Spatial Analysis on Resource Utilization, Environmental Consequences and Sustainability of Rice–Crayfish Rotation System in Jianghan Plain, China
Abstract
:1. Introduction
2. Method and Area
2.1. Study Area and System Description
2.2. Farming Field Survey and Data Collection
2.3. Emergy Evaluation
2.3.1. Emergy Flow Diagram
2.3.2. Emergy Analysis Table
2.3.3. Establishment of Emergy Indices
3. Result
3.1. Resource Input Analysis
3.1.1. Comparative Analysis of Resource Input Structure
3.1.2. Comparative Analysis of Input Categories
3.2. Nutrient Utilization Efficiency Analysis
3.2.1. Calculation of Nutrient Utilization
3.2.2. Spatial Analysis of Nutrient Efficiency
3.3. Environmental Consequence and Sustainability Analysis
3.3.1. Result Calculation
3.3.2. Spatial Distribution of Environmental Impact and Sustainability of RCR
4. Discussion
4.1. Performance of Resource Input
4.2. Resource Utilization Efficiency
4.3. Environmental Consequence and Sustainability
4.4. Potential for Optimization of Production
5. Conclusions
- (1)
- For the southeastern regions, efforts should continue to leverage the advantage of abundant natural resources by promoting the scale and technical standardization of RCR. At the same time, with a commitment to ecological conservation, an increase in socio-economic investment should be considered to enhance competitiveness. By developing business models such as “companies + farmers”, strengthening technical training for farmers and upgrading the rice–crayfish industry, sustained growth in rural economies can be encouraged.
- (2)
- In the northwestern regions, while ensuring economic development, emphasis should be placed on environmental protection and sustainable growth. It is essential to reduce unnecessary inputs and enhance resource efficiency for lower environmental loads. Strengthening environmental awareness and technical training among farmers will help raise their awareness and skills related to environmental protection. Strategies such as extending the RCR industry chain and enhancing product value should be implemented to promote the healthy development of the RCR industry.
- (3)
- Governments should increase support for RCR through relevant policies and measures to encourage the industry’s healthy development. Strengthening inter-regional cooperation and exchanging resources and technology can significantly enhance synergistic growth across industries. Additionally, establishing and maintaining an environmental assessment mechanism is crucial. Regular environmental assessments of RCR should be conducted to ensure that industry development is in harmony with environmental conservation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Córdoba Vargas, C.A.; Romero, S.H.; Sicard, T.L. Key points of resilience to climate change: A necessary debate from agroecological systems. Clim. Dev. 2019, 12, 564–574. [Google Scholar] [CrossRef]
- Yuan, P.-L.; Wang, J.-P.; Guo, C.; Guo, Z.-Y.; Guo, Y.; Cao, C.-G. Sustainability of the rice–crayfish farming model in waterlogged land: A case study in Qianjiang County, Hubei Province, China. J. Integr. Agric. 2022, 21, 1203–1214. [Google Scholar] [CrossRef]
- Si, G.; Peng, C.; Xu, X.; Xu, D.; Yuan, J.; Li, J. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils. Chin. J. Eco-Agric. 2017, 25, 61–68. [Google Scholar]
- Chen, Y.; Yu, P.; Chen, Y.; Chen, Z. Spatiotemporal dynamics of rice–crayfish field in Mid-China and its socioeconomic benefits on rural revitalisation. Appl. Geogr. 2022, 139, 102636. [Google Scholar] [CrossRef]
