Exploring the Synergy between Humic Acid Substances, Dehydrogenase Activity and Soil Fertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strip-Till Technology
2.1.1. Method of Wheat Cultivation
2.1.2. Method of Rapeseed Cultivation
2.2. Fertilization Strategy
2.3. Soil Sampling
2.4. Determination of the Soil Chemical Features
2.5. Measurement of Dehydrogenase Activity (DHA) in Soil Samples
2.6. Assessment of the Content of Humic Acid (HA) Substances in Soils
2.7. Statistical Analysis
3. Results
3.1. Soil Chemical Characteristic
3.2. Soil Dehydrogenase Activity
3.3. The Assessment of the E4/E6 Ratio of Humic-Acid Substances
3.4. Correlations among Factors Studied
4. Discussion
4.1. F2F Strategy
4.2. Chemical and Biological Factors Affecting Yields
4.3. E4/E6 Ratio
4.4. Soil Enzymatic Activity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ibigweh, M.N.; Asawalam, D.O. Evaluation on Living Organisms and Their Effects on Soil Fertility Maintenance. Direct Res. J. Agric. Food Sci. 2017, 5, 65–76. [Google Scholar] [CrossRef]
- Prietzel, J.; Hiesch, S.; Harrington, G.; Müller, S. Microstructural and Biochemical Diversity of Forest Soil Organic Surface Layers Revealed by Density Fractionation. Geoderma 2022, 366, 114262. [Google Scholar] [CrossRef]
- Guggenberger, G. Humification and mineralization in soils. In Microorganisms in Soils: Roles in Genesis and Functions; Buscot, F., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; pp. 85–106. [Google Scholar]
- Dębska, B.; Jaskulska, I.; Jaskulski, D. Method of Tillage with the Factor Determining the Quality of Organic Matter. Agronomy 2020, 10, 1250. [Google Scholar] [CrossRef]
- Jaskulska, I.; Lemanowicz, J.; Dębska, B.; Jaskulski, D.; Breza-Boruta, B. Changes in Soil Organic Matter and Biological Parameters as a Result of Long-Term Strip-Till Cultivation. Agriculture 2023, 13, 2188. [Google Scholar] [CrossRef]
- Basu, S.; Kumar, G.; Chhabra, S.; Prasad, R. Role of Soil Microbes in Biogeochemical Cycle for Enhancing Soil Fertility. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–157. [Google Scholar]
- Chandra, N.; Kumar, S. Antibiotics Producing Soil Microorganisms. In Antibiotics and Antibiotics Resistance Genes in Soils; Hashmi, M.Z., Strezov, V., Varma, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–18. ISBN 978-3-319-66259-6. [Google Scholar]
- Aulakh, C.S.; Sharma, S.; Thakur, M.; Kaur, P. A Review of the Influences of Organic Farming on Soil Quality, Crop Productivity and Produce Quality. J. Plant Nutr. 2022, 45, 1884–1905. [Google Scholar] [CrossRef]
- Hanajík, P.; Gáfriková, J.; Zvarík, M. Dehydrogenase Activity in Topsoil at Windthrow Plots in Tatra National Park. Cent. Eur. For. J. 2017, 63, 91–96. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G. Dehydrogenase Activity as a Biological Indicator of Soil Health. Chem. Sci. Rev. Lett. 2021, 10, 326–329. [Google Scholar]
- Naamala, J.; Smith, D.L. Relevance of Plant Growth Promoting Microorganisms and Their Derived Compounds, in the Face of Climate Change. Agronomy 2020, 10, 1179. [Google Scholar] [CrossRef]
- Zheng, W.; Zeng, S.; Bais, H.; LaManna, J.M.; Hussey, D.S.; Jacobson, D.L. Plant Growth-Promoting Rhizobacteria (PGPR) Reduce Evaporation and Increase Soil Water Retention. Water Resour. Res. 2018, 54, 3673–3687. [Google Scholar] [CrossRef]
