Soil Fertility and Bacterial Community Composition in Response to the Composting of Biochar-Amended Chicken Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Raw Materials
2.2. Compost Treatment and Experimental Design
2.3. Sample Collection and Measurements
2.4. DNA Extraction and High-Throughput Sequencing
2.5. Bioinformatic and Statistical Analysis
3. Results
3.1. Effect of BCP Treatments on Production Quality of Chinese Cabbage
3.2. Effect of BCP Treatments on Fertility-Related Properties of Soil
3.3. Effect of BCP Treatments on Bacterial Community Diversity and Composition
3.4. Effect of BCP Treatments on Soil Microbial Metabolism Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, S.; Hussain, I.; Ghaffar, A.; Rahman, M.H.U.; Saleem, M.Z.; Yonas, M.W.; Hussnain, H.; Ikram, R.M.; Arslan, M. Organic amendments and conservation tillage improve cotton productivity and soil health indices under arid climate. Sci. Rep. 2022, 12, 14072. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, J.; Zhang, X.; Zhang, S.; Chen, Y. Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the loess plateau. PLoS ONE 2020, 15, e0238042. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Kaur, M.; Singh, P.; Gaber, A.; Hossain, A. Effect of addition of organic manures on basmati yield, nutrient content and soil fertility status in north-western india. Heliyon 2023, 9, e14514. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Yuan, M.; Wu, G.; Sun, Y. Effects of partial replacement of nitrogen fertilizer with organic fertilizer on rice growth, nitrogen utilization efficiency and soil properties in the yangtze river basin. Life 2023, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Gelaye, Y.; Tadele, E. Agronomic productivity and organic fertilizer rates on growth and yield performance of cabbage (Brassica oleracea var. Capitata L.) in northwestern ethiopia. Sci. World J. 2022, 2022, 2108401. [Google Scholar] [CrossRef] [PubMed]
- Bonanomi, G.; Alioto, D.; Minutolo, M.; Marra, R.; Cesarano, G.; Vinale, F. Organic amendments modulate soil microbiota and reduce virus disease incidence in the tswv-tomato pathosystem. Pathogens 2020, 9, 379. [Google Scholar] [CrossRef] [PubMed]
- Ajibade, S.; Nnadozie, E.C.; Iwai, C.B.; Ghotekar, S.; Chang, S.W.; Ravindran, B.; Kumar Awasthi, M. Biochar-based compost: A bibliometric and visualization analysis. Bioengineered 2022, 13, 15013–15032. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, M.W., Jr.; Liang, P.; Jiang, X.; Doyle, M.P.; Erickson, M.C. Microbiological analysis of composts produced on south carolina poultry farms. J. Appl. Microbiol. 2010, 108, 2067–2076. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, B.; Mnkeni, P.N. Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using eisenia fetida. Environ. Sci. Pollut. Res. Int. 2016, 23, 16965–16976. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Q.; Li, H.; Li, S.; Liu, Y.; Yang, L.; Han, X. Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils. Environ. Pollut. 2020, 266, 13. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, B.; Mupambwa, H.A.; Silwana, S.; Mnkeni, P.N.S. Assessment of nutrient quality, heavy metals and phytotoxic properties of chicken manure on selected commercial vegetable crops. Heliyon 2017, 3, e00493. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, B.; Nguyen, D.D.; Chaudhary, D.K.; Chang, S.W.; Kim, J.; Lee, S.R.; Shin, J.; Jeon, B.H.; Chung, S.; Lee, J. Influence of biochar on physico-chemical and microbial community during swine manure composting process. J. Environ. Manag. 2019, 232, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Basu, S.; Shetti, N.P.; Kamali, M.; Walvekar, P.; Aminabhavi, T.M. Waste-to-energy nexus: A sustainable development. Environ. Pollut. 2020, 267, 27. [Google Scholar] [CrossRef] [PubMed]