- Durán-Díaz, P. Sustainable Land Governance for Water–Energy–Food Systems: A Framework for Rural and Peri-Urban Revitalisation. Land 2023, 12, 1828. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, P.; Wang, L.; Chen, Y.; Chan, E.H.W. The impact of rice-crayfish field on socio-ecological system in traditional farming areas: Implications for sustainable agricultural landscape transformation. J. Clean. Prod. 2024, 434, 139625. [Google Scholar] [CrossRef]
- Yu, X.J.; Hao, X.; Dang, Z.; Yang, L.; Wang, X.; Zhang, Y.; Cai, J.; Zhang, Y. Report on the development of the crayfish industry in China (2022). China Aquac. 2022, 6, 47–54. (In Chinese) [Google Scholar]
- Wei, H.; Cai, Z.; Zhang, X.; Yang, J.; Cao, J.; Meng, K.; You, L.; Wu, H.; Hu, Q. Spatiotemporal expansion and methane emissions of rice-crayfish farming systems in Jianghan Plain, China. Agric. For. Meteorol. 2024, 347, 109908. [Google Scholar] [CrossRef]
- Liu, S.D. Evolution of Temporal and SpatialPattern of Rice and Crayfish Fields in Qianjiang City and Its Impact on Ecological Environment. Master’s Thesis, Huazhong Normal University, Wuhan, China, 2021. (In Chinese). [Google Scholar] [CrossRef]
- Jiao, L.; Chen, C.; Huang, J. Analyzing the impacts of paddy rice farming model on farmland ecosystem. Crop Res. 2021, 35, 385–393. (In Chinese) [Google Scholar] [CrossRef]
- Cao, M.; Jiang, Y.; Wang, J.; Yuan, P.; Chen, S. Double-edgedness of rice-shrimp cropping and sustainable development strategy. Chin. J. Ecol. Agric. 2017, 25, 1245–1253. (In Chinese) [Google Scholar] [CrossRef]
- Guohan, J.; Yuan, J.; Peng, C.; Zhao, S.; Jia, P.; He, J.; Xie, X.; Liu, R. Impacts of crayfish aquaculture on aquatic environment under rice-shrimp co-cropping model. Jiangsu Agric. Sci. 2019, 47, 299–303. (In Chinese) [Google Scholar] [CrossRef]
- Yi, F.; Lin, S.; Zhang, M.; Fu, Z. Impact of rice-shrimp co-cropping on the aquatic environment of paddy fields. Crop Res. 2019, 33, 362–365+373. (In Chinese) [Google Scholar] [CrossRef]
- Chen, L.; Wan, W.; Liu, B.; Xu, W.; Gu, Z. Effects of rice-shrimp co-cropping on microbial diversity and community structure in paddy field water. J. Huazhong Agric. Univ. 2022, 41, 141–151. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, T.; Feng, J.F. Carbon footprint analysis of rice-shrimp (Crayfish) integrated farming model. J. Ecol. Rural Environ. 2021, 37, 1041–1049. (In Chinese) [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Wang, J.; Cao, C. Current situation of rice-shrimp model development and countermeasures analysis in Hubei Province. J. Huazhong Agric. Univ. 2020, 39, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Tan, S.H.; Liu, Q.; Zhang, Q.Y. Ecological-economic effects of integrated rice-farming land use--an example of rice-shrimp farming in Hubei Province. J. Nat. Resour. 2021, 36, 3131–3143. (In Chinese) [Google Scholar]
- Tao, L.; Peng, L.; Dai, L.; Yang, Z.; Chen, S.; Ke, Y.; Li, G. Non-point source pollution emission characteristics and emergy assessment of rice-shrimp rotation model. Lake Sci. 2023, 35, 168–180. [Google Scholar]
- Xu, Z. Farm size, capitalism, overuse of agricultural chemicals in China. Capital. Nat. Soc. 2020, 31, 59–74. [Google Scholar] [CrossRef]
- Hu, K. Characterization of greenhouse gas emissions from different modes and geographical differences of rice-shrimp co-cropping in Hubei Province. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2022. (In Chinese). [Google Scholar] [CrossRef]
- Zhang, W.Y.; Dai, R.; Chen, S.; Li, Z.; Cao, C.; Wang, J. Analysis of resource inputs and economic benefits of rice-shrimp aquaculture in different ecological zones. Hubei Agric. Sci. 2023, 62, 1–6. (In Chinese) [Google Scholar] [CrossRef]