- Kekane, S.S.; Chavan, R.P.; Shinde, D.N.; Patil, C.L.; Sagar, S.S. A Review on Physico-Chemical Properties of Soil. Int. J. Chem. Stud. 2015, 3, 29–32. [Google Scholar]
- Jasinska, E.; Wetzel, H.; Baumgartl, T.; Horn, R. Heterogeneity of Physico-Chemical Properties in Structured Soils and Its Consequences. Pedosphere 2006, 16, 284–296. [Google Scholar] [CrossRef]
- Haddad, G.; El-Ali, F.; Mouneimne, A.H. Humic Matter of Compost: Determination of Humic Spectroscopic Ratio (E4/E6). Curr. Sci. Int. 2015, 4, 56–72. [Google Scholar]
- Bečka, D.; Bečková, L.; Kuchtová, P.; Cihlář, P.; Pazderů, K.; Mikšík, V.; Vašák, J. Growth and Yield of Winter Oilseed Rape under Strip-Tillage Compared to Conventional Tillage. Plant Soil Environ. 2021, 67, 85–91. [Google Scholar] [CrossRef]
- Cheng, Z.; Bai, L.; Wang, Z.; Wang, F.; Wang, Y.; Liang, H.; Wang, Y.; Rong, M.; Wang, Z. Strip-Till Farming: Combining Controlled-Release Blended Fertilizer to Enhance Rainfed Maize Yield While Reducing Greenhouse Gas Emissions. Agronomy 2024, 14, 136. [Google Scholar] [CrossRef]
- Stack, S.; Yarmuch, M.; Landhäusser, S.M. Species-Specific Responses to Targeted Fertilizer Application on Reconstructed Soils in a Reclaimed Upland Area. Can. J. Soil Sci. 2021, 101, 45–61. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A Better Use of Fertilizers is Needed for Global Food Security and Environmental Sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Wolińska, A.; Banach, A.; Kruczyńska, A.; Sochaczewska, A.; Goraj, W.; Górski, A.; Podlewski, J.; Słomczewski, A.; Kuźniar, A. Effect of Reduced Nitrogen Fertilization on the Chemical and Biological Traits of Soils under Maize Crops. Agronomy 2023, 13, 2913. [Google Scholar] [CrossRef]
- Casida, L.; Klein, D.; Santoro, T. Soil Dehydrogenase Activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Jones, G.A.; Humphrey, B.A. Evaluation of a Dehydrogenase Assay Based on Tetrazolium Reduction for Rapid in vitro Estimation of Fermentation Activity in Rumen Contents. Can. J. Anim. Sci. 1978, 58, 501–511. [Google Scholar] [CrossRef]
- Kononova, M.M.; Belchikova, N.P. Accelerated Methods for Determining the Composition of Humus in Mineral Soils. Soil Sci. 1961, 10, 75–87. [Google Scholar]
- Janowiak, J. Właściwości substancji humusowych czarnych ziem i gleb płowych. Zesz. Probl. Post Nauk Rol. 1993, 411, 182–188. (In Polish) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R.-project.org/ (accessed on 27 March 2024).
- Körschens, M. The Importance of Long-Term Field Experiments for Soil Science and Environmental Research—A Review. Plant Soil Environ. 2006, 52, 1–8. [Google Scholar]
- Bhatnagar, V.; Chandra, R. Iot-Based Soil Health Monitoring and Recommendation System. In Internet of Things and Analytics for Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 1–21. [Google Scholar]
- Schebesta, H.; Bernaz, N.; Macchi, C. The European Union Farm to Fork Strategy: Sustainability and Responsible Business in the Food Supply Chain. SSRN Electron. J. 2020, 15, 420–427. [Google Scholar] [CrossRef]
- Billen, G.; Aguilera, E.; Einarsson, R.; Garnier, J.; Gingrich, S.; Grizzetti, B.; Lassaletta, L.; Le Noë, J.; Sanz-Cobena, A. Beyond the Farm to Fork Strategy: Methodology for designing a European agro-ecological future. Sci. Total. Environ. 2024, 908, 168160. [Google Scholar] [CrossRef] [PubMed]