- Chia, W.Y.; Chew, K.W.; Le, C.F.; Lam, S.S.; Chee, C.S.C.; Ooi, M.S.L.; Show, P.L. Sustainable utilization of biowaste compost for renewable energy and soil amendments. Environ. Pollut. 2020, 267, 16. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.J.; Chang, S.W.; Chaudhary, D.K.; Shin, J.; Kim, H.; Karmegam, N.; Govarthanan, M.; Chandrasekaran, M.; Ravindran, B. Effect of biochar amendment on compost quality, gaseous emissions and pathogen reduction during in-vessel composting of chicken manure. Chemosphere 2021, 283, 131129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, X.; Lu, G.; Liu, Y.; Naidu, R.; He, W. Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity. Ecotoxicol. Environ. Saf. 2018, 147, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, X.; Zhang, T.; He, W.; Song, F. Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in china. Environ. Pollut. 2020, 262, 24. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, I.; Dhal, P.K. Impact of elevated phosphogypsum on soil fertility and its aerobic biotransformation through indigenous microorganisms (imo’s) based technology. J. Environ. Manag. 2021, 297, 16. [Google Scholar] [CrossRef] [PubMed]
- Kafle, G.K.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (bmp) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef]
- Darby, B.; Goodale, C.; Chin, N.; Fuss, C.; Lang, A.; Ollinger, S.; Lovett, G. Depth patterns and connections between gross nitrogen cycling and soil exoenzyme activities in three northern hardwood forests. Soil. Biol. Biochem. 2020, 147, 107836. [Google Scholar] [CrossRef]
- Li, F.; Yu, H.; Li, Y.; Wang, Y.; Shen Resource, J.; Hu, D.; Feng, B.; Han, Y. The quality of compost was improved by low concentrations of fulvic acid owing to its optimization of the exceptional microbial structure. Bioresour. Technol. 2021, 342, 25. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Shumayla; Verma, P.C.; Singh, K.; Upadhyay, S.K. Molecular characterization of ascorbate peroxidase (apx) and apx-related (apx-r) genes in Triticum aestivum L. Genomics 2020, 112, 4208–4223. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.K.; Ge, T.; Liu, S.L.; Hu, Y.J.; Ye, R.Z.; Xiao, M.L.; Tong, C.L.; Kuzyakov, Y.; Wu, J.S. Rice rhizodeposits affect organic matter priming in paddy soil: The role of n fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil. Biol. Biochem. 2018, 116, 369–377. [Google Scholar] [CrossRef]
- Novair, S.B.; Hosseini, H.M.; Etesami, H.; Razavipour, T. Rice straw and composted azolla alter carbon and nitrogen mineralization and microbial activity of a paddy soil under drying-rewetting cycles. Appl. Soil. Ecol. 2020, 154, 103638. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, X.; Ma, X. Yield and quality responses of sunflowers to soil CO2 leakage from ccs projects. Int. J. Environ. Sci. Technol. 2022, 19, 6721–6728. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, X.; Qiu, X.; Zhang, J. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresour. Technol. 2019, 272, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, G.; Sun, H.; Zhou, S.; Zou, G. Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresour. Technol. 2016, 200, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 2017, 8, 238853. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Ning, Y.M.; Huang, S. Effects of manure substitution for chemical fertilizerson rice yield and soil labile nitrogen in paddy fields of china: A meta-analysis. Pedosphere 2022, 12, 87–99. [Google Scholar]
- Badiane, A.; Faye, B.; Sambou, A.; Ba, I.; Diop, K.; Diallo, M.; Gueye, S.; Bamba, B.; Fall, S. Cultural mode and organo-mineral amendment effect on growth and yield of rice (Oryza sativa L.) and soil chemical properties in sulfated acid soils of basse-casamance. Heliyon 2023, 9, e18830. [Google Scholar] [CrossRef] [PubMed]
- Svensson, T.; Redon, P.; Thiry, Y.; Montelius, M.; Bastviken, D. Chlorination of soil organic matter: The role of humus type and land use. Sci. Total Environ. 2022, 806, 150478. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Yong, X.; Luo, L.; Wong, J.W.C.; Zhang, Y.; Wu, H.; Zhou, J. Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresour. Technol. 2022, 343, 13. [Google Scholar] [CrossRef]