- Hu, N.-J.; Wang, Y.-T.; Tao, B.-R.; Zhu, L.-Q. The influence of ecological cognition and external environment on the agricultural input reduction behavior of rice and crayfish co-cropping farmers: Based on the survey data of 589 farmers in Jiangsu Province. J. Ecol. Rural Environ. 2021, 37, 983–991. [Google Scholar]
- Wei, Y.; Lu, M.; Yu, Q.; Xie, A.; Hu, Q.; Wu, W. Understanding the dynamics of integrated rice–crawfish farming in Qianjiang county, China using Landsat time series images. Agric. Syst. 2021, 191, 103167. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental accounting: Emergy and environmental decision making. John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Brown, M.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Energy quality, emergy, and transformity: HT Odum’s contributions to quantifying and understanding systems. Ecol. Model. 2004, 178, 201–213. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy assessment of global renewable sources. Ecol. Model. 2016, 339, 148–156. [Google Scholar] [CrossRef]
- Lan, S.; Qin, P.; Lu, H. Energy-Value Analysis of Ecological and Economic Systems; Chemical Industry Press: Beijng, China, 2002. (In Chinese) [Google Scholar]
- Gao, P.; Wang, H.; Sun, G.; Xu, Q.; Dou, Z.; Dong, E.; Wu, W.; Dai, Q. Integrated emergy and economic evaluation of the dominant organic rice production systems in Jiangsu province, China. Front. Plant Sci. 2023, 14, 1107880. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, X.; Yan, P.; Gao, W.; Chen, Y.; Sui, P. Integrated analysis on economic and environmental consequences of livestock husbandry on different scale in China. J. Clean. Prod. 2016, 119, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Chen, J.; Hu, N.; Zhu, L. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment. J. Clean. Prod. 2021, 310, 127493. [Google Scholar] [CrossRef]
- Hou, J.; Wang, X.; Xu, Q.; Cao, Y.; Zhang, D.; Zhu, J. Rice-crayfish systems are not a panacea for sustaining cleaner food production. Environ. Sci. Pollut. Res. 2021, 28, 22913–22926. [Google Scholar] [CrossRef]
- Hou, J.; Styles, D.; Cao, Y.; Ye, X. The sustainability of rice-crayfish coculture systems: A mini review of evidence from Jianghan plain in China. J. Sci. Food Agric. 2021, 101, 3843–3853. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, X.; Peng, H. Evaluation of Temporal and Spatial Changes in Ecological Environmental Quality on Jianghan Plain from 1990 to 2021. Front. Environ. Sci. 2022, 10, 884440. [Google Scholar] [CrossRef]
- Li, L.; Lu, H.; Ren, H.; Kang, W.; Chen, F. Emergy evaluations of three aquaculture systems on wetlands surrounding the Pearl River Estuary, China. Ecol. Indic. 2011, 11, 526–534. [Google Scholar] [CrossRef]
- Brown, M.T.; Bardi, E. Handbook of emergy evaluation. A Compend. Data Emergy Comput. Issued A Ser. Folios Folio 2001, 3, 1–94. [Google Scholar]
- Buller, L.S.; Bergier, I.; Ortega, E.; Salis, S.M. Dynamic emergy valuation of water hyacinth biomass in wetlands: An ecological approach. J. Clean. Prod. 2013, 54, 177–187. [Google Scholar] [CrossRef]
- Zhola; Shang, K.; Yang, X.; Wu, P.T. Evaluation of blue-green water resources utilization for food production system in the Yellow River Basin based on energy-value analysis. J. Agric. Eng. 2022, 38, 132–140. (In Chinese) [Google Scholar]
- Lu, H.; Lan, S.F.; Peng, S.-L. A new extension of energy value evaluation indexes for systematic sustainable development. Environ. Sci. 2003, 3, 150–154. (In Chinese) [Google Scholar] [CrossRef]
- Sarkodie, S.A. Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation options. Sci. Total Environ. 2021, 751, 141912. [Google Scholar] [PubMed]
- Li, Q. Ecological and economic effects of integrated rice-shrimp farming system. Master’s Thesis, Zhejiang University, Hangzhou, China, 2021. (In Chinese). [Google Scholar] [CrossRef]
