Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design
2.3. Field Sampling and Data Collection
2.4. Regression Models for Predicting the Rice NNI and Yield
2.5. Recommendation for N Fertilizer and Density for Different Types of Rice Varieties
2.6. Statistical Analysis
3. Results
3.1. Development of a Nc Dilution Curve for Japonica Rice Cultivars and Verification of the Nc Dilution Curve
3.2. Rice NNI and Grain Yield Variability
3.3. The Prediction Model of the Rice NNI
3.3.1. NNI Prediction
3.3.2. Effects of Population Structure and Plant Shape Characteristics on NNI
3.4. The Prediction Model of Rice Yield
3.4.1. Yield Prediction
3.4.2. Effects of Population Structure and Plant Shape Characteristics on Yield
3.5. Evaluating Different NNI and Yield Diagnostic Models
3.6. Coupling Effect of Density and Fertilizer on Yield and NNI of Rice
3.6.1. Yield of Rice
3.6.2. NNI of Rice
4. Discussion
4.1. Comparison of the Regression Models for Predicting NNI and Grain Yield
4.2. N and Density Recommendation Based on the Ensemble Learning Model
4.3. The Application Potential of N and Density Recommendation Model Based on Multiple Regression Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO FaAO. The Future of Food and Agriculture-Trends and Challenges (Rome: Food and Agriculture Organization); FAO: Rome, Italy, 2017. [Google Scholar]
- Hou, W.; Khan, M.R.; Zhang, J.; Lu, J.; Ren, T.; Cong, R.; Li, X. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agric. Ecosyst. Environ. 2019, 269, 183–192. [Google Scholar] [CrossRef]
- Song, X.; Meng, X.; Guo, H.; Cheng, Q.; Jing, Y.; Chen, M.; Liu, G.; Wang, B.; Wang, Y.; Li, J. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 2022, 40, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Yamano, T.; Arouna, A.; Labarta, R.A.; Huelgas, Z.M.; Mohanty, S. Adoption and impacts of international rice research technologies. Glob. Food Secur. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Dong, R.; Zha, H.; Xia, T.; Chen, Z.; Kusnierek, K.; Mi, G.; Sun, H.; Li, M. Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn. Eur. J. Agron. 2021, 123, 126193. [Google Scholar] [CrossRef]
- Yuan, S.; Linquist, B.A.; Wilson, L.T.; Cassman, K.G.; Stuart, A.M.; Pede, V.; Miro, B.; Saito, K.; Agustiani, N.; Aristya, V.E. Sustainable intensification for a larger global rice bowl. Nat. Commun. 2021, 12, 7163. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lu, J.; Wang, Y.; Wang, S.; Hussain, S.; Ren, T.; Cong, R.; Li, X. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric. Ecosyst. Environ. 2018, 251, 78–87. [Google Scholar] [CrossRef]
- Yost, M.; Kitchen, N.R.; Sudduth, K.A.; Massey, R.; Sadler, E.; Drummond, S.; Volkmann, M. A long-term precision agriculture system sustains grain profitability. Precis. Agric. 2019, 20, 1177–1198. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Guan, Y.; Yue, X.; Fang, Z.; Mulla, D.J. Developing active canopy sensor-based precision nitrogen management strategies for maize in Northeast China. Sustainability 2019, 11, 706. [Google Scholar] [CrossRef]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef]
- Zhou, B.; Sun, X.; Wang, D.; Ding, Z.; Li, C.; Ma, W.; Zhao, M. Integrated agronomic practice increases maize grain yield and nitrogen use efficiency under various soil fertility conditions. Crop J. 2019, 7, 527–538. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Miao, Y.; Zhao, L.; Zhao, G.; Cao, Q.; Kusnierek, K. Developing an Active Canopy Sensor-Based Integrated Precision Rice Management System for Improving Grain Yield and Quality, Nitrogen Use Efficiency, and Lodging Resistance. Remote Sens. 2022, 14, 2440. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Shi, P.; Omasa, K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 2014, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Ata-Ul-Karim, S.T.; Cao, Q.; Zhu, Y.; Tang, L.; Rehmani, M.I.A.; Cao, W. Non-destructive assessment of plant nitrogen parameters using leaf chlorophyll measurements in rice. Front. Plant Sci. 2016, 7, 1829. [Google Scholar] [CrossRef] [PubMed]
