structural properties. Soil Tillage Res. 2024, 238, 105992. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Senapati, A.; Mitra, D.; Priyadarshin, A.; Shadangi, S.; Behera, S.; Kumar, U.; Kumar, A.; Shahid, M.; Sharma, S.; et al. Enhancing soil quality and yield through microbial assisted in-situ residue management in rice-rice cropping system in Odisha, Eastern India. J. Environ. Manag. 2024, 358, 120916. [Google Scholar] [CrossRef]
- Xu, J.; Yin, S.; Hu, N.; Gu, Z.; Wang, B.; Zhu, L. Effects of annual straw return on soil nutrients, microbial activity and yield in rice-wheat rotation farmland. J. Appl. Environ. Biol. 2015, 21, 1100–1105. [Google Scholar]
- Fan, W.; Wu, J. Short-term effects of returning granulated straw on soil microbial community and organic carbon fractions in dryland farming. J. Microbiol. 2020, 58, 657–667. [Google Scholar] [CrossRef]
- Liu, L.; Ding, M.J.; Zhou, L.K.; Chen, Y.; Li, H.P.; Zhang, F.M.; Li, G.; Zhou, Z.F.; Zhang, Y.; Zhou, X.X. Effects of Different Rice Straw on Soil Microbial Community Structure. Agron. J. 2020, 113, 794–805. [Google Scholar] [CrossRef]
- Bai, N.; Zhang, H.; Zhou, S.; Sun, H.; Lv, W. Long-term effects of straw return and straw-derived biochar amendment on bacterial communities in soil aggregates. Sci. Rep. 2020, 10, 7891. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Li, Y.; Mo, R.; Deng, W.; Zhu, Z.; Liu, D.; Hu, X. Effects of long-term straw retention on soil microorganisms under a rice-wheat cropping system. Arch. Microbiol. 2020, 202 (Suppl. S1), 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, C.E.; Ophel, K.K.; Doube, B.M. Biodiversity of soil microbial communities in agricultural systems. Biodivers. Conserv. 1996, 5, 197–209. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Xu, F. Effects of rice straw returned to the field on the adsorption-desorption of soil potassium, phosphorus and zinc and their effectiveness. J. Cent. China Agric. Univ. 2000, 227–232. [Google Scholar] [CrossRef]
- Soil Physics Research Laboratory; Nanjing Soil Research Institute; Chinese Academy of Sciences. Method for the Determination of Soil Physical Properties; Science Press: Beijing, China, 1978. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K. Soil structure and soil organic matter: II. A normalized stability index and Effect of mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Guan, S.-Y. Soil Enzymes and Their Research Methods; Agricultural Press: Beijing, China, 1986. [Google Scholar]
- Guo, M.; Wu, F.; Hao, G.; Qi, Q.; Li, R.; Li, N.; Wei, L.; Chai, T. Bacillus subtilis improves immunity and disease resistance in rabbits. Front. Immunol. 2017, 8, 354. [Google Scholar] [CrossRef] [PubMed]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef] [PubMed]
- Elmar, P.; Christian, Q.; Katrin, K.; Fuchs, B.M.; Wolfgang, L.; Jrg, P. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [PubMed]
