Impact of the Combination of Chemical and Organic Fertilization on the Growth and Yield of Pineapple under Two Shade Net Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experiment Design and Treatments
2.3. Sources of Applied Fertilizers
2.4. Floral Induction
2.5. Measured Parameters
2.6. Statistical Analysis
3. Results
3.1. Leaf D Growth, Biomass, and Yield
3.2. Malic Acid, Total Soluble Solids, and Nutrients in the Leaves
3.3. Nutrients, pH, Titratable Acidity, and Total Soluble Solids in the Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. 2024. Available online: http://www.fao.org/faostat/en/#home (accessed on 4 May 2024).
- Wali, N. Pineapple (Ananas comosus). In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 367–373. [Google Scholar]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Pineapple (Ananas comosus): A Comprehensive Review of Nutritional Values, Volatile Compounds, Health Benefits, and Potential Food Products. Food Res. Int. 2020, 137, 109675. [Google Scholar] [CrossRef] [PubMed]
- Shahbandeh, M. Global Pineapple Production 2002–2022. Available online: https://www.statista.com/statistics/298505/global-pineapple-production/ (accessed on 15 February 2024).
- Vásquez-Jiménez, J.; Bartholomew, D.P. Plant Nutrition. In The Pineapple: Botany, Production and Uses; CABI: Wallingford, UK, 2018; pp. 175–202. [Google Scholar]
- Leon, R.G.; Kellon, D. Characterization of ‘MD-2’ planting density and fertilization using a grower survey. Horttechnology 2012, 22, 644–650. [Google Scholar] [CrossRef]
- Rebolledo-Martínez, A.; Peralta-Antonio, N.; Rebolledo-García, R.L.; Becerril-Román, A.E.; Rebolledo-Martínez, L.; Jaén-Contreras, D.; Uriza-Ávila, D.E.; Inurreta-Aguirre, H.D.; Montiel-Vicencio, G. Nitrogen, phosphorus and potassium content in different organs of pineapple cultivars at different planting density. Trop. Subtrop. Agroecosyst. 2023, 26, 081. [Google Scholar] [CrossRef]
- Dey, A.; Chaudhuri, P.S. Earthworm Community Structure of Pineapple (Ananas comosus) Plantations under Monoculture and Mixed Culture in West Tripura, India. Trop. Ecol. 2014, 55, 1–17. [Google Scholar]
- Cornwell, E. Effects of Different Agricultural Systems on Soil Quality in Northern Limón Province, Costa Rica. Rev. Biol. Trop. 2014, 62, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Streletskii, R.; Astaykina, A.; Krasnov, G.; Gorbatov, V. Changes in Bacterial and Fungal Community of Soil under Treatment of Pesticides. Agronomy 2022, 12, 124. [Google Scholar] [CrossRef]
- Mahmud, M.; Abdullah, R.; Yaacob, J.S. Effect of Vermicompost Amendment on Nutritional Status of Sandy Loam Soil, Growth Performance, and Yield of Pineapple (Ananas comosus Var. MD2) under Field Conditions. Agronomy 2018, 8, 183. [Google Scholar] [CrossRef]
- Darnaudery, M.; Fournier, P.; Léchaudel, M. Low-input pineapple crops with high quality fruit: Promising impacts of locally integrated and organic fertilisation compared to chemical fertilisers. Exp. Agric. 2018, 54, 286–302. [Google Scholar] [CrossRef]