- Xu, Q.; Peng, X.; Guo, H.; Che, Y.; Dou, Z.; Xing, Z.; Hou, J.; Styles, D.; Gao, H.; Zhang, H. Rice-crayfish coculture delivers more nutrition at a lower environmental cost. Sustain. Prod. Consum. 2022, 29, 14–24. [Google Scholar] [CrossRef]
- Liu, K.-W.; Zhu, J.-Q.; Liu, K.-Q.; Deng, Y.-J.; Deng, A.-J.; Li, J.-W. Assessment of precipitation suitable degree from integrated rice-crayfish farming systems in Jianghan Plain of China. J. Agrometeorol. 2022, 24, 123–132. [Google Scholar] [CrossRef]
- Vinci, G.; Ruggieri, R.; Ruggeri, M.; Prencipe, S.A. Rice production chain: Environmental and social impact assessment—A review. Agriculture 2023, 13, 340. [Google Scholar] [CrossRef]
- Ahmad, A.; Zoli, M.; Latella, C.; Bacenetti, J. Rice cultivation and processing: Highlights from a life cycle thinking perspective. Sci. Total Environ. 2023, 871, 162079. [Google Scholar] [CrossRef]
- Huang, J.; Yu, X.; Zhang, Z.; Peng, S.; Liu, B.; Tao, X.; He, A.; Deng, N.; Zhou, Y.; Cui, K. Exploration of feasible rice-based crop rotation systems to coordinate productivity, resource use efficiency and carbon footprint in central China. Eur. J. Agron. 2022, 141, 126633. [Google Scholar] [CrossRef]
- Yong, Z.; Yan, X.; Gong, S.; Li, C.; Zhu, R.; Zhu, B.; Liu, Z.; Wang, X.; Cao, P. Changes in paddy cropping system enhanced economic profit and ecological sustainability in central China. J. Integr. Agric. 2022, 21, 566–577. [Google Scholar] [CrossRef]
- Emerue, P.; Akinbola, E.; Omole, A. Effects of dietary replacement of fish meal with crayfish waste meal on the blood profile of rabbits. Niger. J. Anim. Prod. 2022, 49, 304–312. [Google Scholar]
- Luo, S.; Li, X.; Onchari, M.M.; Li, W.; Bu, Y.; Lek, S.; Zhang, T.; Wang, Z.; Jin, S. High feeding level alters physiological status but does not improve feed conversion efficiency and growth performance of juvenile red swamp crayfish Procambarus clarkii (Girard, 1852). Aquaculture 2021, 537, 736507. [Google Scholar] [CrossRef]
- Sun, Q.; Khoshnevisan, B.; Zhu, J.; Wang, W.; Liu, Y.; Pan, J.; Fan, X.; Zhang, D.; Wu, M.; Liu, H. Comprehensive assessment of integrated rice-crayfish farming system as a new paradigm to air-water-food nexus sustainability. J. Clean. Prod. 2022, 377, 134247. [Google Scholar] [CrossRef]
- Jiang, Y.; Cao, C. Crayfish–rice integrated system of production: An agriculture success story in China. A review. Agron. Sustain. Dev. 2021, 41, 1–14. [Google Scholar] [CrossRef]
- Ge, P.; Liu, T.; Wu, X.; Huang, X. Heterogenous urbanization and agricultural green development efficiency: Evidence from China. Sustainability 2023, 15, 5682. [Google Scholar] [CrossRef]
- Tan, S.H.; Liu, Q.; Zhang, Q.Y. Study on the ecological-economic effects of rice-aquatic coculture land use pattern: The case of rice-crayfish coculture in Hubei province. J. Nat. Resour. 2021, 36, 3131–3143. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, L.; Ren, W.; Guo, L.; Tang, J.; Shu, M.; Chen, X. Rice-soft shell turtle coculture effects on yield and its environment. Agric. Ecosyst. Environ. 2016, 224, 116–122. [Google Scholar] [CrossRef]
- Feng, J.; Pan, R.; Hu, H.-W.; Huang, Q.; Zheng, J.; Tan, W.; Liu, Y.-R.; Delgado-Baquerizo, M. Effects of integrated rice-crayfish farming on soil biodiversity and functions. Sci. Bull. 2023, 68, 2311–2315. [Google Scholar] [CrossRef]
- Wang, A.; Hao, X.; Chen, W.; Luo, X.; Huang, Q. Rice-crayfish co-culture increases microbial necromass’ contribution to the soil nitrogen pool. Environ. Res. 2023, 216, 114708. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Dai, L.; Zhou, Y.; Dou, Z.; Gao, W.; Yuan, X.; Gao, H.; Zhang, H. Effect of nitrogen application on greenhouse gas emissions and nitrogen uptake by plants in integrated rice-crayfish farming. Sci. Total Environ. 2023, 905, 167629. [Google Scholar] [CrossRef] [PubMed]