- Ata-Ul-Karim, S.T.; Zhu, Y.; Liu, X.; Cao, Q.; Tian, Y.; Cao, W. Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Sci. Rep. 2017, 7, 42679. [Google Scholar] [CrossRef]
- Zhang, K.; Jifeng, M.; Yu, W.; Weixing, C.; Yan, Z.; Qiang, C.; Xiaojun, L.; Yongchao, T. Key variable for simulating critical nitrogen dilution curve of wheat: Leaf area ratio-driven approach. Pedosphere 2022, 32, 463–474. [Google Scholar] [CrossRef]
- Clerget, B.; Bueno, C.; Domingo, A.J.; Layaoen, H.L.; Vial, L. Leaf emergence, tillering, plant growth, and yield in response to plant density in a high-yielding aerobic rice crop. Field Crops Res. 2016, 199, 52–64. [Google Scholar] [CrossRef]
- Jiang, S.; Du, B.; Wu, Q.; Zhang, H.; Zhu, J. Increasing pit-planting density of rice varieties with different panicle types to improves sink characteristics and rice yield under alternate wetting and drying irrigation. Food Energy Secur. 2021, 12, e335. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, S.; Dou, F.; Samonte, S.O.P.; Chen, K.; Wang, Y. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in northeast China. Agronomy 2019, 9, 555. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, X.; Ma, J.; Chen, B.; Xin, C. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern. PLoS ONE 2015, 10, e0123330. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Xie, J.; Deng, G.; Tu, T.; Guan, X.; Yang, Z.; Huang, S.; Chen, X.; Qiu, C. Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system. Crop J. 2021, 9, 805–815. [Google Scholar] [CrossRef]
- Lecerf, R.; Ceglar, A.; López-Lozano, R.; Van Der Velde, M.; Baruth, B. Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe. Agric. Syst. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Gaso, D.V.; Berger, A.G.; Ciganda, V.S. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images. Comput. Electron. Agric. 2019, 159, 75–83. [Google Scholar] [CrossRef]
- Millan, R.; Mouginot, J.; Rabatel, A.; Jeong, S.; Cusicanqui, D.; Derkacheva, A.; Chekki, M. Mapping surface flow velocity of glaciers at regional scale using a multiple sensors approach. Remote Sens. 2019, 11, 2498. [Google Scholar] [CrossRef]
- Ransom, C.J.; Kitchen, N.R.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Laboski, C.A.; Myers, D.B.; Nafziger, E.D. Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Comput. Electron. Agric. 2019, 164, 104872. [Google Scholar] [CrossRef]
- Kundu, P.P.; Anatharaman, L.; Truong-Huu, T. An empirical evaluation of automated machine learning techniques for malware detection. In Proceedings of the 2021 ACM Workshop on Security and Privacy Analytics, Virtual Event, 28 April 2021; pp. 75–81. [Google Scholar]
- Shi, P.; Wang, Y.; Xu, J.; Zhao, Y.; Yang, B.; Yuan, Z.; Sun, Q. Rice nitrogen nutrition estimation with RGB images and machine learning methods. Comput. Electron. Agric. 2021, 180, 105860. [Google Scholar] [CrossRef]
- Wen, G.; Ma, B.-L.; Vanasse, A.; Caldwell, C.D.; Earl, H.J.; Smith, D.L. Machine learning-based canola yield prediction for site-specific nitrogen recommendations. Nutr. Cycl. Agroecosyst. 2021, 121, 241–256. [Google Scholar] [CrossRef]