- Cai, J.; Cheng, W.; Liang, Z.; Li, C.; Deng, Y.; Yin, T.; Li, C. Organic and Slow-Release Fertilizer Substitution Strategies Improved the Sustainability of Pineapple Production Systems in the Tropics. Sustainability 2023, 15, 10353. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Hu, Y.; Zhao, Y. Effects of Different Proportions of Organic Fertilizer in Place of Chemical Fertilizer on Microbial Diversity and Community Structure of Pineapple Rhizosphere Soil. Agronomy 2024, 14, 59. [Google Scholar] [CrossRef]
- Rothé, M.; Darnaudery, M.; Thuriès, L. Organic Fertilizers, Green Manures and Mixtures of the Two Revealed Their Potential as Substitutes for Inorganic Fertilizers Used in Pineapple Cropping. Sci. Hortic. 2019, 257, 108691. [Google Scholar] [CrossRef]
- Jin, X.; Cai, J.; Yang, S.; Li, S.; Shao, X.; Fu, C.; Li, C.; Deng, Y.; Huang, J.; Ruan, Y.; et al. Partial Substitution of Chemical Fertilizer with Organic Fertilizer and Slow-Release Fertilizer Benefits Soil Microbial Diversity and Pineapple Fruit Yield in the Tropics. Appl. Soil Ecol. 2023, 189, 104974. [Google Scholar] [CrossRef]
- Liang, Z.; Jin, X.; Zhai, P.; Zhao, Y.; Cai, J.; Li, S.; Yang, S.; Li, C.; Li, C. Combination of Organic Fertilizer and Slow-Release Fertilizer Increases Pineapple Yields, Agronomic Efficiency and Reduces Greenhouse Gas Emissions under Reduced Fertilization Conditions in Tropical Areas. J. Clean. Prod. 2022, 343, 131054. [Google Scholar] [CrossRef]
- Domínguez-Gento, A.; Di Giorgi, R.; García-Martínez, M.D.; Raigón, M.D. Effects of Organic and Conventional Cultivation on Composition and Characterization of Two Citrus Varieties ‘Navelina’ Orange and ‘Clemenules’ Mandarin Fruits in a Long-Term Study. Horticulturae 2023, 9, 721. [Google Scholar] [CrossRef]
- Weifeng, Z.; Weifeng, Z.; Weixiu, Y.; Zhiling, M.; Xiaoyan, Z.; Liguo, C.; Shenghui, L.; Yanfang, Z. Effects of Time and Height of Shading on Yield and Quality of Pineapple. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012101. [Google Scholar] [CrossRef]
- Reinhardt, D.H.; Uriza, D.; Soler, A.; Sanewski, G.; Rabie, E.C. Limitations for Pineapple Production and Commercialization and International Research towards Solutions. Acta. Hortic. 2019, 1239, 51–64. [Google Scholar] [CrossRef]
- de Araújo, H.S.; Do Carmo, S.A.; Dos Santos, N.C.B.; Freitas, P.G.N.; Purquerio, L.F.V. Effect of Shading Screens on the Production and Quality of ‘Smooth Cayenne’ Pineapple. Pesqui. Agropecu. Trop. 2021, 51, e69594. [Google Scholar] [CrossRef]
- Santos, I.L.N.; Coelho, E.F.; Barbosa, D.H.S.G.; Lima, L.W.F.; de Pádua, T.R.P.; Junghans, D.T. Application of Fertilizers and Root Enhancers by Two Irrigation Systems on ‘BRS Imperial’ Pineapple. Rev. Bras. Frutic. 2022, 44, e-882. [Google Scholar] [CrossRef]
- Bonomo, R.; Zucoloto, M.; de Souza, J.M.; Magalhães, A.M.d.P.; Baldotto, P.H.d.S.; Campanharo, A. Production and Quality of “Perola” Pineapple under Fertigation. Emir. J. Food. Agric. 2020, 32, 109–116. [Google Scholar] [CrossRef]