- Viera-Romero, A.; Diemont, S.; Selfa, T.; Luzadis, V. The sustainability of shrimp aquaculture: An emergy-based case study in the Gulf of Guayaquil thirty years later. Renew. Sustain. Energy Rev. 2024, 194, 114326. [Google Scholar] [CrossRef]
- NI, M.; Deng, K.; Zhang, W.; Shang, Y.; Wei, F.; Yuan, P.; Li, Z.; Fan, D.; Cao, C.; Wang, J. Effects of rice-crayfish coculture on rice yield and food security. Chin. J. Eco-Agric. 2022, 30, 1293–1300. [Google Scholar]
- Eyni-Nargeseh, H.; Asgharipour, M.R.; Rahimi-Moghaddam, S.; Gilani, A.; Damghani, A.M.; Azizi, K. Which rice farming system is more environmentally friendly in Khuzestan province, Iran? A study based on emergy analysis. Ecol. Model. 2023, 481, 110373. [Google Scholar] [CrossRef]
- Kumar, R.; Bhardwaj, A.; Singh, L.P.; Singh, G. Environmental and Economical Assessment of Maize Cultivation in Northern India. Process Integr. Optim. Sustain. 2024, 8, 165–179. [Google Scholar] [CrossRef]
- Lv, T.; Wang, C.; Xu, Y.; Zhou, X.; Huang, F.; Yu, L. Impact of Integrated Rice-Crayfish Farming on Soil Aggregates and Organic Matter Distribution. Agronomy 2023, 14, 16. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Y.; Liu, G.; Zhang, P.; Li, B.; Li, B.; Jia, Q.; Huang, Y.; Shu, T. Evaluation of sustainable crop production from an ecological perspective based emergy analysis: A case of China’s provinces. J. Clean. Prod. 2021, 313, 127912. [Google Scholar] [CrossRef]
- Marques, H.L.; New, M.B.; Boock, M.V.; Barros, H.P.; Mallasen, M.; Valenti, W.C. Integrated freshwater prawn farming: State-of-the-art and future potential. Rev. Fish. Sci. Aquac. 2016, 24, 264–293. [Google Scholar] [CrossRef]
- Nielsen, S.; Anastácio, P.; Frias, A.; Marques, J. CRISP-crayfish rice integrated system of production. 5. Simulation of nitrogen dynamics. Ecol. Model. 1999, 123, 41–52. [Google Scholar] [CrossRef]
- Yan, J.; Yu, J.; Huang, W.; Pan, X.; Li, Y.; Li, S.; Tao, Y.; Zhang, K.; Zhang, X. Initial Studies on the Effect of the Rice–Duck–Crayfish Ecological Co-Culture System on Physical, Chemical, and Microbiological Properties of Soils: A Field Case Study in Chaohu Lake Basin, Southeast China. Int. J. Environ. Res. Public Health 2023, 20, 2006. [Google Scholar] [CrossRef] [PubMed]
- Dien, L.D.; Van Hao, N.; Sammut, J.; Burford, M.A. Comparing nutrient budgets in integrated rice-shrimp ponds and shrimp grow-out ponds. Aquaculture 2018, 484, 250–258. [Google Scholar] [CrossRef]
- Wan, N.-F.; Li, S.-X.; Li, T.; Cavalieri, A.; Weiner, J.; Zheng, X.-Q.; Ji, X.-Y.; Zhang, J.-Q.; Zhang, H.-L.; Zhang, H. Ecological intensification of rice production through rice-fish co-culture. J. Clean. Prod. 2019, 234, 1002–1012. [Google Scholar] [CrossRef]
- Tucker, C.S.; Hargreaves, J.A. Environmental Best Management Practices for Aquaculture; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Zhu, Y.; Zhou, X.; Gan, Y.; Chen, J.; Yu, R. Spatio-temporal differentiation and driving mechanism of the “resource curse” of the cultivated land in main agricultural production regions: A case study of Jianghan Plain, Central China. Int. J. Environ. Res. Public Health 2021, 18, 858. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ku, X.; Wang, S.; Pan, G.; Xu, Q.; Liu, H.; Li, J. Evaluation of annual production and economic benefits of tropical rice-crayfish coculture system in China. Agric. Syst. 2024, 217, 103936. [Google Scholar] [CrossRef]
