Comprehensive Analysis of Groundwater Suitability for Irrigation in Rural Hyderabad, Sindh, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Sampling and Measurements
2.3. Chemical Parameters of the Samples
2.4. Irrigation Water Quality
2.5. Sodium Hazard (SH)
2.5.1. Soluble Sodium Percentage (SSP) or (%Na)
2.5.2. Sodium Absorption Ratio (SAR)
2.6. Residual Sodium Carbonate (RSC)
2.7. Magnesium Hazard (MH)
2.8. Permeability Index (PI)
2.9. Chloralkaline Index (CAI)
2.10. Spital Distribution
3. Results
3.1. pH
3.2. Electrical Conductivity (EC) and Total Dissolved Solids (TDS)
3.3. Groundwater Quality Based on Major Cation and Anions
3.4. Total Hardness (TH)
3.5. Sodium Hazard (SH)
3.5.1. Sodium Absorption Ratio (SAR)
3.5.2. Soluble Sodium Percentage (SSP)
3.6. Residual Soluble Percentage (RSP) or Residual Sodium Carbonate (RSC)
3.7. Magnesium Hazard (MH)
3.8. Permeability Index (PI)
3.9. Kelley’s Ratio (KR)
3.10. USSL Salinity Diagram
3.11. Wilcox Diagram
3.12. Hydrochemistry of Groundwater
3.12.1. Chloralkaline Index (CAI I and II)
3.12.2. Gibbs Ratio (GR)
3.12.3. Piper and Durov Diagrams
4. Discussion
4.1. pH
4.2. EC and TDS
4.3. Groundwater Quality Based on Major Cations and Anions
4.4. TH
4.5. SH
4.5.1. SAR
4.5.2. SSP
4.6. RSC
4.7. MH
4.8. PI
4.9. KR
4.10. USSL Salinity Diagram
4.11. Wilcox Diagram
4.12. Hydrochemistry of Groundwater
4.12.1. Chloralkaline Index (CAI I and II)
4.12.2. GR
4.12.3. Piper and Durov Diagram
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suresh, T.S.; Naganna, C.; Srinivas, G. Study of water quality for agricultural use in Hemavathyriver (Karnataka). J. Indian Assoc. Hydrol. 1991, 14, 247–254. [Google Scholar]
- Lytton, L.; Ali, A.; Garthwaite, B.; Punthakey, J.F.; Saeed, B. Groundwater in Pakistan’s Indus Basin Present and Future Prospective. World Bank Report. 2021. Available online: http://documents.worldbank.org/curated/en/501941611237298661/Groundwater-in-Pakistan-s-Indus-Basin-Present-and-Future-Prospects (accessed on 12 November 2023).
- Dahri, J.; Guo, Z.; Bhutto, K.R.; Larik, Z.M.; Junejo, A.R.; Channa, J.A. Simple and low-cost irrigation system for (Small Scales) in the arid region of Sindh, Pakistan. Int. J. Mod. Eng. Technol. Sci. 2022, 4, 785–790. [Google Scholar]
- Hassanli, A.M.; Ahmadirad, S.; Beecham, S. Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency. Agric. Water Manag. 2010, 97, 357–362. [Google Scholar] [CrossRef]
- Junejo, A.R.; Soomro, S.A.; Gujjar, K.J.; Channa, J.A.; Dahri, J.; Junejo, Y. Analysis of the application effect of wick irrigation technology in vegetable planting: A case study of sponge gourd and bitter gourd. Geogr. Res. Bull. 2023, 2, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Srivastav, A.L. Chemical fertilizers and pesticides: Role in groundwater contamination. In Agrochemicals Detection, Treatment, and Remediation; Butterworth-Heinemann: Oxford, UK, 2020; pp. 143–159. [Google Scholar] [CrossRef]
- Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37, 613–620. [Google Scholar] [CrossRef]
- Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, P.M.; Menzies, N.W. The effect of salinity on plant-available water. Plant Soil 2017, 418, 477–491. [Google Scholar] [CrossRef]
- Maas, E.V. Plant growth response to salt stress. Deliberations about High Salinity Tolerant Plants and Ecosystems. In Towards the Rational Use of High Salinity Tolerant Plants; Springer: Berlin/Heidelberg, Germany, 1993; Volume 1, pp. 279–291. Available online: https://link.springer.com/book/10.1007/978-94-011-1858-3 (accessed on 13 November 2023).