- Montanarella, L. Soils and the European Green Deal. Ital. J. Agron. 2020, 15, 262–266. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.P.; Joshi, A.; Tian, D.D.; Rajput, V.D.; Singh, M.; Arora, J.; Minkina, T.; Li, Y.R. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Adisa, I.; Pullagurala, V.; Peralta-Videa, J.; Dimkpa, C.; Gardea-Torresdey, J.; White, J. Recent Advances in Nano-Enabled Fertilizers and Pesticides: A Critical Review of Mechanisms of Action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Läuchli, A.; Grattan, S.R. Soil pH Extremes. In Plant Stress Physiology; CABI Publishing: Wallingford, UK, 2012; pp. 194–209. [Google Scholar]
- Włodarczyk, T.; Stępniewski, W.; Brzezińska, M. Dehydrogenase Activity, Redox Potential, and Emissions of Carbon Dioxide and Nitrous Oxide from Cambisols under Flooding Conditions. Biol. Fertil. Soils 2002, 36, 200–206. [Google Scholar] [CrossRef]
- Ros, M.; Hernandez, M.T.; Garcia, C. Soil Microbial Activity After Restoration of a Semiarid Soil By Organic Amendments. Soil Biol. Biochem. 2003, 35, 463–469. [Google Scholar] [CrossRef]
- Brzezińska, M.; Stępniewski, W.; Stępniewska, Z.; Przywara, G.; Włodarczyk, T. Effect of Oxygen Deficiency on Soil Dehydrogenase Activity in a Pot Experiment with Triticale cv. Jago Vegetation. Int. Agrophys. 2001, 15, 145–149. [Google Scholar]
- Kılıç, O.; Ersayin, K.; Gunal, H.; Khalofah, A.; Alsubeie, M. Combination of Fuzzy-AHP and GIS Techniques in Land Suitability Assessment for Wheat (Triticum aestivum) Cultivation. Saudi J. Biol. Sci. 2022, 29, 2634–2644. [Google Scholar] [CrossRef]
- Raboanatahiry, N.; Li, H.; Yu, L.; Li, M. Rapeseed (Brassica napus): Processing, Utilization, and Genetic Improvement. Agronomy 2021, 11, 1776. [Google Scholar] [CrossRef]
- Husson, O. Redox Potential (Eh) and pH as Drivers of Soil/Plant/Microorganism Systems: A Transdisciplinary Overview Pointing to Integrative Opportunities for Agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef]
- Mat Su, A.S.; Adamchuk, V.I. Temporal and Operation-Induced Instability of Apparent Soil Electrical Conductivity Measurements. Front. Soil Sci. 2023, 3, 1137731. [Google Scholar] [CrossRef]
- Benslama, A.; Khanchoul, K.; Fouzi, B.; Boubehziz, S.; Faredj, C.; Navarro-Pedreño, J. Monitoring the Variations of Soil Salinity in a Palm Grove in Southern Algeria. Sustainability. 2020, 12, 6117. [Google Scholar] [CrossRef]
- Wolińska, A.; Szafranek-Nakonieczna, A.; Zielenkiewicz, U.; Tomczyk-Żak, K.; Banach, A.; Błaszczyk, M.; Stępniewska, Z. Quantified Characterization of Soil Biological Activity Under Crop Cultivation. J. Adv. Biol. 2016, 8, 1655–1665. [Google Scholar]
- Lumactud, R.A.; Gorim, L.Y.; Thilakarathna, M.S. Impacts of Humic-Based Products on the Microbial Community Structure and Functions Toward Sustainable Agriculture. Front. Sustain. Food Syst. 2022, 6, 977121. [Google Scholar] [CrossRef]
- Schnitzer, M. Characterization of humic constituents spectroscopy. In Soil Biochemistry; McLaren, A.D., Skujins, J., Eds.; Marcel Dekker: NewYork, NY, USA, 1971; Volume 2, pp. 60–95. [Google Scholar]
- Chen, Y.; Senesi, N.; Schnitzer, M. Information Provided on Humic Substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 1977, 41, 352–358. [Google Scholar] [CrossRef]
- Al-Khafagi, Q.D.E. Interaction Between Some Micro-Elements And Humic Substances in Some Forest Soils Northern Iraq. Tikrit J. Agric. Sci. 2022, 22, 166–174. [Google Scholar] [CrossRef]