- Acevedo, M.; Pixley, K.; Zinyengere, N.; Meng, S.; Tufan, H.; Cichy, K.; Bizikova, L.; Isaacs, K.; Ghezzi-Kopel, K.; Porciello, J. A scoping review of adoption of climate-resilient crops by small-scale producers in low-and middle-income countries. Nat. Plants 2020, 6, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- de Morais, G.F.; Santos, J.d.S.G.; Han, D.; Ramos Filho, L.O.; Xavier, M.G.B.; Schimidt, L.; de Souza, H.T.; de Castro, F.T.; de Souza-Esquerdo, V.F.; Albiero, D. Agricultural Machinery Adequacy for Handling the Mombaça Grass Biomass in Agroforestry Systems. Agriculture 2023, 13, 1416. [Google Scholar] [CrossRef]
- Xie, J.; Hu, L.; Tang, J.; Wu, X.; Li, N.; Yuan, Y.; Yang, H.; Zhang, J.; Luo, S.; Chen, X. Ecological mechanisms underlying the sustainability of the agricultural heritage rice–fish coculture system. Proc. Natl. Acad. Sci. USA 2011, 108, E1381–E1387. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-l.; Si, G.-H.; Zhao, S.-J.; Yuan, J.-F.; Lu, H.-J.; Xu, X.-Y.; Xu, D.-B.; Xie, Y.; Zhou, J.-X. Effects of nitrogen fertilizer management on nutrient uptake and yield of direct-seeding rice under long-term integrated rice-crayfish model. J. Henan Agric. Sci. 2023, 52, 9. [Google Scholar]
- Hou, J.; Zhang, D.; Zhu, J. Nutrient accumulation from excessive nutrient surplus caused by shifting from rice monoculture to rice–crayfish rotation. Environ. Pollut. 2021, 271, 116367. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, C.; Zhu, J. Changes of Soil Water–Stable Aggregates after Rice–Crawfish Rotation in Low-lying Paddy Fields: A Case Study in Jianghan Plain of China. Commun. Soil Sci. Plant Anal. 2021, 52, 2358–2372. [Google Scholar] [CrossRef]
- Ramos-Castillo, M.; Orvain, M.; Naves-Maschietto, G.; de Faria, A.B.B.; Chenu, D.; Albuquerque, M. Optimal agricultural spreading scheduling through surrogate-based optimization and MINLP models. Inf. Process. Agric. 2021, 8, 159–172. [Google Scholar] [CrossRef]
- Ahmed, U.; Lin, J.C.-W.; Srivastava, G.; Djenouri, Y. A nutrient recommendation system for soil fertilization based on evolutionary computation. Comput. Electron. Agric. 2021, 189, 106407. [Google Scholar] [CrossRef]
- Bashir, M.A.; Liu, J.; Geng, Y.; Wang, H.; Pan, J.; Zhang, D.; Rehim, A.; Aon, M.; Liu, H. Co-culture of rice and aquatic animals: An integrated system to achieve production and environmental sustainability. J. Clean. Prod. 2020, 249, 119310. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Bag, N.; Moulick, S.; Mal, B.C. Effect of stocking density on water and soil quality, growth, production and profitability of farming Indian major carps. Indian J. Fish 2016, 63, 39–49. [Google Scholar] [CrossRef]
Items | Jianli | Honghu | Qianjiang | Gongan | Shishou | Shayang | Unit |
---|---|---|---|---|---|---|---|
Input | |||||||
Rice seed | 31.94 | 29.70 | 34.12 | 51.69 | 54.49 | 34.77 | kg |
Fry | 443.88 | 403.59 | 417.67 | 458.66 | 456.37 | 324.44 | kg |
Fertilizer | |||||||
N fertilizer | 123.90 | 147.29 | 187.01 | 107.05 | 102.34 | 150.04 | kg |
Compound fertilizer | 413.78 | 395.92 | 506.68 | 1537.47 | 556.88 | 562.95 | kg |
Pesticide | 4.31 | 2.92 | 3.72 | 3.82 | 4.15 | 4.13 | kg |
Medicine | 127.39 | 22.90 | 131.68 | 112.41 | 102.46 | 163.18 | kg |
Diesel oil | 0.08 | 0.09 | 0.10 | 0.10 | 0.09 | 0.07 | t |
Water | 18,275.19 | 15,294.28 | 17,132.55 | 19,129.97 | 20,602.21 | 14,854.14 | t |
Electricity | 1827.52 | 1529.43 | 1713.25 | 1913.00 | 2060.22 | 1485.41 | kWh |
Labor | 31.45 | 94.66 | 43.90 | 49.51 | 50.46 | 52.38 | person |
Machine and tools | 293.76 | 275.88 | 321.25 | 382.94 | 375.14 | 354.60 | $ |
Feeds | |||||||
Soybean | 233.34 | 219.51 | 171.54 | 64.11 | 311.72 | 24.47 | kg |
Compound forage | 1417.10 | 951.39 | 1444.69 | 1537.47 | 1075.95 | 1316.65 | kg |