- Li, D.; Miao, Y.; Ransom, C.J.; Bean, G.M.; Kitchen, N.R.; Fernández, F.G.; Sawyer, J.E.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B. Corn nitrogen nutrition index prediction improved by integrating genetic, environmental, and management factors with active canopy sensing using machine learning. Remote Sens. 2022, 14, 394. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Zhang, J.; Han, J.; Xie, J. Integrating multi-source data for rice yield prediction across china using machine learning and deep learning approaches. Agric. For. Meteorol. 2021, 297, 108275. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.-B.; Hank, T.; Wocher, M.; Mauser, W.; Camps-Valls, G. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102174. [Google Scholar] [CrossRef]
- Muharam, F.M.; Nurulhuda, K.; Zulkafli, Z.; Tarmizi, M.A.; Abdullah, A.N.H.; Che Hashim, M.F.; Mohd Zad, S.N.; Radhwane, D.; Ismail, M.R. UAV-and Random-Forest-AdaBoost (RFA)-based estimation of rice plant traits. Agronomy 2021, 11, 915. [Google Scholar] [CrossRef]
- Bean, G.; Kitchen, N.; Camberato, J.; Ferguson, R.; Fernandez, F.; Franzen, D.; Laboski, C.; Nafziger, E.; Sawyer, J.; Scharf, P. Improving an active-optical reflectance sensor algorithm using soil and weather information. Agron. J. 2018, 110, 2541–2551. [Google Scholar] [CrossRef]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Crop sensor based non-destructive estimation of nitrogen nutritional status, yield, and grain protein content in wheat. Agriculture 2020, 10, 148. [Google Scholar] [CrossRef]
- Corti, M.; Cavalli, D.; Cabassi, G.; Gallina, P.M.; Bechini, L. Does remote and proximal optical sensing successfully estimate maize variables? A review. Eur. J. Agron. 2018, 99, 37–50. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Manevski, K.; Kørup, K.; Larsen, R.; Andersen, M.N. Random forest regression results in accurate assessment of potato nitrogen status based on multispectral data from different platforms and the critical concentration approach. Field Crops Res. 2021, 268, 108158. [Google Scholar] [CrossRef]
- Li, J.; Xu, M.; Xin, J.; Duan, J.; Ren, Y.; Li, D.; Huang, J.; Shen, H.; Zhang, H. Spatial and Temporal Characteristics of Basic Soil Productivity in China. Sci. Agric. Sin. 2016, 49, 1510–1519. [Google Scholar]
- China Rice Date Center. National Rice Data Center Variety Profile. Available online: https://www.ricedata.cn/variety/index.htm (accessed on 1 January 2022).
- Nelson, D.W.; Sommers, L. Determination of total nitrogen in plant material 1. Agron. J. 1973, 65, 109–112. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef]
- Jiang, R.; He, W.; Zhou, W.; Hou, Y.; Yang, J.; He, P. Exploring management strategies to improve maize yield and nitrogen use efficiency in northeast China using the DNDC and DSSAT models. Comput. Electron. Agric. 2019, 166, 104988. [Google Scholar] [CrossRef]
- Bo, Y.; He, H.-B.; Xu, H.-C.; Zhu, T.-Z.; Tao, L.; Jian, K.; You, C.-C.; Zhu, D.; Wu, L.-Q. Determining nitrogen status and quantifying nitrogen fertilizer requirement using a critical nitrogen dilution curve for hybrid indica rice under mechanical pot-seedling transplanting pattern. J. Integr. Agric. 2021, 20, 1474–1486. [Google Scholar]
- Yao, X.; Ata-Ul-Karim, S.T.; Zhu, Y.; Tian, Y.; Liu, X.; Cao, W. Development of critical nitrogen dilution curve in rice based on leaf dry matter. Eur. J. Agron. 2014, 55, 20–28. [Google Scholar] [CrossRef]
- Hu, Y.-J.; Pei, W.; Zhang, H.-C.; Dai, Q.-G.; Huo, Z.-Y.; Ke, X.; Hui, G.; Wei, H.-Y.; Guo, B.-W.; Cui, P.-Y. Comparison of agronomic performance between inter-sub-specific hybrid and inbred japonica rice under different mechanical transplanting methods. J. Integr. Agric. 2018, 17, 806–816. [Google Scholar] [CrossRef]