- Reddy, S.; Nagaraja, M.S.; Raj, T.P.; Patil, A.P.; Dumgond, P. Elemental Analysis, E4/E6 Ratio and Total Acidity of Soil Humic and Fulvic Acids from Different Land Use Systems. Ann. Plant. Soil. Res. 2014, 16, 89–92. [Google Scholar]
- Allison, S.D. Soil Minerals and Humic Acids Alter Enzyme Stability: Implications Forecosystem Processes. Biogeochemistry 2006, 81, 361–373. [Google Scholar] [CrossRef]
- Gołębiowska, D.; Grzyb-Miklewska, J. Kompleksy Humus-Enzym. II. Oddziaływanie kompleksów humus-enzym w układach modelowych „in vitro”. Post. Nauk Roln. 1991, 4/5/6, 117–126. (In Polish) [Google Scholar]
- Mazzei, P.; Oschkinat, H.; Piccolo, A. Reduced Activity of Alkaline Phosphatase Due to Host–Guest Interactions with Humic Superstructures. Chemosphere 2013, 93, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Pflug, W.; Ziechmann, W. Inhibition of Malate Dehydrogenase by Humic Acids. Soil Biol. Biochem. 1981, 13, 293–299. [Google Scholar] [CrossRef]
- Pospíšil, F. Influence of Physiologically Active Substances of the Soil Humus on the Activity of Glucose-6-Phosphate-Dehydrogenase in Pea (Pisum sativum L.) Roots. Biol. Plant. 1980, 22, 161–166. [Google Scholar] [CrossRef]
- Bueis, T.; Turrión, M.B.; Bravo, F.; Pando, V.; Muscolo, A. Factors Determining Enzyme Activities in Soils under Pinus halepensis and Pinus sylvestris Plantations in Spain: A Basis for Establishing Sustainable Forest Management Strategies. Ann. For. Sci. 2018, 75, 34. [Google Scholar] [CrossRef]
- Mencel, J.; Mocek-Płóciniak, A.; Kryszak, A. Soil Microbial Community and Enzymatic Activity of Grasslands under Different Use Practices: A Review. Agronomy 2022, 12, 1136. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Xu, Y.; Jin, M.; Ye, X.; Gao, H.; Chu, W.; Mao, J.; Thompson, M.L. Soil Labile Organic Carbon Fractions and Soil Enzyme Activities After 10 Years of Continuous Fertilization and Wheat Residue Incorporation. Sci. Rep. 2020, 10, 11318. [Google Scholar] [CrossRef]
- Wolińska, A.; Stępniewska, Z. Dehydrogenase Activity in the Soil Environment. In Dehydrogenases; Canuto, R.A., Ed.; InTech Open: London, UK, 2012; Volume 10, pp. 183–210. [Google Scholar]
- Cuadros-Casanova, I.; Cristiano, A.; Biancolini, D.; Cimatti, M.; Sessa, A.A.; Mendez Angarita, V.Y.; Dragonetti, C.; Pacifici, M.; Rondinini, C.; Di Marco, M. Opportunities and Challenges for Common Agricultural Policy Reform to Support the European Green Deal. Conserv. Biol. 2023, 37, e14052. [Google Scholar] [CrossRef]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the Impact of Anthropogenic Aspects and Climatic Factors on Long-Term Soil Monitoring and Management. Environ. Sci. Pollut. Res. 2021, 28, 30528–30550. [Google Scholar] [CrossRef]
Fertilization Rule | Fertilization Rate 0% | Fertilization Rate 60% | Fertilization Rate 80% | Fertilization Rate 100% | ||
---|---|---|---|---|---|---|
Raster number | 1–5 | 6–10 | 11–15 | 16–20 | ||
Spring | YaraBela™ Extran 33.5 [kg/ha] | Dosage fertilizer [kg/ha] | 0 | 165 | 220 | 275 |
Dosage nitrogen [kg/ha] | 0 | 55.27 | 73.70 | 92.12 | ||
Urea [kg/ha] | Dosage fertilizer [kg/ha] | 0 | 97.50 | 130 | 162.50 | |
Dosage nitrogen [kg/ha] | 0 | 44.85 | 59.80 | 74.75 | ||
Total amount N [kg/ha] | 0 | 100.12 | 133.50 | 166.87 |
Fertilization Rule | Fertilization Rate 0% | Fertilization Rate 60% | Fertilization Rate 80% | Fertilization Rate 100% | ||
---|---|---|---|---|---|---|
Raster number | 1–5 | 6–10 | 11–15 | 16–20 | ||