Plastic trap a | 62.46 | 83.32 | 90.14 | 63.41 | 65.98 | 54.69 | kg |
Field facilities b | 64.18 | 78.30 | 30.71 | 26.44 | 36.28 | 33.80 | $ |
Anti-escape facilities c | |||||||
Anti-escape net | 1.29 | 1.43 | 0.97 | 1.34 | 1.14 | 0.92 | kg |
Wooden sticks | 27.00 | 33.00 | 22.00 | 25.00 | 34.50 | 24.30 | kg |
Aquatic plants | 14.01 | 28.55 | 16.50 | 14.01 | 8.42 | 9.06 | kg |
Outputs | |||||||
Rice | 9095.18 | 8253.82 | 9497.37 | 9245.28 | 8100.66 | 9144.69 | kg |
Crayfish | 1999.72 | 1838.24 | 2325.77 | 2469.66 | 1398.35 | 1800.59 | kg |
Items | Unit | UEV (sej/Unit) | RNF | Emergy (sej) | |||||
---|---|---|---|---|---|---|---|---|---|
Jianli | Honghu | Qianjiang | Gongan | Shishou | Shayang | ||||
Inputs | |||||||||
Free local renewable resources (LR) | |||||||||
Solar radiation | J | 1 | 1 | 4.05 × 1013 | 4.05 × 1013 | 4.05 × 1013 | 4.05 × 1013 | 4.05 × 1013 | 4.05 × 1013 |
Wind energy | J | 8.00 × 102 | 1 | 5.67 × 1012 | 5.67 × 1012 | 5.67 × 1012 | 5.67 × 1012 | 5.67 × 1012 | 5.67 × 1012 |
Rain chemical energy | J | 7.00 × 103 | 1 | 3.46 × 1014 | 3.46 × 1014 | 3.46 × 1014 | 3.46 × 1014 | 3.46 × 1014 | 3.46 × 1014 |
River water (irrigation) | J | 6.50 × 104 | 1 | 5.85 × 1016 | 4.89 × 1016 | 5.48 × 1016 | 6.12 × 1016 | 6.59 × 1016 | 4.75 × 1016 |
Free local non-renewable resources (LN) | |||||||||
Soil loss | J | 9.40 × 104 | 0 | 2.30 × 1014 | 2.30 × 1014 | 2.30 × 1014 | 2.30 × 1014 | 2.30 × 1014 | 2.30 × 1014 |
Economic purchased resources(P) | |||||||||
Rice seed | g | 2.55 × 105 | 1 | 1.30 × 1014 | 1.21 × 1014 | 1.39 × 1014 | 2.11 × 1014 | 2.22 × 1014 | 1.42 × 1014 |
Fry | g | 1.27 × 109 | 0.2 | 5.64 × 1014 | 5.13 × 1014 | 5.30 × 1014 | 5.82 × 1014 | 5.80 × 1014 | 4.12 × 1014 |
N fertilizer | g | 6.38 × 109 | 0 | 7.91 × 1014 | 9.40 × 1014 | 1.19 × 1015 | 6.83 × 1014 | 6.53 × 1014 | 9.57 × 1014 |
Compound fertilizer | g | 3.56 × 109 | 0 | 1.47 × 1015 | 1.41 × 1015 | 1.80 × 1015 | 5.47 × 1015 | 1.98 × 1015 | 2.00 × 1015 |
Pesticide | g | 1.89 × 1010 | 0 | 8.14 × 1013 | 5.52 × 1013 | 7.03 × 1013 | 7.23 × 1013 | 7.85 × 1013 | 7.81 × 1013 |
Medicine | g | 2.49 × 1010 | 0 | 3.17 × 1015 | 5.70 × 1014 | 3.28 × 1015 | 2.80 × 1015 | 2.55 × 1015 | 4.06 × 1015 |
Diesel oil | J | 4.09 × 1004 | 0 | 1.52 × 1014 | 1.76 × 1014 | 1.87 × 1014 | 1.84 × 1014 | 1.65 × 1014 | 1.34 × 1014 |
Electricity | J | 2.04 × 1005 | 0.09 | 1.34 × 1015 | 1.12 × 1015 | 1.26 × 1015 | 1.40 × 1015 | 1.51 × 1015 | 1.09 × 1015 |
Labor | J | 1.24 × 1006 | 0.6 | 4.91 × 1014 | 1.48 × 1015 | 6.86 × 1014 | 7.74 × 1014 | 7.88 × 1014 | 8.18 × 1014 |
Machine and tools | $ | 5.81 × 1012 | 0 | 1.71 × 1015 | 1.60 × 1015 | 1.87 × 1015 | 2.22 × 1015 | 2.18 × 1015 | 2.06 × 1015 |
Soybean | J | 1.34 × 1005 | 0.33 | 4.74 × 1014 | 4.46 × 1014 | 3.48 × 1014 | 1.30 × 1014 | 6.33 × 1014 | 4.97 × 1013 |
Compound forage | g | 1.70 × 1009 | 0.2 | 2.41 × 1015 | 1.62 × 1015 | 2.46 × 1015 | 2.61 × 1015 | 1.83 × 1015 | 2.24 × 1015 |
Plastic trap | g | 1.87 × 1009 | 0 | 1.17 × 1014 | 1.56 × 1014 | 1.69 × 1014 | 1.19 × 1014 | 1.23 × 1014 | 1.02 × 1014 |
Field facilities | $ | 5.81 × 1012 | 0 | 3.73 × 1014 | 4.55 × 1014 | 1.78 × 1014 | 1.54 × 1014 | 2.11 × 1014 | 1.96 × 1014 |
Anti-escape nets | g | 2.89 × 1008 | 0 | 3.71 × 1011 | 4.13 × 1011 | 2.81 × 1011 | 3.88 × 1011 | 3.30 × 1011 | 2.67 × 1011 |
Wooden sticks | g | 5.14 × 1008 | 1 | 1.39 × 1013 | 1.70 × 1013 | 1.13 × 1013 | 1.29 × 1013 | 1.77 × 1013 | 1.25 × 1013 |
Aquatic plants | J | 1.65 × 1004 | 0.68 | 3.26 × 1015 | 6.64 × 1015 | 3.84 × 1015 | 3.26 × 1015 | 1.96 × 1015 | 2.11 × 1015 |
Outputs | |||||||||
Rice | J | 2.43 × 1005 | -- | 3.35 × 1016 | 3.04 × 1016 | 3.50 × 1016 | 3.40 × 1016 | 2.98 × 1016 | 3.37 × 1016 |