- Umi, H.N.; Tricahya, R.A.; Farid, A.M. Performance Analysis of Drip and Sprinkler Irrigation on Pineapple Cultivation. IOP Conf. Ser. Earth Environ. Sci. 2020, 451, 012034. [Google Scholar]
- Yan, C.; An, D.; Liu, Y.; Ma, H.; Dou, M. The Effects of Seasonal Drought on Rainfall Infiltration in Pineapple Plantation under Mulched Drip Irrigation. J. Irrig. Drain. 2021, 40, 25–32. [Google Scholar]
- De Almeida, U.O.; Cades, M.; Andrade Neto, R.D.C.; De Oliveira, L.C. Quality of Pineapple (Cv. Brs Rbo) in different Planting Times with Supplemental Irrigation and Rainfed. Irriga 2022, 27, 193–207. [Google Scholar]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Uriza-Ávila, D.E.; Torres-Ávila, A.; Aguilar-Ávila, J.; Santoyo-Cortes, V.H.; Zetina-Lezama, R.; Rebolledo-Martínez, A. La Piña Mexicana Frente al Reto de La Innovación. Avances y Retos en la Gestión de la Innovación; Colección Trópica Húmeda: Estado de México, México, 2018; p. 484. [Google Scholar]
- Dos Santos, M.P.; Maia, V.M.; Oliveira, F.S.; Pegoraro, R.F.; Dos Santos, S.R.; Aspiazú, I. Estimation of Total Leaf Area and d Leaf Area of Pineapple from Biometric Characteristics. Rev. Bras. Frutic. 2018, 40, e-556. [Google Scholar] [CrossRef]
- Gómez-Herrera, M.D.; Alayón-Luaces, P.; Avanza, M.V. Organic Compounds Determined at Different Levels of Ripening of the Pineapple (Ananas comosus L. Merr.) Cv Cayenne in Two Cultivation Systems under Subtropical Conditions. Int. J. Fruit Sci. 2020, 20, 371–384. [Google Scholar] [CrossRef]
- Cadahía-López, C. La Savia como Índice de Fertilización. Cultivos Agroenergéticos, Hortícolas, Frutales y Ornamentales; Ediciones Mundi-Prensa: Madrid, Spain, 2008; p. 256. [Google Scholar]
- AOAC. Official Methods of Analysis of the AOAC, Methods 932.06, 925.09, 985.29, 923.03; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Aragón, C.; Carvalho, L.; González, J.; Escalona, M.; Amancio, S. The Physiology of Ex Vitro Pineapple (Ananas comosus L. Merr. Var MD-2) as CAM or C3 Is Regulated by the Environmental Conditions. Plant Cell. Rep. 2012, 31, 757–769. [Google Scholar] [CrossRef]
- Rainha, N.; Medeiros, V.P.; Ferreira, C.; Raposo, A.; Leite, J.P.; Cruz, C.; Pacheco, C.A.; Ponte, D.; Silva, A.B. Leaf Malate and Succinate Accumulation Are out of Phase throughout the Development of the CAM Plant Ananas comosus. Plant Physiol. Biochem. 2016, 100, 47–51. [Google Scholar] [CrossRef]
- Ming, R.; VanBuren, R.; Wai, C.M.; Tang, H.; Schatz, M.C.; Bowers, J.E.; Lyons, E.; Wang, M.-L.; Chen, J.; Biggers, E.; et al. The Pineapple Genome and the Evolution of CAM Photosynthesis. Nat. Genet. 2015, 47, 1435–1442. [Google Scholar] [CrossRef]
- do Couto, T.R.; da Silva, J.R.; de Oliveira Moraes, C.R.; Ribeiro, M.S.; Netto, A.T.; Carvalho, V.S.; Campostrini, E. Photosynthetic Metabolism and Growth of Pineapple (Ananas comosus L. Merr.) Cultivated Ex Vitro. Theor. Exp. Plant Physiol. 2016, 28, 333–339. [Google Scholar] [CrossRef]