- Ankenbrand, M.J.; Keller, A.; Wolf, M.; Schultz, J.; Frster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 2015, 32, 3030–3032. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Yang, M.C.K. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 1993, 80, 193–201. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric Estimation of the Number of Classes in a Population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Yang, C.; Liu, Z.; Wang, S.; Ding, Y. Population Characteristics of High-Yielding Rice under Different Densities. Agron. J. 2016, 108, 1415–1423. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Jiao, X.Y.; Li, H.D.; Hu, T.S.; Jiang, H.Z.; Mahmoud, A.L. Effects of biochar on water quality and rice productivity under straw returning condition in a rice-wheat rotation region. Sci. Total Environ. 2022, 819, 152063. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Q.; Chen, L.M.; Xiong, R.Y.; Jiang, J.L.; Liu, Y.Q.; Tan, X.M.; Liu, T.J.; Zeng, Y.J.; Pan, X.H.; Zeng, Y.H. Long-term straw return improves cooked indica rice texture by altering starch structural, physicochemical properties in South China. Food Chem. X 2023, 20, 100965. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, D.; Zhang, G. Effects of straw return with nitrogen fertilizer on rice yield and economic benefits under rice-wheat rotation in Taihu Lake area. Chin. J. Ecol. Agric. 2011, 19, 265–270. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, P.; Shang, J. Effects of long-term continuous straw return on soil physicochemical properties, enzyme activities and yield traits. Res. Soil Water Conserv. 2018, 25, 92–98. [Google Scholar]
- Liu, J.; Zhang, Y.; Cui, G. Effects of straw return on soil physicochemical properties and wheat yield. Hebei Agric. Sci. 2017, 21, 44–48+98. [Google Scholar]
- Cheng, Y.; Ren, H.; Liu, P.; Dong, S.T.; Zhang, J.W.; Zhao, B.; Li, G.; Liu, S.K. Effects of different cultivation and management modes on soil aggregate composition and its carbon and nitrogen distribution in agricultural soils. J. Appl. Ecol. 2016, 27, 3521–3528. [Google Scholar]
- Zhao, J.S.; Chen, S.; Hu, R.G. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil Tillage Res. 2017, 167, 73–79. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, N.; Ge, T.; Kuzyakov, Y.; Wang, Z.L.; Li, Z.; Tang, Z.; Chen, Y.; Wu, C.; Lou, Y. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 2017, 111, 65–72. [Google Scholar] [CrossRef]
- Zhang, S.T.; Ren, T.; Cong, W.F.; Fang, Y.T.; Zhu, J.; Zhao, J.; Cong, R.H.; Li, X.K.; Lu, J.W. Oilseed rape-rice rotation with recommended fertilization and straw returning enhances soil organic carbon sequestration through influencing macroaggregates and molecular complexity. Agric. Ecosyst. Environ. 2024, 367, 108960. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheng, Z.; Wang, Y.; Su, S.; Ling, B.; Wu, C.; Zeng, X. Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics. Catena 2021, 203, 105342. [Google Scholar] [CrossRef]