- Rawat, K.S.; Singh, S.K.; Gautam, S.K. Assessment of groundwater quality for irrigation use: A peninsular case study. Appl. Water Sci. 2018, 8, 233. [Google Scholar] [CrossRef]
- Postigo, C.; Martinez, D.E.; Grondona, S.; Miglioranza, K.S.B. Groundwater Pollution: Sources, Mechanisms, and Prevention. Encycl. Anthr. 2018, 5, 87–96. [Google Scholar] [CrossRef]
- Srivastava, S.K. Assessment of groundwater quality for the suitability of irrigation and its impacts on crop yields in the Guna district, India. Agric. Water Manag. 2019, 216, 224–241. [Google Scholar] [CrossRef]
- Singh, P.; Raj, A.; Yadav, B. Impacts of agriculture-based contaminants on groundwater quality. In Sustainability of Water Resources; Springer: Cham, Switzerland, 2022; pp. 249–261. [Google Scholar] [CrossRef]
- Gugulothu, S.; Subbarao, N.; Das, R.; Dhakate, R. Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India. Appl. Water Sci. 2022, 12, 142. [Google Scholar] [CrossRef]
- Chidambaram, S.; Prasanna, M.V.; Venkatramanan, S.; Nepolian, M.; Pradeep, K.; Panda, B.; Thivya, C.; Thilagavathi, R. Groundwater quality assessment for irrigation by adopting new suitability plot and spatial analysis based on fuzzy logic technique. Environ. Res. 2022, 204, 111729. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Tejankar, A.; Coppola, G.; Chakraborty, S. Assessment of groundwater quality using statistical methods: A case study. Arab. J. Geosci. 2022, 15, 1136. [Google Scholar] [CrossRef]
- Laonamsai, J.; Pawana, V.; Chipthamlong, P.; Chomcheawchan, P.; Kamdee, K.; Kimmany, B. Groundwater Quality Variations in Multiple Aquifers: A Comprehensive Evaluation for Public Health and Agricultural Use. Geosciences 2023, 13, 195. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, C.K.; Almesfer, M.K.; Kumar, A.; Khan, R.A.; Islam, S. Hydro-geochemical assessment of groundwater quality in Aseer Region, Saudi Arabia. Water 2018, 10, 1847. [Google Scholar] [CrossRef]
- Lasagna, M.; Ducci, D.; Sellerino, M.; Mancini, S.; De Luca, D.A. Meteorological variability and groundwater quality: Examples in different hydrogeological settings. Water 2020, 12, 1297. [Google Scholar] [CrossRef]
- Lalumbe, L.; Kanyerere, T. Characterisation of hydro-geochemical processes influencing groundwater quality in rural areas: A case study of Soutpansberg Region, Limpopo Province, South Africa. Water 2022, 14, 1972. [Google Scholar] [CrossRef]
- Sangadi, P.; Kuppan, C.; Ravinathan, P. Effect of hydro-geochemical processes and saltwater intrusion on groundwater quality and irrigational suitability assessed by geo-statistical techniques in coastal region of eastern Andhra Pradesh, India. Mar. Pollut. Bull. 2022, 175, 113390. [Google Scholar] [CrossRef]
- He, S.; Wu, J.; Wang, D.; He, X. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. Chemosphere 2022, 290, 133388. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Sun, H.; Zhang, Y.; Zhang, S.; Lu, C. Partial wavelet coherence to evaluate scale-dependent relationships between precipitation/surface water and groundwater levels in a groundwater system. Water Resour. Manag. 2022, 36, 2509–2522. [Google Scholar] [CrossRef]
- Wang, D.; Li, P.; He, X.; He, S. Exploring the response of shallow groundwater to precipitation in the northern piedmont of the Qinling Mountains, China. Urban Clim. 2023, 47, 101379. [Google Scholar] [CrossRef]
- Yan, J.; Chen, J.; Zhang, W. Impact of land use and cover on shallow groundwater quality in Songyuan city, China: A multivariate statistical analysis. Environ. Pollut. 2022, 307, 119532. [Google Scholar] [CrossRef]
- Xu, F.; Li, P.; Chen, W.; He, S.; Li, F.; Mu, D. Impacts of land use/land cover patterns on groundwater quality in the Guanzhong Basin of northwest China. Geocarto Int. 2022, 37, 16769–16785. [Google Scholar] [CrossRef]
- Siddik, M.S.; Tulip, S.S.; Rahman, A.; Islam, M.N.; Haghighi, A.T.; Mustafa, S.M.T. The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. J. Environ. Manag. 2022, 315, 115130. [Google Scholar] [CrossRef]
- Qu, S.; Wang, G.; Shi, Z.; Zhu, Z.; Wang, X.; Jin, X. Impact of mining activities on groundwater level, hydrochemistry, and aquifer parameters in a Coalfield’s overburden aquifer. Mine Water Environ. 2022, 41, 640–653. [Google Scholar] [CrossRef]
- Noor, R.; Inam, A.; Zahra, S.M.; Shoaib, M.; Riaz, R.; Sarwar, A. A methodological framework for modeling sustainability visions: A case study of groundwater management in Faizpur distributary, Pakistan. Agric. Water Manag. 2022, 271, 107822. [Google Scholar] [CrossRef]
- Rao, N.S.; Dinakar, A.; Sun, L. Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover—A case study. J. Contam. Hydrol. 2022, 248, 103990. [Google Scholar] [CrossRef]
- Jacintha, T.G.A.; Rawat, K.S.; Mishra, A.; Singh, S.K. Hydrogeochemical characterization of groundwater of peninsular Indian region using multivariate statistical techniques. Appl. Water Sci. 2017, 7, 3001–3013. [Google Scholar] [CrossRef]
- Gautam, S.K.; Tziritis, E.; Singh, S.K.; Tripathi, J.K.; Singh, A.K. Environmental monitoring of water resources with the use of PoS index: A case study from Subarnarekha River basin, India. Environ. Earth Sci. 2018, 77, 70. [Google Scholar] [CrossRef]
- Chand, K.; Khoso, F.N.; Gilal, A.A.; Lodhi, A.M.; Jamro, G.M. Hydrochemical evaluation of groundwater suitability for irrigation in lower Sindh, Pakistan. Soil Environ. 2021, 40, 165–173. [Google Scholar] [CrossRef]
- Singh, K.K.; Tewari, G.; Kumar, S. Evaluation of groundwater quality for suitability of irrigation purposes: A case study in the Udham Singh Nagar, Uttarakhand. J. Chem. 2020, 2020, 6924026. [Google Scholar] [CrossRef]
- Badr, E.S.A.; Tawfik, R.T.; Alomran, M.S. An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia. Water 2023, 15, 2488. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; United States Department of Agriculture (USDA): Washington, DC, USA, 1954; Volume 60.