- Landau, S.; Mitchell, R.; Barnett, V.; Colls, J.; Craigon, J.; Payne, R. Response to “Comments on” Testing winter wheat simulation models predictions against observed UK grain yields. Agric. For. Meteorol. 1999, 96, 163–164. [Google Scholar] [CrossRef]
- Hernandez, J.; Lobos, G.A.; Matus, I.; Del Pozo, A.; Silva, P.; Galleguillos, M. Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L.) grown under three water regimes. Remote Sens. 2015, 7, 2109–2126. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Martinez-Feria, R.A.; Hu, G.; Archontoulis, S.V. Maize yield and nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 2019, 14, 124026. [Google Scholar] [CrossRef]
- Lemaire, G.; Ciampitti, I. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: A review. Plants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, Y.; Duan, A.; Liu, Z.; Xiao, J.; Liu, Z.; Qin, A.; Ning, D.; Li, S.; Ata-Ul-Karim, S.T. Estimating the growth indices and nitrogen status based on color digital image analysis during early growth period of winter wheat. Front. Plant Sci. 2021, 12, 619522. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-j.; Qiang, C.; Yuan, Z.-f.; Xia, L.; Wang, X.-l.; Tian, Y.-c.; Cao, W.-x.; Yan, Z. Leaf area index based nitrogen diagnosis in irrigated lowland rice. J. Integr. Agric. 2018, 17, 111–121. [Google Scholar] [CrossRef]
- Xu, H.; He, H.; Yang, K.; Ren, H.; Zhu, T.; Ke, J.; You, C.; Guo, S.; Wu, L. Application of the Nitrogen Nutrition Index to Estimate the Yield of Indica Hybrid Rice Grown from Machine-Transplanted Bowl Seedlings. Agronomy 2022, 12, 742. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.; Welp, G.; Thiel, M. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef] [PubMed]
- Ata-Ul-Karim, S.T.; Liu, X.; Lu, Z.; Zheng, H.; Cao, W.; Zhu, Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Res. 2017, 201, 32–40. [Google Scholar] [CrossRef]
- Patel, M.K.; Padarian, J.; Western, A.W.; Fitzgerald, G.J.; McBratney, A.B.; Perry, E.M.; Suter, H.; Ryu, D. Retrieving canopy nitrogen concentration and aboveground biomass with deep learning for ryegrass and barley: Comparing models and determining waveband contribution. Field Crops Res. 2023, 294, 108859. [Google Scholar] [CrossRef]
- Huang, M.; Chen, J.; Cao, F.; Zou, Y. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Res. 2018, 221, 333–338. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, Y.; Wang, Y.; Xu, Q.; Li, R.; Wang, S.; Dou, F.J.A. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy 2018, 8, 246. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, J. Optimization of the nitrogen fertilizer schedule of maize under drip irrigation in Jilin, China, based on DSSAT and GA. Agric. Water Manag. 2021, 244, 106555. [Google Scholar] [CrossRef]
- Puntel, L.A.; Sawyer, J.E.; Barker, D.W.; Dietzel, R.; Poffenbarger, H.; Castellano, M.J.; Moore, K.J.; Thorburn, P.; Archontoulis, S.V. Modeling long-term corn yield response to nitrogen rate and crop rotation. Front. Plant Sci. 2016, 7, 1630. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, K.D.; Cambouris, A.N.; St. Luce, M.; Ziadi, N.; Tremblay, N. Economic optimum nitrogen fertilizer rate and residual soil nitrate as influenced by soil texture in corn production. Agron. J. 2018, 110, 2233–2242. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Li, W.; Zhao, Q.; Dai, J.; Tian, L.; Dong, H. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Lei, Q.; Luo, J.; Lindsey, S.; Zhang, J.; Zhai, L.; Wu, S.; Zhang, J.; Liu, X. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Sci. Total Environ. 2018, 618, 1173–1183. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, F.; Fan, X.; Fan, J.; Wang, Y.; Zou, H.; Wang, H.; Li, G. Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China. Agric. Water Manag. 2021, 243, 106440. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Hou, L.; Zhu, Y.; Zhang, Q.; Chen, L.; Mao, P. Development of a critical nitrogen dilution curve of Siberian wildrye for seed production. Field Crops Res. 2018, 219, 250–255. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Y.; Zhang, S.; Zhang, J.; Hu, F.; Li, F. Density-Dependent Fertilization of Nitrogen for Optimal Yield of Perennial Rice. Agronomy 2022, 12, 1698. [Google Scholar] [CrossRef]
- Li, F.; Li, D.; Elsayed, S.; Hu, Y.; Schmidhalter, U. Using optimized three-band spectral indices to assess canopy N uptake in corn and wheat. Eur. J. Agron. 2021, 127, 126286. [Google Scholar] [CrossRef]
- Elsayed, S.; El-Hendawy, S.; Dewir, Y.H.; Schmidhalter, U.; Ibrahim, H.H.; Ibrahim, M.M.; Elsherbiny, O.; Farouk, M. Estimating the leaf water status and grain yield of wheat under different irrigation regimes using optimized two-and three-band hyperspectral indices and multivariate regression models. Water 2021, 13, 2666. [Google Scholar] [CrossRef]
Site | Soil Type | Soil Texture | Year | Organic Matter (g/kg) | Total Nitrogen (g/kg) | Total Phosphorus (g/kg) | Slowly Available K (mg/kg) | Available N (mg/kg) | Available P (mg/kg) | Available K (mg/kg) | Value of pH |
---|---|---|---|---|---|---|---|---|---|---|---|
Site 1 | Black soil | Loamy clay | 2014 | 22.30 | 1.20 | 0.40 | 706.5 | 129.8 | 18.70 | 99.1 | 6.80 |
2015 | 22.21 | 1.24 | 0.41 | 706.2 | 128.9 | 18.52 | 99.3 | 6.70 | |||
2016 | 22.34 | 1.21 | 0.39 | 705.2 | 126.4 | 18.60 | 98.6 | 6.79 | |||
Site 2 | Black soil | Loamy clay | 2017 | 22.13 | 1.12 | 0.38 | 704.2 | 126.4 | 25.31 | 97.9 | 6.42 |
2018 | 22.18 | 1.19 | 0.34 | 695.9 | 127.8 | 18.80 | 85.7 | 6.82 | |||
2019 | 22.05 | 1.18 | 0.44 | 704.2 | 125.4 | 17.97 | 92.4 | 6.62 | |||
Site 3 | Black soil | Loamy clay | 2019 | 34.89 | 1.51 | 0.94 | 708.7 | 130.5 | 20.6 | 91.4 | 6.56 |
2020 | 32.16 | 1.62 | 0.86 | 706.2 | 128.6 | 19.8 | 90.4 | 6.23 | |||
2021 | 33.13 | 1.54 | 0.90 | 702.4 | 131.3 | 18.6 | 89.4 | 6.38 |
Site | Year | Planting Density (10,000 Plants/ha) | Nitrogen Fertilizer Application (kg/ha) | Variety |
---|---|---|---|---|
Site 1 | 2014, 2015, 2016 | 180.18, 150.15, 128.70, 120.12, 100.10, 90.09, 85.80, 75.08, 72.07, 64.35, 60.06, 51.48 | 0, 75, 150, 225 | DN425, DN427, DN426, NDJ30, SJ14 |
Site 2 | 2017, 2018, 2019 | 60.06, 75.08, 100.10 | 0, 75, 150, 225 | DN426, MDJ30, SJ14 |
Site 3 | 2019, 2020, 2021 | 75.08 | 150 | SJ9, SJ18, SJ21, SJ3, T256 |
Continuous Variables | Level/Unit | Mean | Standard Deviation |
---|---|---|---|
Average maximum temperature during March and October | °C | 24.84 | 3.55 |
Average minimum temperature during March and October | °C | 14.33 | 4.30 |
Monthly average of cumulative radiation during March and October | MJ/m2 | 503.37 | 34.59 |
Crop duration | Days | 138 | 2.98 |
Dataset | Yield (kg/ha) | NNI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | Min | Max | CV | n | Mean | SD | Min | Max | CV | |
Training | 236 | 10,112.8 | 3624.5 | 2170.2 | 18,774.5 | 36% | 239 | 0.91 | 0.18 | 0.47 | 1.37 | 20% |
Test | 59 | 10,910.7 | 3896.4 | 2445.7 | 18,514 | 36% | 60 | 0.92 | 0.20 | 0.52 | 1.40 | 22% |
Japonica Rice Varieties | The Equations for Nc | Coefficients of Determination | Power Exponential Function for Linearization Formula |
---|---|---|---|
SJ9 | Nc = 4.34W−0.563 | 0.9970 | lnNc = 1.47 − 0.563 lnW |
SJ21 | Nc = 3.02W−0.503 | 0.9895 | lnNc = 1.10 − 0.503 lnW |