- Sodhi, G.; Beri, V.; Benbi, D.K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system. Soil Tillage Res. 2009, 103, 412–418. [Google Scholar] [CrossRef]
- Xue, Y.; Xue, W.; Zhang, S. Effects of long-term different fertilization on small soil agglomerate cementation. J. Plant Nutr. Fertil. 2015, 21, 1622–1632. [Google Scholar]
- Du, J.; Zhang, B.; Xie, H. Effects of different fertilization treatments on soil protein content of ballooning. Soil Bull. 2011, 42, 573–577. [Google Scholar]
- Cheng, J.; Huang, J.; Deng, X.; Huang, G.; Yang, L.; Zhang, W.; He, M.; Li, F.; Xie, P.; Pei, X. Characteristics of tobacco stubble flooding decay and its effect on water quality. China Tob. Sci. 2019, 40, 33–41. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, Y.; Zhang, F. Comparative analysis of fertilizing effect of straw returned to field and rotted organic fertilizer on rice soil. J. Agric. Eng. 2008, 24, 214–218. [Google Scholar]
- Lao, X.; Sun, W.; Wang, Z. Effects of straw return and fertilizer application on soil fertility. Soil Sci. J. 2003, 40, 618–623. [Google Scholar]
- Yu, L.; Zhang, Y.; Wang, Y.; Yao, Q.; Yang, K. Effects of slow-release nitrogen and urea combined application on soil physicochemical properties and fungal community under total straw returning condition. Environ. Res. 2024, 252, 118758. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zu, C.; Riaz, M.; Li, C.; Zhu, Q.; Xia, H.; Dong, Q.; Shen, J. Influences of tobacco straw return with lime on microbial community structure of tobacco-planting soil and tobacco leaf quality. Environ. Sci. Pollut. Res. Int. 2024, 31. [Google Scholar] [CrossRef]
- Delcher, A.L.; Bratke, K.A.; Powers, E.C.; Salzberg, S. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23, 673–679. [Google Scholar] [CrossRef]
- Chen, Z.M.; Wang, H.Y.; Liu, X.W. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system. Soil Tillage Res. 2017, 165, 121–127. [Google Scholar] [CrossRef]
- Liu, B.; Xia, H.; Jiang, C.C.; Riaz, M.; Yang, L.; Chen, Y.F.; Fan, X.P.; Xia, X.E. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Sci. Total Environ. 2022, 841, 156608. [Google Scholar] [CrossRef]
- Li, H.; Li, B.Z.; Zou, D.S. Impacts of rice straw and its biochar product on the amounts of soil microbial biomass carbon and nitrogen and the mineralization of soil organic nitrogen in subtropical croplands. Res. Agric. Mod. 2015, 36, 303–308. [Google Scholar]
- Song, K.; Zhou, C.; Li, H.; Zhou, Z.; Ni, G.; Yin, X. Effects of rumen microorganisms on straw returning to soil at different. Eur. J. Soil Biol. 2023, 114, 103454. [Google Scholar] [CrossRef]
- Wegner, C.E.; Liesack, W. Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil. Environ. Microbiol. 2016, 18, 2825–2842. [Google Scholar] [CrossRef]