- Richards, L.A.; Bower, C.A.; Fireman, M. Tests for Salinity and Sodium Status of Soil and Irrigation Water; US Department of Agriculture: Washington, DC, USA, 1956; Volume 982.
- Wilcox, L.V. Classification and Use of Irrigation Waters; US Department of Agriculture: Washington, DC, USA, 1955; Volume 969.
- Eaton, F.M. Significance of carbonates in irrigation waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Szabolcs, I. The influence of irrigation water of high sodium carbonate content on soils. Agrokémia És Talajt. 1964, 13, 237–246. Available online: http://real.mtak.hu/id/eprint/96046 (accessed on 13 November 2023).
- Doneen, L.D. Water quality for irrigated agriculture. In Plants in Saline Environments; Springer: Berlin/Heidelberg, Germany, 1975; pp. 56–76. [Google Scholar]
- Schoeller, H. Qualitative evaluation of groundwater resources. In Methods and Techniques of Groundwater Investigations and Development; UNESCO: Paris, France, 1965; p. 5483. [Google Scholar]
- Alogayell, H.M.; Elbana, E.M.M.; Abdelfattah, M. Groundwater Quality and Suitability Assessment for Irrigation Using Hydrogeochemical Characteristics and Pollution Indices: A Case Study of North Al-Quwayiyah Governorate, Central Saudi Arabia. Water 2023, 15, 3321. [Google Scholar] [CrossRef]
- Nas, B.; Berktay, A. Groundwater quality mapping in urban groundwater using GIS. Environ. Monit. Assess. 2010, 160, 215–227. [Google Scholar] [CrossRef]
- Arshad, M.; Shakoor, A. Irrigation water quality. Water Int. 2010, 12, 145–160. [Google Scholar]
- Dişli, E. Hydrochemical characteristics of surface and groundwater and suitability for drinking and agricultural use in the Upper Tigris River Basin, Diyarbakır–Batman, Turkey. Environ. Earth Sci. 2017, 76, 500. [Google Scholar] [CrossRef]
- Adnan, H.M.; Hassan, K.M.; Tabassum, S.N. Irrigation water quality & soil nutrients near Shyampur sugar mill area in Bangladesh. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2023; Volume 2713, p. 1. [Google Scholar] [CrossRef]
- Ismail, E.; Snousy, M.G.; Alexakis, D.E.; Abdelhalim, A.; Ahmed, M.S.; Elsayed, E. Diagnosis of Groundwater Quality in North Assiut Province, Egypt, for Drinking and Irrigation Uses by Applying Multivariate Statistics and Hydrochemical Methods. Water 2023, 15, 2812. [Google Scholar] [CrossRef]
- Tadesse, K.B.; Dinka, M.O. Eutrophic reservoir water suitability for irrigation in semi-arid region. Environ. Dev. Sustain. 2023, 26, 10557–10567. [Google Scholar] [CrossRef]
- Anderson, N.P.; Hart, J.M.; Sullivan, D.M.; Hulting, A.G.; Horneck, D.A.; Christensen, N.W. Soil Acidity in Oregon: Understanding and Using Concepts for Crop Production. 2013. Available online: http://hdl.handle.net/1957/41199 (accessed on 3 November 2023).