- Qiu, S.; Xia, K.; Yang, Y.; Wu, Q.; Zhao, Z. Mechanisms Underlying the C3–CAM Photosynthetic Shift in Facultative CAM Plants. Horticulturae 2023, 9, 398. [Google Scholar] [CrossRef]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an Effective Organic Fertilizer and Biocontrol Agent: Effect on Growth, Yield and Quality of Plants. Rev. Environ. Sci. Biotechnol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Li, H.; Mei, X.; Wang, J.; Huang, F.; Hao, W.; Li, B. Drip Fertigation Significantly Increased Crop Yield, Water Productivity and Nitrogen Use Efficiency with Respect to Traditional Irrigation and Fertilization Practices: A Meta-Analysis in China. Agric. Water Manag. 2021, 244, 106534. [Google Scholar] [CrossRef]
- Singh, T.B.; Ali, A.; Prasad, M.; Yadav, A.; Shrivastav, P.; Goyal, D.; Dantu, P.K. Role of Organic Fertilizers in Improving Soil Fertility. In Contaminants in Agriculture: Sources, Impacts and Management; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 61–77. [Google Scholar]
- Cheng, Y.; Luo, M.; Zhang, T.; Yan, S.; Wang, C.; Dong, Q.; Feng, H.; Zhang, T.; Kisekka, I. Organic Substitution Improves Soil Structure and Water and Nitrogen Status to Promote Sunflower (Helianthus Annuus L.) Growth in an Arid Saline Area. Agric. Water Manag. 2023, 283, 108320. [Google Scholar] [CrossRef]
- Zhai, L.; Wang, Z.; Zhai, Y.; Zhang, L.; Zheng, M.; Yao, H.; Lv, L.; Shen, H.; Zhang, J.; Yao, Y.; et al. Partial Substitution of Chemical Fertilizer by Organic Fertilizer Benefits Grain Yield, Water Use Efficiency, and Economic Return of Summer Maize. Soil Tillage Res. 2022, 217, 105287. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Chen, L.; Liang, J.; Huang, R.; Tang, X.; Zhang, X.; Wang, C. Partial Substitution of Chemical Fertilizer with Organic Fertilizer over Seven Years Increases Yields and Restores Soil Bacterial Community Diversity in Wheat–Rice Rotation. Eur. J. Agron. 2022, 133, 126445. [Google Scholar] [CrossRef]
- Wan, D.; Ma, M.; Peng, N.; Luo, X.; Chen, W.; Cai, P.; Wu, L.; Pan, H.; Chen, J.; Yu, G.; et al. Effects of Long-Term Fertilization on Calcium-Associated Soil Organic Carbon: Implications for C Sequestration in Agricultural Soils. Sci. Total Environ. 2021, 772, 145037. [Google Scholar] [CrossRef] [PubMed]
- Rios, E.S.C.; Mendonça, R.M.N.; Cardoso, E.D.A.; Da Costa, J.P.; De Melo Silva, S. Quality of “Imperial” Pineapple Infructescence in Function of Nitrogen and Potassium Fertilization. Rev. Bras. Cienc. Agrar. 2018, 13, 1–8. [Google Scholar] [CrossRef]
- Cunha, J.M.; Freitas, M.S.M.; de Carvalho, A.J.C.; Caetano, L.C.S.; Vieira, M.E.; Peçanha, D.A.; Lima, T.C.; de Jesus, A.C.; Pinto, L.P. Pineapple Yield and Fruit Quality in Response to Potassium Fertilization. J. Plant Nutr. 2021, 44, 865–874. [Google Scholar] [CrossRef]
- FAO CODEX ALIMENTARIUS. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B182-1993%252FCXS_182e.pdf (accessed on 25 January 2024).