- Rong, L.; Zhao, L.; Zhao, L.; Cheng, Z.P.; Yao, Y.M.; Yuan, C.L.; Wang, L.; Sun, H.W. LDPE microplastics affect soil microbial communities and nitrogen cycling. Sci. Total Environ. 2021, 773, 145640. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zheng, S.; Cao, C.; Li, C.F. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China. Sci. Rep. 2016, 6, 33155. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Z.; Qin, Y.; Hu, X.J.; Zhang, W. Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China. Appl. Soil Ecol. 2017, 119, 407–416. [Google Scholar] [CrossRef]
- Liu, S.; Han, Y.; Zhu, X. Effects of cotton stalk charcoal modulation on the structure and function of inter-root soil fungal communities in alkaline cadmium-contaminated rice. Environ. Sci. 2020, 41, 3846–3854. [Google Scholar]
- Gai, X.T.; Jiang, N.; Lu, C.H.; Xia, Z.Y.; He, Y.S. First Report of Tobacco Fusarium Root Rot Caused by Fusarium verticillioides in China. Plant Dis. 2021, 105, 3762. [Google Scholar] [CrossRef]
- Chen, J.; He, J.; Zhang, Y.; Huang, J.; Chen, Z.F.; Zeng, W.A. Effects of tobacco plant residue return on rhizosphere soil microbial community. Ann. Microbiol. 2022, 72, 42. [Google Scholar] [CrossRef]
- Maarastawi, S.A.; Frindte, K.; Linnartz, M.; Knief, C. Crop rotation and straw application impact microbial communities in Italian and Philippine soils and the rhizosphere of Zea mays. Front. Microbiol. 2018, 9, 1295. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Li, Y.; Chapma, S.J.; Khan, S.; Yao, H. Microbial utilization of rice straw and its derived biochar in a paddy soil. Sci. Total Environ. 2016, 559, 15–23. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xin, X.L.; Zhu, A.N.; Yang, W.L.; Zhang, J.B.; Ding, S.J.; Mu, L.; Shao, L.L. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil Tillage Res. 2018, 178, 99–107. [Google Scholar] [CrossRef]
- Li, F.; Niu, Y.; Gao, W. Effects of tillage and straw return on soil physicochemical properties and yield of direct seeded rice fields. Soil Bull. 2008, 39, 549–552. [Google Scholar]
- Li, F.; Wei, H.; Cao, J. Degradation rate of straw returned to the field in calcareous soil and its effect on soil fertility (in English). J. Resour. Ecol. 2015, 6, 217–223. [Google Scholar]
- Shan, T.; Wei, H.; Wang, A. The effects of rice straw returned to the field with chemical nitrogen fertilizer on the growth and development, yield and quality of rice. J. Jiangxi Agric. Univ. 2010, 32, 265–270. [Google Scholar]
Year | Treats | Particle Size Distribution/% | Total Amount of >0.25 mm Paddy Soil Water-Stable Aggregates/% | MWD/mm | ||||
---|---|---|---|---|---|---|---|---|
>2 mm | 2~0.5 mm | 0.5~0.25 mm | 0.25~0.053 mm | <0.053 mm | ||||
2018 | T1 | 72.4 ± 2.6 a | 12.0 ± 1.3 a | 9.3 ± 1.0 a | 4.2 ± 1.6 c | 2.1 ± 1.6 b | 93.7 ± 3.4 a | 1.4 ± 0.0 a |