- Bortolini, L.; Maucieri, C.; Borin, M. A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy 2018, 8, 23. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water quality for agriculture. In Conference Paper 29, Rome: Food and Agriculture Organization of the United Nations; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29, p. 174. [Google Scholar]
- Sharma, D.A.; Rishi, M.S.; Keesari, T. Evaluation of groundwater quality and suitability for irrigation and drinking purposes in southwest Punjab, India using hydrochemical approach. Appl. Water Sci. 2017, 7, 3137–3150. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Q.; Lin, Y.; Fang, Y.; Qian, H.; Liu, R.; Ma, H. Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region, Northwest China. Water 2019, 11, 96. [Google Scholar] [CrossRef]
- Yadav, R.K.; Goyal, B.; Sharma, R.K.; Dubey, S.K.; Minhas, P.S. Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water—A case study. Environ. Int. 2002, 28, 481–486. [Google Scholar] [CrossRef]
- Shahinasi, E.; Kashuta, V. Irrigation water quality and its effects upon soil. In Balwois Report; Tirana Agricultural University: Tirana, Albania, 2008. [Google Scholar]
- Sappa, G.; Ergul, S.; Ferranti, F. Water quality assessment of carbonate aquifers in southern Latium region, Central Italy: A case study for irrigation and drinking purposes. Appl. Water Sci. 2014, 4, 115–128. [Google Scholar] [CrossRef]
- Sawyer, C.; McCarthy, P. Chemistry of Sanitary Engineers, 2nd ed.; McGraw-Hill: New York, NY, USA, 1967; p. 518. [Google Scholar]
- Elbilali, A.; Taleb, A. Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment. J. Saudi Soc. Agric. Sci. 2020, 19, 439–451. [Google Scholar] [CrossRef]
- Dlamini, M.; Chirima, G.; Jovanovic, N.; Adam, E. Assessing the effects of land use on surface water quality in the lower uMfolozi floodplain system, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 561. [Google Scholar] [CrossRef]
- Panhwar, M.Y.; Panhwar, S.; Keerio, H.A.; Khokhar, N.H.; Shah, S.A.; Pathan, N. Water quality analysis of old and new Phuleli Canal for irrigation purpose in the vicinity of Hyderabad, Pakistan. Water Pract. Technol. 2022, 17, 529–536. [Google Scholar] [CrossRef]
- Jain, C.K.; Vaid, U. Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Nalbari district of Assam, India. Environ. Earth Sci. 2018, 77, 254. [Google Scholar] [CrossRef]
- Soomro, A.; Siyal, A.A.; Mirjat, M.S.; Gandahi, A.W.; Latif, A. Seasonal variation of groundwater quality assessment for irrigation and drinking purpose in Phuleli canal command area (Sindh), Pakistan. Int. Water Technol. J. 2014, 4, 222–237. [Google Scholar]
- Tijani, M.N. Hydrogeochemical assessment of groundwater in Moro area, Kwara State, Nigeria. Environ. Geol. 1994, 24, 194–202. [Google Scholar] [CrossRef]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Bokhari, A.Y.; Khan, M.A. Deterministic modelling of AI-Madinah AI-Munawarah groundwater quality using lumped parameter approach. Earth Sci. 1992, 5, 89–107. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S. Degradation processes and nutrient constraints in sodic soils. Land Degrad. Dev. 2002, 13, 275–294. [Google Scholar] [CrossRef]
- Nagaraju, A.; Sunil, K.; Thejaswi, A. Assessment of groundwater quality for irrigation: A case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India. Appl. Water Sci. 2014, 4, 385–396. [Google Scholar] [CrossRef]
- Sarkar, M.; Pal, S.C.; Islam, A. Groundwater quality assessment for safe drinking water and irrigation purposes in Malda district, Eastern India. Environ. Earth Sci. 2022, 81, 52. [Google Scholar] [CrossRef]
- Barik, R.; Pattanayak, S.K. Assessment of groundwater quality for irrigation of green spaces in the Rourkela city of Odisha, India. Groundw Sustain. Dev. 2019, 8, 428–438. [Google Scholar] [CrossRef]
- Doneen, L.D. Salinization of Soils by Salt in Irrigation Water; Transactions, American Geophysical Union: Washington, DC, USA, 1964; Volume 35, pp. 943–950. [Google Scholar]
- Kelley, W.P. Use of saline irrigation water. Soil Sci. 1963, 95, 385–391. [Google Scholar] [CrossRef]
- USSL. Diagnosis and Improvement of Saline and Alkaline Soil; USSA Handbook: McCall, ID, USA, 1964; Volume 60, p. 160. [Google Scholar]
- Wilcox, L.V. The Quality of Water for Irrigation Use; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 1948; Volume 170282.