Autumn | PK 15-30 (Polifoska®) | Dosage fertilizer [kg/ha] | 260 | 260 | 260 | 260 |
Dosage nitrogen [kg/ha] | 0 | 0 | 0 | 0 | ||
Urea 46% | Dosage fertilizer [kg/ha] | 0 | 90 | 120 | 150 | |
Dosage nitrogen [kg/ha] | 0 | 41.40 | 52.50 | 69 | ||
Total amount N [kg/ha] | 0 | 54.40 | 72.55 | 90.65 | ||
Spring | YaraBela™ Extran 33.5 [kg/ha] | Dosage fertilizer [kg/ha] | 0 | 210 | 280 | 350 |
Dosage nitrogen [kg/ha] | 0 | 70.35 | 93.80 | 117.25 | ||
YaraBela™ Nitromag [kg/ha] | Dosage fertilizer [kg/ha] | 0 | 187 | 250 | 310 | |
Dosage nitrogen [kg/ha] | 0 | 50.49 | 67.50 | 83.70 | ||
Total amount N [kg/ha] | 0 | 120.84 | 161.30 | 200.95 |
Before Sowing | ||||||
---|---|---|---|---|---|---|
Raster Number | Yield [kg·ha−1] | pH | Eh [mV] | EC [µS·cm−1] | CEC [cmolc·kg−1] | HA Substances [g·kg−1] |
1–5 | N/A | 7.16 ± 0.13 | 248.04 ± 5.29 | 66.91 ± 7.50 | 7.95 ± 1.86 | 71.200 ± 2.40 |
6–10 | N/A | 6.99 ± 0.07 | 241.41 ± 4.59 | 66.73 ± 5.99 | 8.62 ± 1.53 | 104.00 ± 2.60 |
11–15 | N/A | 6.81 ± 0.11 | 233.71 ± 4.64 | 69.59 ± 6.87 | 13.05 ± 1.20 | 424.80 ± 45.60 |
16–20 | N/A | 6.31 ± 0.06 | 228.39 ± 3.55 | 74.75 ± 8.46 | 14.05 ± 1.15 | 201.60 ± 25.60 |
After Harvesting | ||||||
1–5 | 2428.40 ± 273.35 | 6.41 ± 0.03 | 550.84 ± 6.80 | 87.23 ± 7.94 | 11.12 ± 1.25 | 227.31 ± 45.36 |
6–10 | 3070.20 ± 79.77 | 6.42 ± 0.02 | 528.35 ± 4.57 | 95.31 ± 10.97 | 10.86 ± 1.03 | 420.16 ± 148.17 |
11–15 | 3341.80 ± 38.80 | 6.27 ± 0.06 | 511.96 ± 4.71 | 87.85 ± 9.14 | 10.80 ± 1.04 | 577.81 ± 272.78 |
16–20 | 3087.20 ± 83.03 | 6.35 ± 0.04 | 494.17 ± 2.42 | 93.37 ± 5.27 | 10.56 ± 0.93 | 331.84 ± 118.91 |
Before Sowing | ||||||
---|---|---|---|---|---|---|
Raster Number | Yield [kg·ha−1] | pH | Eh [mV] | EC [µS·cm−1] | CEC [cmolc·kg−1] | HA Substances [g·kg−1] |
1–5 | N/A | 7.17 ± 0.16 | 235.39 ± 9.47 | 71.36 ± 5.72 | 20.01 ± 4.40 | 114.02 ± 17.66 |
6–10 | N/A | 6.58 ± 0.05 | 259.19 ± 2.41 | 59.87 ± 5.00 | 12.95 ± 2.45 | 131.84 ± 20.66 |
11–15 | N/A | 6.38 ± 0.07 | 247.31 ± 3.91 | 54.54 ± 5.24 | 11.20 ± 4.86 | 125.12 ± 18.48 |
16–20 | N/A | 6.20 ± 0.04 | 252.57 ± 2.11 | 53.53 ± 6.02 | 7.15 ± 1.63 | 143.04 ± 20.57 |
After Harvesting | ||||||
1–5 | 4447.80 ± 676.26 | 7.66 ± 0.05 | 511.24 ± 9.75 | 52.50 ± 8.37 | 19.51 ± 1.49 | 191.68 ± 168.69 |
6–10 | 5851.00 ± 620.08 | 7.957 ± 0.02 | 457.76 ± 3.67 | 60.82 ± 4.64 | 20.75 ± 2.87 | 122.13 ± 23.31 |
11–15 | 7703.40 ± 1839.12 | 7.09 ± 0.07 | 513.05 ± 5.16 | 45.11 ± 3.99 | 20.20 ± 2.14 | 127.04 ± 47.42 |
16–20 | 7888.60 ± 766.71 | 6.64 ± 0.04 | 480.43 ± 3.67 | 43.27 ± 3.54 | 20.78 ± 1.08 | 221.65 ± 66.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagan, K.; Goraj, W.; Kuźniar, A.; Kruczyńska, A.; Sochaczewska, A.; Słomczewski, A.; Wolińska, A. Exploring the Synergy between Humic Acid Substances, Dehydrogenase Activity and Soil Fertility. Agronomy 2024, 14, 1031. https://doi.org/10.3390/agronomy14051031
Kagan K, Goraj W, Kuźniar A, Kruczyńska A, Sochaczewska A, Słomczewski A, Wolińska A. Exploring the Synergy between Humic Acid Substances, Dehydrogenase Activity and Soil Fertility. Agronomy. 2024; 14(5):1031. https://doi.org/10.3390/agronomy14051031
Chicago/Turabian StyleKagan, Katarzyna, Weronika Goraj, Agnieszka Kuźniar, Anna Kruczyńska, Anna Sochaczewska, Andrzej Słomczewski, and Agnieszka Wolińska. 2024. "Exploring the Synergy between Humic Acid Substances, Dehydrogenase Activity and Soil Fertility" Agronomy 14, no. 5: 1031. https://doi.org/10.3390/agronomy14051031