T2 | 62.5 ± 2.5 b | 12.4 ± 1.2 a | 11.3 ± 1.0 a | 10.4 ± 1.7 b | 3.4 ± 2.6 b | 86.2 ± 1.0 b | 1.3 ± 0.0 ab | |
CK | 47.9 ± 1.2 c | 14,0 ± 1.1 a | 11.9 ± 0.9 a | 18.5 ± 1.5 a | 7.7 ± 1.0 a | 73.7 ± 0.9 c | 1.2 ± 0.0 b | |
2019 | T1 | 73.3 ± 1.3 a | 10.3 ± 3.0 a | 8.6 ± 2.9 a | 4.3 ± 1.4 c | 3.5 ± 1.4 b | 92.2 ± 2.1 a | 1.6 ± 0.0 a |
T2 | 64.7 ± 1.5 b | 11.2 ± 2.1 a | 91 ± 2.9 a | 10.4 ± 1.0 b | 4.6 ± 2.5 b | 85.0 ± 3.9 b | 1.4 ± 0.0 b | |
CK | 47.4 ± 0.7 c | 13.6 ± 1.3 a | 11.5 ± 1.2 a | 20.5 ± 2.1 a | 7.0 ± 1.7 a | 72.4 ± 2.1 c | 1.1 ± 0.0 c | |
2020 | T1 | 77.1 ± 2.7 a | 7.9 ± 2.7 a | 6.9 ± 3.7 a | 4.9 ± 1.5 c | 3.2 ± 2.3 b | 91.9 ± 4.3 a | 1.7 ± 0.0 a |
T2 | 65.2 ± 1.5 b | 10.4 ± 3.0 a | 9.1 ± 2.9 a | 11.0 ± 1.1 b | 4.2 ± 2.4 b | 84.7 ± 2.0 b | 1.4 ± 0.0 b | |
CK | 45.7 ± 1.6 c | 12.8 ± 1.3 a | 11.5 ± 1.2 a | 22.9 ± 2.3 a | 7.1 ± 1.7 a | 69.9 ± 5.1 c | 1.2 ± 0.0 c |
Year | Treats | pH | OM/(g·kg−1) | TN/(g·kg−1) | TP/(g·kg−1) | TK/(g·kg−1) | AN/(mg·kg−1) | AP/(mg·kg−1) | AK/(mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
2018 | T1 | 7.76 ± 0.02 a | 17.1 ± 0.3 a | 1.7 ± 0.0 a | 1.54 ± 0.0 a | 6.9 ± 0.1 a | 90.2 ± 3.1 a | 12.8 ± 1.2 a | 74.9 ± 4.0 a |
T2 | 7.75 ± 0.04 a | 17.0 ± 0.2 a | 1.7 ± 0.0 b | 1.49 ± 0.0 a | 6.9 ± 0.3 a | 89.8 ± 2.7 b | 13.9 ± 0.6 a | 69.5 ± 3.4 ab | |
CK | 7.77 ± 0.03 a | 16.0 ± 0.3 b | 1.6 ± 0.0 b | 1.47 ± 0.1 a | 6.9 ± 0.1 a | 84.0 ± 1.7 c | 13.2 ± 0.5 a | 68.3 ± 2.5 b | |
2019 | T1 | 7.75 ± 0.04 a | 17.8 ± 0.3 a | 1.7 ± 0.0 a | 1.59 ± 0.0 a | 6.9 ± 0.3 a | 91.1 ± 1.4 a | 13.8 ± 1.3 a | 73.7 ± 2.1 a |
T2 | 7.82 ± 0.06 a | 17.1 ± 0.3 a | 1.6 ± 0.0 b | 1.53 ± 0.0 a | 6.9 ± 0.2 a | 88.8 ± 2.3 b | 13.1 ± 1.2 a | 69.5 ± 2.4 ab | |
CK | 7.78 ± 0.03 a | 16.2 ± 0.3 b | 1.6 ± 0.0 b | 1.49 ± 0.0 a | 6.7 ± 0.3 a | 83.1 ± 2.1 c | 13.5 ± 1.0 a | 67.4 ± 3.2 b | |
2020 | T1 | 7.72 ± 0.02 b | 18.4 ± 0.2 a | 1.7 ± 0.0 a | 1.64 ± 0.0 a | 6.8 ± 0.0 a | 105.4 ± 3.8 a | 13.9 ± 1.4 a | 81.3 ± 2.7 a |
T2 | 7.76 ± 0.02 b | 17.6 ± 0.2 a | 1.6 ± 0.0 b | 1.60 ± 0.0 a | 6.7 ± 0.0 a | 94.7 ± 4.8 b | 14.7 ± 0.6 a | 79.9 ± 2.7 ab | |
CK | 7.82 ± 0.02 a | 16.1 ± 0.4 b | 1.6 ± 0.0 c | 1.5 ± 0.0 a | 6.7 ± 0.1 a | 87.0 ± 1.5 c | 13.4 ± 0.5 a | 71.4 ± 6.8 b |
Classification | Year | Treats | Shannon | Simpson | Chao1 | Ace |
---|---|---|---|---|---|---|
Bacteria | 2018 | T1 | 10.6 ± 0.0 a | 0.98 ± 0.01 a | 5187.3 ± 17.5 a | 5369.1 ± 12.4 a |
T2 | 10.2 ± 0.0 a | 0.98 ± 0.02 a | 5163.4 ± 16.5 a | 5358.3 ± 21.5 a | ||
CK | 10.3 ± 0.0 a | 0.95 ± 0.01 a | 4952.2 ± 20.2 a | 5190.4 ± 32.5 a | ||
2019 | T1 | 10.7 ± 0.0 a | 0.98 ± 0.02 a | 6342.6 ± 20.9 a | 6548.0 ± 22.7 a | |
T2 | 10.4 ± 0.0 a | 0.97 ± 0.01 a | 6328.7 ± 18.4 a | 6479.6 ± 32.6 a | ||
CK | 10.3 ± 0.0 a | 0.96 ± 0.01 a | 6257.7 ± 11.1 a | 6449.6 ± 35.1 a | ||
2020 | T1 | 11.2 ± 0.0 a | 0.99 ± 0.02 a | 6365.6 ± 24.0 a | 6702.4 ± 32.7 a | |
T2 | 11.0 ± 0.0 a | 0.98 ± 0.01 a | 6334.4 ± 20.5 a | 6651.1 ± 45.8 a | ||