- Musah, S.; Aidoo, F.; Hayford, M.S.; Adomako, D.; Asare, E. Evaluating the suitability of groundwater for irrigational purposes in some selected districts of the Upper West region of Ghana. Appl. Water Sci. 2017, 7, 653–662. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Hao, Q.; Liu, H.; Hao, Z. Hydrogeochemical characterization and quality assessment of groundwater in a long-term reclaimed water irrigation area, North China Plain. Water 2018, 10, 1209. [Google Scholar] [CrossRef]
- Gibbs, R.J. Transport phases of transition metals in the Amazon and Yukon Rivers. Geol. Soc. Am. Bull. 1977, 88, 829–843. [Google Scholar] [CrossRef]
- Karmegam, U.; Chidambaram, S.; Prasanna, M.V.; Sasidhar, P.; Manikandan, S.; Johnsonbabu, G. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model. Chin. J. Geochem. 2011, 30, 490–495. [Google Scholar] [CrossRef]
Category | EC (µs/cm−1) | TDS (mg/L) | Hazards and Limitations | Suitable Samples | Suitable Sample (%) |
---|---|---|---|---|---|
C1 | <250 | <150 | Low hazards and no detrimental effects on the plants; no accumulation in soil is expected | 0 | 0 |
C2 | 250–750 | 150–500 | Stress can be shown by sensitive plants, and salt accumulation in soil can be prevented due to moderate leaching | 10 | 22.72 |
C3 | 750–2250 | 500–1500 | Most plants affected by salinity (salt-tolerant plants are needed); careful irrigation, good drainage, and leaching are needed | 29 | 65.90 |
C4 | >2250 | >1500 | Unsuitable for irrigation, highly excepting salt-resistant plants; excellent drainage, frequent leaching, and intensive management are needed | 5 | 11.36 |
Sample ID | pH | EC | TH | CI− | HCO3− | SO42− | NO3− | CO32− | Ca2+ | Mg2+ | Na+ | K+ | TDS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RH1 | 7.6 | 2051 | 455 | 120.9 | 450.1 | 1.9 | 0.2 | 0 | 64.2 | 73.4 | 197 | 3.4 | 1312.64 |
RH2 | 7.6 | 1031 | 742 | 191.3 | 499.2 | 11.2 | 1.2 | 0 | 191.3 | 64.9 | 206.2 | 5.1 | 659.84 |
RH3 | 7.5 | 972 | 316 | 112 | 388.6 | 17.2 | 0.5 | 0 | 47.5 | 47.3 | 177 | 4.2 | 622.08 |
RH4 | 7.7 | 1371 | 512 | 74.7 | 402.9 | 11.9 | 12.6 | 0 | 120.1 | 51.9 | 181.3 | 3.6 | 877.44 |
RH5 | 7.7 | 1106 | 1498 | 401.6 | 580.0 | 3.6 | 2.4 | 0 | 400.9 | 121.1 | 621.4 | 6.0 | 707.84 |
RH6 | 7.5 | 970 | 889 | 392.3 | 577.1 | 121.4 | 10.2 | 0 | 177.4 | 109.4 | 592.3 | 6.1 | 620.8 |
RH7 | 7.6 | 5489 | 1882 | 224.0 | 592.6 | 17.4 | 0.1 | 0 | 391.2 | 97.4 | 488.2 | 5.1 | 3512.96 |
RH8 | 7.6 | 693 | 1603 | 381.4 | 388.7 | 19.3 | 4.8 | 0 | 475.2 | 101.3 | 616.6 | 5.0 | 443.52 |
RH9 | 7.6 | 2031 | 788 | 180.1 | 430.6 | 4.7 | 6.8 | 0 | 180.9 | 80.9 | 185.4 | 4.1 | 1299.84 |
RH10 | 7.6 | 1477 | 641 | 110.0 | 466.4 | 21.9 | 4.6 | 0 | 147.6 | 67.3 | 166.9 | 4.7 | 945.28 |
RH11 | 7.5 | 1191 | 667 | 219.3 | 402.9 | 211.4 | 12.6 | 0 | 122.9 | 87.2 | 150.8 | 4.5 | 762.24 |