DN425 | Nc = 3.56W−0.574 | 0.9932 | lnNc = 1.27 − 0.574 lnW |
DN427 | Nc = 3.66W−0.514 | 0.9819 | lnNc = 1.30 − 0.514 lnW |
SJ18 | Nc = 4.03W−0.535 | 0.9589 | lnNc = 1.39 − 0.535 lnW |
SJ3 | Nc = 3.39W−0.449 | 0.9846 | lnNc = 1.22 − 0.449 lnW |
T256 | Nc = 3.42W−0.526 | 0.9887 | lnNc = 1.23 − 0.526 lnW |
SJ14 | Nc = 4.27W−0.624 | 0.9671 | lnNc = 1.45 − 0.624 lnW |
MDJ30 | Nc = 3.03W−0.443 | 0.9203 | lnNc = 1.11 − 0.443 lnW |
DN426 | Nc = 3.29W−0.491 | 0.8493 | lnNc = 1.19 − 0.491 lnW |
Large-Sized Panicle | Small-Sized Panicle | Mid-Sized Panicle | Different Types of Rice | |
---|---|---|---|---|
F value | DN425 and SJ14 | DN427 and NDJ30 | DN426, SJ9, SJ18, SJ21, SJ3 and T256 | large-sized panicle, small-sized panicle and mid-sized panicle |
Slope | 43.613 ** | 6.895 * | 35.011 ** | 27.031 ** |
Intercept | 62.128 ** | 10.219 * | 39.848 ** | 24.942 ** |
Japonica Rice Varieties | R2 | RMSE | RE (%) |
---|---|---|---|
SJ9 | 0.9942 | 0.0699 | 2.06 |
SJ21 | 0.9891 | 0.0888 | 5.34 |
DN425 | 0.9921 | 0.0746 | 3.11 |
DN427 | 0.9809 | 0.1384 | 6.13 |
SJ18 | 0.9834 | 0.1254 | 9.74 |
SJ3 | 0.9889 | 0.0896 | 5.71 |
T256 | 0.9899 | 0.0957 | 5.11 |
SJ14 | 0.9859 | 0.1103 | 8.70 |
MDJ30 | 0.9129 | 0.2088 | 12.69 |
DN426 | 0.8776 | 0.2175 | 16.77 |
Model | Ridge Regression | Random Forest Regression | Light Gradient Boosting Machine | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | |
NNI | 0.755 | 0.0784 | 9 | 0.874 | 0.0583 | 7 | 0.921 | 0.0514 | 5 |
Yield | 0.521 | 1843.998 | 25 | 0.908 | 1045.013 | 9 | 0.901 | 1179.365 | 10 |
Response Variable Y | Regression Equation | Y Max (kg/ha) | D (10,000 Plant/ha) | N (kg/ha) | R2 |
---|---|---|---|---|---|
Yield/Y1 | Y1 = 466.891D + 55.305N − 2.518D2 − 0.294N2 + 0.397DN − 13,947.457 | 15,314.6 | 105.768 | 165.301 | 0.75 |
Yield/Y2 | Y2 = 393.942D + 94.142N − 2.193D2 − 0.246N2 − 0.200DN − 11,901.280 | 11,803.4 | 82.630 | 157.826 | 0.88 |
Yield/Y3 | Y3 = 89.028D + 53.710N − 0.491D2 − 0.180N2 − 0.073DN + 3218.703 | 10,392.9 | 80.815 | 133.192 | 0.69 |
Response Variable Y | Regression Equation | Y Max | D (10,000 Plant/ha) | N (kg/ha) | R2 |
---|---|---|---|---|---|
NNI/Y4 | Y4 = 3.879 × 10−2D + 8.633 × 10−4N − 2.309 × 10−4D2 − 5.218 × 10−6N2 + 7.402 × 10−6DN − 0.689 | 1 | 75.08 ≤ x ≤ 100.1 | 53.856 ≤ N ≤ 74.155 | 0.62 |
NNI/Y5 | Y5 = 3.800 × 10−3D + 1.640 × 10−3N − 2.522 × 10−5D2 − 3.663 × 10−6N2 + 1.665 × 10−5DN + 0.434 | 1 | 75.08 ≤ x ≤ 100.1 | 161.406 ≤ N ≤ 194.003 | 0.82 |
NNI/Y6 | Y6 = 4.456 × 10−2D + 1.520 × 10−3N − 2.879 × 10−4D2 − 5.083 × 10−6N2 + 1.490 × 10−5DN − 0.968 | 1 | 75.08 ≤ x ≤ 100.1 | 121.691 ≤ N ≤ 193.900 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Zhao, Y.; Ma, H.; Gong, W.; Zou, D.; Wang, J.; Liu, A.; Zhang, C.; Wang, W.; Xu, P.; et al. Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning. Agronomy 2024, 14, 1028. https://doi.org/10.3390/agronomy14051028
Jia Y, Zhao Y, Ma H, Gong W, Zou D, Wang J, Liu A, Zhang C, Wang W, Xu P, et al. Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning. Agronomy. 2024; 14(5):1028. https://doi.org/10.3390/agronomy14051028
Chicago/Turabian StyleJia, Yan, Yu Zhao, Huimiao Ma, Weibin Gong, Detang Zou, Jin Wang, Aixin Liu, Can Zhang, Weiqiang Wang, Ping Xu, and et al. 2024. "Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning" Agronomy 14, no. 5: 1028. https://doi.org/10.3390/agronomy14051028
APA StyleJia, Y., Zhao, Y., Ma, H., Gong, W., Zou, D., Wang, J., Liu, A., Zhang, C., Wang, W., Xu, P., Yuan, Q., Wang, J., Wang, Z., & Zhao, H. (2024). Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning. Agronomy, 14(5), 1028. https://doi.org/10.3390/agronomy14051028