CK | 10.4 ± 0.0 a | 0.97 ± 0.01 a | 6264.7 ± 16.6 a | 6488.9 ± 31.8 a | ||
Fungi | 2018 | T1 | 5.0 ± 0.2 a | 0.85 ± 0.02 a | 752.1 ± 14.9 a | 732.8 ± 7.6 a |
T2 | 4.6 ± 0.1 a | 0.79 ± 0.01 b | 690.4 ± 12.6 b | 701.6 ± 24.2 ab | ||
CK | 3.6 ± 0.3 b | 0.52 ± 0.02 c | 640.6 ± 10.9 c | 652.8 ± 23.7 b | ||
2019 | T1 | 5.0 ± 0.3 a | 0.88 ± 0.03 a | 776.2 ± 18.9 a | 761.6 ± 8.9 a | |
T2 | 4.3 ± 0.2 a | 0.81 ± 0.04 a | 753.9 ± 19.6 ab | 724.1 ± 12.1 b | ||
CK | 3.1 ± 0.3 b | 0.57 ± 0.02 b | 676.8 ± 21.5 b | 656.4 ± 11.8 c | ||
2020 | T1 | 5.9 ± 0.2 a | 0.92 ± 0.00 a | 785.8 ± 12.5 a | 792.4 ± 16.2 a | |
T2 | 5.1 ± 0.4 b | 0.83 ± 0.01 b | 755.8 ± 11.0 b | 737.2 ± 15.5 b | ||
CK | 4.0 ± 0.1 c | 0.59 ± 0.04 c | 684.1 ± 9.7 c | 675.5 ± 12.1 c |
Year | Treats | Effective Panicle /(×104 Panicle·ha−1) | Seed Setting Rate/% | Grain Number /(Grain·Panicle−1) | 1000-Grain Weight /g | Yield /(kg·ha−1) |
---|---|---|---|---|---|---|
2018 | T1 | 331.6 ± 5.1 a | 85.5 ± 3.2 a | 88.7 ± 1.2 a | 25.0 ± 0.8 a | 6167.7 ± 208.5 a |
T2 | 328.6 ± 6.1 a | 84.0 ± 1.8 ab | 82.0 ± 2.3 b | 24.7 ± 0.3 a | 6147.5 ± 227.2 a | |
CK | 311.5 ± 5.1 b | 81.4 ± 1.7 b | 81.1 ± 2.8 b | 24.1 ± 0.5 a | 6086.0 ± 245.3 a | |
2019 | T1 | 333.5 ± 10.8 a | 88.8 ± 1.3 a | 92.6 ± 1.4 a | 25.1 ± 0.1 a | 6347.8 ± 134.2 a |
T2 | 324.6 ± 6.1 a | 84.9 ± 1.7 ab | 79.8 ± 4.8 b | 24.9 ± 0.1 a | 6137.1 ± 117.5 ab | |
CK | 304.5 ± 12.6 b | 80.7 ± 1.1 b | 81.7 ± 3.9 b | 24.2 ± 0.2 a | 6025.6 ± 279.7 b | |
2020 | T1 | 357.4 ± 16.1 a | 86.0 ± 1.2 a | 87.9 ± 2.1 a | 24.9 ± 0.6 a | 6412.6 ± 118.4 a |
T2 | 347.8 ± 15.0 ab | 84.3 ± 1.3 ab | 86.1 ± 2.1 a | 24.4 ± 0.1 a | 6208.3 ± 254.3 ab | |
CK | 306.2 ± 3.4 b | 80.2 ± 1.6 b | 82.9 ± 0.5 b | 24.0 ± 0.4 a | 6100.1 ± 156.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wang, X.; Yang, L.; Li, Y.; Xia, B.; Li, H.; Deng, X. Analysis of Tobacco Straw Return to the Field to Improve the Chemical, Physical, and Biological Soil Properties and Rice Yield. Agronomy 2024, 14, 1025. https://doi.org/10.3390/agronomy14051025
Huang J, Wang X, Yang L, Li Y, Xia B, Li H, Deng X. Analysis of Tobacco Straw Return to the Field to Improve the Chemical, Physical, and Biological Soil Properties and Rice Yield. Agronomy. 2024; 14(5):1025. https://doi.org/10.3390/agronomy14051025
Chicago/Turabian StyleHuang, Jie, Xinyue Wang, Lili Yang, Yuanhuan Li, Bing Xia, Hailin Li, and Xiaohua Deng. 2024. "Analysis of Tobacco Straw Return to the Field to Improve the Chemical, Physical, and Biological Soil Properties and Rice Yield" Agronomy 14, no. 5: 1025. https://doi.org/10.3390/agronomy14051025
APA StyleHuang, J., Wang, X., Yang, L., Li, Y., Xia, B., Li, H., & Deng, X. (2024). Analysis of Tobacco Straw Return to the Field to Improve the Chemical, Physical, and Biological Soil Properties and Rice Yield. Agronomy, 14(5), 1025. https://doi.org/10.3390/agronomy14051025