RH12 | 7.7 | 2755 | 530 | 197.4 | 400.8 | 121.12 | 16.2 | 0 | 72.6 | 84.2 | 187.5 | 5.0 | 1763.2 |
RH13 | 7.3 | 2201 | 1399 | 160.3 | 470.1 | 17.3 | 49.4 | 0 | 440.9 | 73.2 | 216.3 | 5.5 | 1408.64 |
RH14 | 7.3 | 2314 | 1361 | 215.6 | 485.2 | 7.8 | 53.1 | 0 | 381.3 | 100.2 | 179.4 | 5.5 | 1480.96 |
RH15 | 7.2 | 2198 | 1159 | 77.3 | 433.5 | 2.9 | 0.1 | 0 | 299.6 | 99.1 | 200.7 | 5.5 | 1406.72 |
RH16 | 7.4 | 2007 | 1285 | 91.4 | 467.7 | 1.3 | 0.9 | 0 | 471.5 | 27.5 | 195.6 | 4.9 | 1284.48 |
RH17 | 7.1 | 1674 | 813 | 440.9 | 530.4 | 1.4 | 9.1 | 0 | 256.9 | 41.2 | 171.3 | 3.1 | 1071.36 |
RH18 | 7.5 | 2179 | 535 | 327.1 | 522.4 | 27.6 | 1.4 | 0 | 176.3 | 22.9 | 199.2 | 3.6 | 1394.56 |
RH19 | 7.3 | 677 | 476 | 299.1 | 567.2 | 77.2 | 9.4 | 0 | 99.4 | 55.2 | 187.2 | 2.9 | 433.28 |
RH20 | 7.3 | 547 | 428 | 422.0 | 591.1 | 91.3 | 3.1 | 0 | 64.2 | 64.9 | 554.2 | 4.1 | 350.08 |
RH21 | 7.7 | 765 | 475 | 72.0 | 200.6 | 117.2 | 0.2 | 0 | 74.1 | 71.2 | 502.3 | 2.0 | 489.6 |
RH22 | 7.9 | 1109 | 591 | 117.8 | 221.3 | 7.8 | 0.4 | 0 | 81.4 | 95.3 | 449.6 | 2.6 | 709.76 |
RH23 | 7.8 | 556 | 1346 | 91.0 | 202.9 | 3.1 | 0.2 | 0 | 100.3 | 22.4 | 552.1 | 2.1 | 355.84 |
RH24 | 7.8 | 811 | 602 | 100.3 | 247.3 | 9.2 | 0.1 | 0 | 204.9 | 22.5 | 48.5 | 2.1 | 519.04 |
RH25 | 7.5 | 517 | 574 | 164.9 | 433.2 | 177.3 | 3.5 | 0 | 191.3 | 22.7 | 61.5 | 5.1 | 330.88 |
RH26 | 7.5 | 1351 | 1144 | 121.1 | 399.2 | 191.5 | 57.5 | 0 | 372.2 | 52.3 | 47.7 | 5.6 | 864.64 |
RH27 | 7.4 | 977 | 1516 | 144.7 | 371.2 | 11.7 | 11.3 | 0 | 461.5 | 87.2 | 50.1 | 4.1 | 625.28 |
RH28 | 7.6 | 559 | 1121 | 126.7 | 444.2 | 33.7 | 29 | 0 | 299.4 | 90.4 | 188.4 | 3.9 | 357.76 |
RH29 | 7.6 | 1171 | 940 | 204.0 | 410.1 | 49.2 | 4.2 | 0 | 268.4 | 65.3 | 222.5 | 5.5 | 749.44 |
RH30 | 7.5 | 2515 | 956 | 211.3 | 422.4 | 1.8 | 3.5 | 0 | 264.7 | 71.4 | 204.1 | 5.1 | 1609.6 |
RH31 | 7.4 | 401 | 1391 | 197.2 | 471.8 | 16.3 | 1.1 | 0 | 411.2 | 87.2 | 198.2 | 5.1 | 256.64 |
RH32 | 7.5 | 1904 | 392 | 126.2 | 489.4 | 62.2 | 0.9 | 0 | 72.6 | 51.3 | 300.1 | 4.1 | 1218.56 |
RH33 | 7.7 | 1373 | 541 | 100.4 | 380.2 | 98.2 | 1.3 | 0 | 91.4 | 76.3 | 299.6 | 4.8 | 878.72 |
RH34 | 7.8 | 1426 | 572 | 133.9 | 399.6 | 8.1 | 0.2 | 0 | 150.3 | 49.2 | 326.4 | 4.6 | 912.64 |
RH35 | 7.6 | 2141 | 490 | 109.1 | 303.4 | 5.7 | 0.1 | 0 | 122.7 | 45.4 | 351.2 | 4.0 | 1370.24 |
RH36 | 7.7 | 1632 | 927 | 89.6 | 305.5 | 1.2 | 11.4 | 0 | 301.4 | 42.4 | 199.9 | 4.0 | 1044.48 |
RH37 | 7.5 | 422 | 1282 | 56.0 | 222.6 | 9.4 | 57.2 | 0 | 377.3 | 81.4 | 199.2 | 1.9 | 270.08 |
RH38 | 7.9 | 637 | 760 | 71.3 | 221.9 | 9.3 | 72.9 | 0 | 266.4 | 22.9 | 171.4 | 2.3 | 407.68 |
RH39 | 7.6 | 502 | 598 | 99.3 | 216.3 | 29.4 | 9.1 | 0 | 198.4 | 24.6 | 123.4 | 2.1 | 321.28 |
RH40 | 7.8 | 876 | 612 | 47.4 | 255.7 | 151.2 | 0.6 | 0 | 205.5 | 25.3 | 151.2 | 2.1 | 558.08 |