- Shamsudin, R.; Daud, W.R.W.; Takriff, M.S.; Hassan, O. Physicochemical Properties of the Josapine Variety of Pineapple Fruit. Int. J. Food Eng. 2007, 3. [Google Scholar] [CrossRef]
- Hajar, N.; Zainal, S.; Nadzirah, K.Z.; Roha, A.M.S.; Atikah, O.; Elida, T.Z.M.T. Physicochemical Properties Analysis of Three Indexes Pineapple (Ananas comosus) Peel Extract Variety N36. APCBEE Procedia 2012, 4, 115–121. [Google Scholar] [CrossRef]
- Saradhuldhat, P.; Paull, R.E. Pineapple Organic Acid Metabolism and Accumulation during Fruit Development. Sci. Hortic. 2007, 112, 297–303. [Google Scholar] [CrossRef]
- Gao, Y.; Yao, Y.; Chen, X.; Wu, J.; Wu, Q.; Liu, S.; Guo, A.; Zhang, X. Metabolomic and Transcriptomic Analyses Reveal the Mechanism of Sweet-Acidic Taste Formation during Pineapple Fruit Development. Front. Plant Sci. 2022, 13, 971506. [Google Scholar] [CrossRef] [PubMed]
Days after Planting | N | P2O5 | K2O | CaO | MgO | SO42− |
---|---|---|---|---|---|---|
45 | 32.53 | 13.68 | 45.26 | 13.68 | 7.58 | 4.74 |
60 | 32.47 | 16.05 | 0.00 | 13.68 | 7.58 | 0.00 |
75 | 32.47 | 16.05 | 0.00 | 13.68 | 7.58 | 0.00 |
90 | 56.58 | 13.68 | 55.26 | 27.37 | 15.16 | 0.00 |
105 | 56.58 | 13.68 | 55.26 | 27.37 | 15.16 | 0.00 |
120 | 39.89 | 16.05 | 59.47 | 27.37 | 15.16 | 17.05 |
135 | 80.03 | 13.68 | 111.26 | 34.21 | 21.05 | 4.74 |
150 | 39.89 | 16.05 | 59.47 | 27.37 | 15.16 | 17.05 |
165 | 39.89 | 16.05 | 59.47 | 27.37 | 15.16 | 17.05 |
180 | 29.92 | 13.68 | 65.79 | 6.84 | 8.42 | 14.21 |
195 | 23.87 | 6.84 | 29.21 | 10.26 | 8.42 | 11.58 |
210 | 25.13 | 6.84 | 31.05 | 13.68 | 8.42 | 10.16 |
225 | 22.16 | 4.11 | 28.21 | 10.26 | 8.42 | 13.95 |
255 | 24.13 | 6.84 | 30.00 | 13.68 | 8.42 | 13.95 |
270 | 24.13 | 6.84 | 30.00 | 13.68 | 8.42 | 13.95 |
300 | 25.53 | 6.84 | 42.37 | 6.84 | 4.21 | 12.89 |
330 | 25.53 | 6.84 | 42.37 | 6.84 | 4.21 | 12.89 |
360 | 25.53 | 6.84 | 42.37 | 6.84 | 4.21 | 12.89 |
Grand total | 636.26 | 200.64 | 786.82 | 301.02 | 182.74 | 177.1 |
Leaf D Length (cm) | Leaf D Width (cm) | Number of Leaves | Leaf D Leaf Area (cm2) | Plant Fresh Weight (g) | Yield per Plant (g) | |
---|---|---|---|---|---|---|
Shade Netting (SN) | ||||||
250 dap | 74.5 b | 6.27 a | 34.0 a | 470 a | 3049 a | 1881 a |
45 dap | 86.0 a | 5.27 b | 28.7 b | 430 b | 1784 b | 1504 b |
Fertilization (F) | ||||||
Control | 72.9 d | 4.76 c | 22.0 e | 353 c | 1976 cd | 1439 d |
O | 72.3 d | 4.86 c | 26.5 d | 358 c | 1737 d | 1564 c |
F50 | 79.5 c | 5.93 b | 33.5 c | 459 b | 2658 b | 1719 b |
F50 + O | 85.7 b | 6.66 a | 36.0 b | 531 a | 2403 bc | 1841 a |
F100 | 91.0 a | 6.65 a | 38.8 a | 547 a | 3303 a | 1900 a |
ANOVA significance | ||||||
SN | *** | *** | *** | *** | *** | *** |