Crayfish | J | 1.30 × 1007 | -- | 1.68 × 1017 | 1.54 × 1017 | 1.95 × 1017 | 2.07 × 1017 | 1.17 × 1017 | 1.51 × 1017 |
Emergy flows (sej) | |||||||||
Free local renewable resources (LR) | 5.89 × 1016 | 4.93 × 1016 | 5.52 × 1016 | 6.16 × 1016 | 6.63 × 1016 | 4.79 × 1016 | |||
Free local non-renewable resources (LN) | 2.30 × 1014 | 2.30 × 1014 | 2.30 × 1014 | 2.30 × 1014 | 2.30 × 1014 | 2.30 × 1014 | |||
Economic purchased resources (F) | 1.92 × 1016 | 1.73 × 1016 | 1.80 × 1016 | 2.07 × 1016 | 1.55 × 1016 | 1.65 × 1016 | |||
Renewable fraction of purchased resources (FR) | 6.22 × 1015 | 6.22 × 1015 | 4.00 × 1015 | 3.71 × 1015 | 2.87 × 1015 | 2.72 × 1015 | |||
Non-renewable fraction of purchased resources (FN) | 1.30 × 1016 | 1.11 × 1016 | 1.40 × 1016 | 1.70 × 1016 | 1.26 × 1016 | 1.37 × 1016 | |||
Renewable emergy flows (LR + FR) | 6.51 × 1016 | 5.55 × 1016 | 5.92 × 1016 | 6.53 × 1016 | 6.92 × 1016 | 5.06 × 1016 | |||
Non-renewable emergy flows (LN + FN) | 1.33 × 1016 | 1.13 × 1016 | 1.42 × 1016 | 1.72 × 1016 | 1.28 × 1016 | 1.40 × 1016 | |||
Total emergy inputs (U) | 7.57 × 1016 | 6.69 × 1016 | 7.35 × 1016 | 8.25 × 1016 | 8.20 × 1016 | 6.46 × 1016 | |||
Total emergy outputs (Y) | 2.01 × 1017 | 1.85 × 1017 | 2.30 × 1017 | 2.41 × 1017 | 1.47 × 1017 | 1.85 × 1017 |
Emergy Indices a | Expression b | Description |
---|---|---|
Unit emergy value (UEV) | UEV = U/Y | Evaluation of resource efficiency of output products. |
Emergy self-support ratio (ESR) | ESR = (R + N)/U | Evaluation of the degree of utilization and dependence of the system on natural resources. |
Renewable fraction (%R) | (R + FR)/U × 100% | Evaluation of the proportion of renewable resources utilized in the production process of the system. |
Emergy yield ratio (EYR) | EYR = (R + N + F)/F | Describe the magnitude of the system’s ability to profit from socio-economic resources. |
Environmental load ratio (ELR) | ELR = (N + Fn)/(R + Fr) | Evaluation of the pressure of the system on the surrounding environment. |
Emergy index for sustainable development (EISD) | [EYR × (Fr + Fn)]/Y × ELR | Capacity of the integrated evaluation system for sustainable development. |
Indices | Jianli | Honghu | Qianjiang | Gongan | Shishou | Shayang |
---|---|---|---|---|---|---|
UEV | 0.38 | 0.36 | 0.32 | 0.34 | 0.56 | 0.35 |
ESR | 0.78 | 0.74 | 0.76 | 0.75 | 0.81 | 0.75 |
%R | 82.48 | 83.05 | 80.61 | 79.14 | 84.34 | 78.38 |
EYR | 4.57 | 3.86 | 4.08 | 3.99 | 5.30 | 3.92 |
ELR | 0.21 | 0.20 | 0.24 | 0.26 | 0.19 | 0.28 |
EISD | 1.77 | 1.78 | 1.33 | 1.30 | 3.00 | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Han, G.; Hu, N.; Qu, S.; Zhu, L. Spatial Analysis on Resource Utilization, Environmental Consequences and Sustainability of Rice–Crayfish Rotation System in Jianghan Plain, China. Agronomy 2024, 14, 1071. https://doi.org/10.3390/agronomy14051071
Shi H, Han G, Hu N, Qu S, Zhu L. Spatial Analysis on Resource Utilization, Environmental Consequences and Sustainability of Rice–Crayfish Rotation System in Jianghan Plain, China. Agronomy. 2024; 14(5):1071. https://doi.org/10.3390/agronomy14051071
Chicago/Turabian StyleShi, Hang, Guang Han, Naijuan Hu, Shuyang Qu, and Liqun Zhu. 2024. "Spatial Analysis on Resource Utilization, Environmental Consequences and Sustainability of Rice–Crayfish Rotation System in Jianghan Plain, China" Agronomy 14, no. 5: 1071. https://doi.org/10.3390/agronomy14051071
APA StyleShi, H., Han, G., Hu, N., Qu, S., & Zhu, L. (2024). Spatial Analysis on Resource Utilization, Environmental Consequences and Sustainability of Rice–Crayfish Rotation System in Jianghan Plain, China. Agronomy, 14(5), 1071. https://doi.org/10.3390/agronomy14051071