RH41 | 7.7 | 811 | 646 | 92.6 | 200.4 | 177.2 | 0.2 | 0 | 211.8 | 27.8 | 51.2 | 4.2 | 519.04 |
RH42 | 7.7 | 803 | 317 | 49.3 | 199.4 | 3.1 | 7.2 | 0 | 76.4 | 29.7 | 47.4 | 2.6 | 513.92 |
RH43 | 7.9 | 783 | 459 | 47.8 | 264.2 | 9.4 | 8.1 | 0 | 144.2 | 23.9 | 67.2 | 3.6 | 501.12 |
RH44 | 7.9 | 614 | 1301 | 64.9 | 292.6 | 12.9 | 0.2 | 0 | 77.9 | 26.4 | 40.3 | 4.5 | 392.96 |
Range | 7.1–7.9 | 401–5489 | 318–1882 | 47.4–440.9 | 199.4–592.6 | 1.2–211.4 | 0.1–72.9 | 0–0 | 47.5–475.2 | 22.4–121.1 | 40.3–621.4 | 1.9–6.1 | 256.6–3512.7 |
Mean | 7.5 | 1354 | 853.0 | 165.4 | 391.4 | 45.13 | 10.89 | 0 | 218.3 | 61.0 | 239.2 | 4.0 | 866.71 |
Sample ID | SAR | SSP | RSC | MH | PI | KR | CAI I | CAI II | Gibbs I | Gibbs II |
---|---|---|---|---|---|---|---|---|---|---|
RH1 | 0.46 | 9.05 | −1.95 | 66 | 8.72 | 0.92 | 0.88 | 2.25 | 0.32 | 0.73 |
RH2 | 0.30 | 9.51 | −6.79 | 36 | 9.08 | 0.60 | 3.72 | 4.33 | 0.40 | 0.49 |
RH3 | 0.61 | 8.46 | 0.05 | 62 | 7.88 | 1.22 | 0.70 | 2.01 | 0.33 | 0.77 |
RH4 | 0.38 | 8.39 | −3.73 | 42 | 8.02 | 0.76 | −1.67 | 0.98 | 0.26 | 0.57 |
RH5 | 0.45 | 27.29 | −20.63 | 33 | 27.07 | 0.90 | 8.95 | 8.52 | 0.54 | 0.58 |
RH6 | 0.72 | 26.11 | −8.53 | 51 | 25.82 | 1.43 | 8.74 | 8.95 | 0.54 | 0.74 |
RH7 | 0.38 | 21.49 | −17.96 | 29 | 21.29 | 0.77 | 2.95 | 4.21 | 0.39 | 0.52 |
RH8 | 0.42 | 27.03 | −25.83 | 26 | 26.85 | 0.83 | 8.27 | 6.84 | 0.63 | 0.53 |
RH9 | 0.26 | 8.50 | −8.73 | 43 | 8.17 | 0.51 | 3.48 | 3.96 | 0.42 | 0.47 |
RH10 | 0.28 | 7.85 | −5.34 | 43 | 7.39 | 0.56 | 0.73 | 2.21 | 0.29 | 0.50 |
RH11 | 0.24 | 7.13 | −6.81 | 54 | 6.69 | 0.49 | 5.12 | 5.60 | 0.49 | 0.52 |
RH12 | 0.38 | 8.83 | −4.08 | 66 | 8.29 | 0.77 | 4.09 | 4.69 | 0.47 | 0.70 |
RH13 | 0.17 | 9.78 | −20.44 | 22 | 9.48 | 0.33 | 2.42 | 3.45 | 0.41 | 0.30 |
RH14 | 0.14 | 8.20 | −19.46 | 30 | 7.88 | 0.28 | 4.79 | 5.21 | 0.47 | 0.29 |
RH15 | 0.19 | 9.17 | −16.13 | 36 | 8.81 | 0.38 | −1.88 | 0.95 | 0.24 | 0.37 |
RH16 | 0.16 | 8.87 | −18.20 | 9 | 8.58 | 0.33 | −0.76 | 1.46 | 0.25 | 0.27 |
RH17 | 0.23 | 7.78 | −7.58 | 21 | 7.57 | 0.46 | 11.85 | 11.61 | 0.59 | 0.37 |
RH18 | 0.40 | 9.13 | −2.16 | 18 | 8.81 | 0.81 | 8.29 | 8.28 | 0.52 | 0.50 |
RH19 | 0.43 | 8.56 | −0.27 | 48 | 8.31 | 0.85 | 7.48 | 7.71 | 0.48 | 0.62 |
RH20 | 1.40 | 24.42 | 1.07 | 63 | 24.19 | 2.80 | 9.89 | 9.84 | 0.55 | 0.88 |
RH21 | 1.13 | 22.00 | −6.35 | 62 | 21.90 | 2.27 | −8.73 | −1.78 | 0.38 | 0.86 |
RH22 | 0.81 | 19.76 | −8.38 | 66 | 19.61 | 1.63 | −2.57 | −1.84 | 0.48 | 0.83 |
RH23 | 1.74 | 24.18 | −3.56 | 27 | 24.06 | 3.49 | −6.79 | −4.52 | 0.44 | 0.83 |
RH24 | 0.09 | 2.49 | −8.07 | 15 | 2.25 | 0.17 | 2.07 | 2.32 | 0.41 | 0.17 |
RH25 | 0.12 | 3.59 | −4.36 | 17 | 2.86 | 0.23 | 4.06 | 4.40 | 0.40 | 0.23 |
RH26 | 0.05 | 2.64 | −16.42 | 19 | 2.18 | 0.09 | 2.77 | 3.23 | 0.40 | 0.11 |
RH27 | 0.04 | 2.50 | −24.26 | 24 | 2.25 | 0.07 | 3.53 | 3.74 | 0.41 | 0.09 |