F | *** | *** | *** | *** | ** | *** |
SN × F | *** | *** | *** | *** | * | ** |
Malic Acid (mg/100 g FW) | Total Soluble Solids (°Brix) | N-NO3− (mg L−1) | K+ (mg L−1) | Ca2+ (mg L−1) | |
---|---|---|---|---|---|
Shade Net (SN) | |||||
250 dap | 1.25 b | 1.75 a | 2376 a | 1177 | 310 a |
45 dap | 6.56 a | 1.33 b | 1284 b | 1068 | 198 b |
Fertilization (F) | |||||
Control | 3.31 c | 1.42 | 1421 b | 711 b | 331 |
O | 4.36 b | 1.43 | 1366 b | 1013 ab | 243 |
F50 | 0.97 d | 1.53 | 1983 ab | 1140 ab | 243 |
F50 + O | 5.25 a | 1.47 | 1980 ab | 1283 a | 246 |
F100 | 5.62 a | 1.83 | 2400 a | 1466 a | 206 |
ANOVA significance | |||||
SN | *** | ** | *** | ns | *** |
F | *** | ns | ** | * | ns |
SN × F | *** | ns | ns | ns | * |
N-NO3− (mg L−1) | K+ (mg L−1) | Ca2+ (mg L−1) | pH | Titratable Acidity (% Citric Acid) | Total Soluble Solids (°Brix) | |
---|---|---|---|---|---|---|
Shade Net (SN) | ||||||
250 dap | 145 a | 1037 a | 18.4 b | 3.63 a | 1.37 a | 14.8 b |
45 dap | 130 b | 948 b | 24.8 a | 3.53 b | 1.06 b | 15.5 a |
Fertilization (F) | ||||||
Control | 96 c | 701 d | 39.5 a | 3.94 a | 1.34 b | 15.2 abc |
O | 141 b | 880 c | 29.5 b | 3.92 ab | 1.09 c | 15.5 ab |
F50 | 158 a | 1028 b | 16.7 c | 3.79 c | 1.52 a | 14.8 bc |
F50 + O | 158 a | 1255 a | 11.0 d | 3.84 bc | 1.08 c | 14.6 c |
F100 | 134 b | 1097 b | 11.5 d | 2.42 d | 1.02 c | 15.5 a |
ANOVA significance | ||||||
SN | ** | * | *** | *** | *** | ** |
F | *** | *** | *** | *** | *** | * |
SN × F | ns | ns | *** | ** | *** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Conde, J.; Palacios-Torres, R.E.; Ramírez-Seañez, A.R.; Amador-Mendoza, A.; Reyes-Osornio, M.; Yam-Tzec, J.A.; Gutiérrez-Hernández, J.O.; Hernández-Hernández, H. Impact of the Combination of Chemical and Organic Fertilization on the Growth and Yield of Pineapple under Two Shade Net Conditions. Agronomy 2024, 14, 1027. https://doi.org/10.3390/agronomy14051027
Martínez-Conde J, Palacios-Torres RE, Ramírez-Seañez AR, Amador-Mendoza A, Reyes-Osornio M, Yam-Tzec JA, Gutiérrez-Hernández JO, Hernández-Hernández H. Impact of the Combination of Chemical and Organic Fertilization on the Growth and Yield of Pineapple under Two Shade Net Conditions. Agronomy. 2024; 14(5):1027. https://doi.org/10.3390/agronomy14051027
Chicago/Turabian StyleMartínez-Conde, Jonathan, Rogelio Enrique Palacios-Torres, Ana Rosa Ramírez-Seañez, Adolfo Amador-Mendoza, Maribel Reyes-Osornio, José Antonio Yam-Tzec, José Orbelin Gutiérrez-Hernández, and Hipólito Hernández-Hernández. 2024. "Impact of the Combination of Chemical and Organic Fertilization on the Growth and Yield of Pineapple under Two Shade Net Conditions" Agronomy 14, no. 5: 1027. https://doi.org/10.3390/agronomy14051027