RH28 | 0.18 | 8.52 | −15.22 | 33 | 8.28 | 0.36 | 1.26 | 2.60 | 0.36 | 0.36 |
RH29 | 0.26 | 10.17 | −12.14 | 29 | 9.76 | 0.51 | 4.06 | 4.51 | 0.46 | 0.42 |
RH30 | 0.23 | 9.34 | −12.26 | 31 | 8.97 | 0.46 | 4.46 | 4.69 | 0.47 | 0.40 |
RH31 | 0.15 | 8.97 | −20.09 | 26 | 8.69 | 0.31 | 4.00 | 4.49 | 0.42 | 0.30 |
RH32 | 0.83 | 13.55 | 0.12 | 54 | 13.18 | 1.65 | −0.12 | 2.16 | 0.31 | 0.78 |
RH33 | 0.60 | 13.54 | −4.70 | 58 | 13.13 | 1.19 | −1.80 | 1.25 | 0.31 | 0.74 |
RH34 | 0.61 | 14.65 | −5.06 | 35 | 14.29 | 1.22 | 0.00 | 1.65 | 0.37 | 0.66 |
RH35 | 0.77 | 15.68 | −4.94 | 38 | 15.36 | 1.54 | −1.91 | 0.06 | 0.38 | 0.71 |
RH36 | 0.23 | 9.07 | −13.60 | 19 | 8.77 | 0.47 | −0.94 | 0.85 | 0.35 | 0.37 |
RH37 | 0.17 | 8.80 | −22.00 | 26 | 8.72 | 0.34 | −3.92 | −0.24 | 0.41 | 0.32 |
RH38 | 0.24 | 7.71 | −11.59 | 13 | 7.54 | 0.49 | −1.72 | 0.51 | 0.47 | 0.36 |
RH39 | 0.22 | 5.67 | −8.42 | 17 | 5.47 | 0.45 | 0.87 | 1.55 | 0.45 | 0.35 |
RH40 | 0.27 | 6.86 | −8.19 | 17 | 6.68 | 0.53 | −3.61 | 0.44 | 0.24 | 0.39 |
RH41 | 0.09 | 2.93 | −9.62 | 18 | 2.35 | 0.17 | 1.72 | 2.28 | 0.44 | 0.18 |
RH42 | 0.16 | 2.85 | −3.03 | 39 | 2.28 | 0.33 | −0.14 | 0.78 | 0.32 | 0.36 |
RH43 | 0.16 | 3.68 | −4.87 | 22 | 3.09 | 0.32 | −0.88 | 0.70 | 0.25 | 0.29 |
RH44 | 0.14 | 3.20 | −1.30 | 36 | 2.03 | 0.29 | 0.81 | 1.46 | 0.28 | 0.32 |
Range | 0.04–1.74 | 2.49–27.29 | −25.83–1.07 | 9–66 | 2.03–27.07 | 0.07–3.49 | −8.73–11.85 | −4.52–11.61 | 0.24–0.63 | 0.09–0.88 |
Mean | 0.39 | 10.86 | 6.04 | 34.98 | 10.51 | 0.79 | 1.92 | 3.14 | 0.40 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soomro, S.A.; Hao, L.; Memon, G.A.; Junejo, A.R.; Niu, W.; Channa, Z.A.; Chandio, M.K.; Channa, J.A.; Alkahtani, J.; Dahri, J. Comprehensive Analysis of Groundwater Suitability for Irrigation in Rural Hyderabad, Sindh, Pakistan. Agronomy 2024, 14, 1072. https://doi.org/10.3390/agronomy14051072
Soomro SA, Hao L, Memon GA, Junejo AR, Niu W, Channa ZA, Chandio MK, Channa JA, Alkahtani J, Dahri J. Comprehensive Analysis of Groundwater Suitability for Irrigation in Rural Hyderabad, Sindh, Pakistan. Agronomy. 2024; 14(5):1072. https://doi.org/10.3390/agronomy14051072
Chicago/Turabian StyleSoomro, Shoukat Ali, Li Hao, Gulsher Ali Memon, Abdul Rahim Junejo, Wenquan Niu, Zahid Ali Channa, Muhammad Kareem Chandio, Jamshed Ali Channa, Jawaher Alkahtani, and Jahangeer Dahri. 2024. "Comprehensive Analysis of Groundwater Suitability for Irrigation in Rural Hyderabad, Sindh, Pakistan" Agronomy 14, no. 5: 1072. https://doi.org/10.3390/agronomy14051072
APA StyleSoomro, S. A., Hao, L., Memon, G. A., Junejo, A. R., Niu, W., Channa, Z. A., Chandio, M. K., Channa, J. A., Alkahtani, J., & Dahri, J. (2024). Comprehensive Analysis of Groundwater Suitability for Irrigation in Rural Hyderabad, Sindh, Pakistan. Agronomy, 14(5), 1072. https://doi.org/10.3390/agronomy14051072