- Yang, Y.; Awasthi, M.K.; Bao, H.; Bie, J.; Lei, S.; Lv, J. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresour. Technol. 2020, 313, 6. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Wang, Q.; Chen, H.; Wang, M.; Ren, X.; Zhao, J.; Li, J.; Guo, D.; Li, D.S.; Awasthi, S.K.; et al. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost. Bioresour. Technol. 2017, 237, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Foda, M.; Shahsavari, E.; Aburto-Medina, A.; Adetutu, E.; Ball, A. Commercial feasibility of lignocellulose biodegradation: Possibilities and challenges. Curr. Opin. Biotechnol. 2016, 38, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fang, K.; Zhou, J.; Yang, Z.P.; Dong, X.F.; Dai, G.H.; Zhang, H.B. Enrichment of soil rare bacteria in root by an invasive plant ageratina adenophora. Sci. Total Environ. 2019, 683, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Wang, R.; Sui, X.H.; Wang, E.T.; Zhang, X.X.; Tian, C.F.; Chen, W.F.; Chen, W.X. Bradyrhizobium nanningense sp. Nov., bradyrhizobium guangzhouense sp. Nov. And bradyrhizobium zhanjiangense sp. Nov., isolated from effective nodules of peanut in southeast china. Syst. Appl. Microbiol. 2019, 42, 19. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Y.; Qi, H.; Zhao, X.; Yang, T.; Du, Y.; Zhang, H.; Wei, Z. Identifying the key factors that affect the formation of humic substance during different materials composting. Bioresour. Technol. 2017, 244, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Hwang, O.; Lee, S.R.; Cho, S.; Ro, K.S.; Spiehs, M.; Woodbury, B.; Silva, P.J.; Han, D.W.; Choi, H.; Kim, K.Y. Efficacy of different biochars in removing odorous volatile organic compounds (vocs) emitted from swine manure. ACS Sustain. Chem. Eng. 2018, 6, 14239–14247. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of vocs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-composting of poultry manure mixtures amended with biochar-the effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
Treatment | Fresh Weight (g) | Plant Height (cm) | Maximum Leaf Width (cm) | Maximum Leaf Length/cm | Soluble Sugar Content (%) | Nitrate Content (mg·kg−1) | Vitamin C Content (mg·kg−1) |
---|---|---|---|---|---|---|---|
CK | 36.45 ± 0.22 a | 19.57 ± 0.11 a | 4.40 ± 0.02 a | 8.26 ± 0.03 a | 11.15 ± 0.26 a | 583.25 ± 12.7 a | 164.18 ± 9.67 a |
T1 | 49.77 ± 0.28 b | 24.83 ± 0.04 b | 4.62 ± 0.06 e | 8.60 ± 0.06 e | 13.24 ± 0.19 b | 543.49 ± 22.6 b | 255.31 ± 7.91 b |
T2 | 51.90 ± 0.38 b | 30.50 ± 0.17 c | 5.04 ± 0.13 e | 8.92 ± 0.08 e | 15.47 ± 0.6 c | 525.79 ± 20.3 b | 289.89 ± 10.44 c |
T3 | 45.67 ± 0.11 bc | 29.23 ± 0.06 c | 4.89 ± 0.06 e | 8.83 ± 0.01 e | 15.37 ± 0.32 c | 520.86 ± 14.58 bc | 282.15 ± 13.81 c |
T4 | 43.33 ± 0.09 bc | 26.67 ± 0.06 bc | 4.75 ± 0.05 e | 8.63 ± 0.02 e | 14.88 ± 0.14 bc | 517.98 ± 18.74 c | 281.25 ± 20.49 c |
Treatment | EC (ms/cm) | pH | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | SOM (g·kg−1) |
---|---|---|---|---|---|---|
CK | 1.08 ± 0.18 a | 5.76 ± 0.03 a | 82.21 ± 8.07 a | 30.25 ± 0.09 a | 143.67 ± 12.1 a | 25.35 ± 3.71 a |
T1 | 1.29 ± 0.23 a | 5.91 ± 0.02 a | 87.25 ± 10.13 b | 41.05 ± 1.22 b | 167.34 ± 13.21 b | 30.22 ± 5.44 b |
T2 | 1.24 ± 0.11 a | 6.16 ± 0.02 b | 93.11 ± 0.03 c | 47.23 ± 3.09 c | 189.25 ± 18.46 b | 33.13 ± 6.08 b |
T3 | 1.35 ± 0.19 a | 6.34 ± 0.02 b | 97.31 ± 0.03 c | 51.17 ± 6.14 c | 221.98 ± 9.33 c | 36.56 ± 7.12 c |
T4 | 1.52 ± 0.27 a | 6.21 ± 0.04 b | 94.89 ± 0.03 c | 49.54 ± 4.38 c | 202.69 ± 10.47 c | 38.21 ± 3.18 c |
Treatment | Phosphatase (mg/g·24 h) | Catalase (µmol/g·24 h) | Urease (mg/g·24 h) |
---|---|---|---|
CK | 5.67 ± 1.04 a | 60.32 ± 7.01 a | 36.25 ± 8.43 a |
T1 | 8.13 ± 0.68 b | 73.76 ± 4.74 b | 54.63 ± 6.98 b |
T2 | 8.89 ± 1.32 b | 89.36 ± 9.65 b | 58.52 ± 9.14 b |
T3 | 10.24 ± 1.18 bc | 85.24 ± 8.12 b | 62.27 ± 11.09 bc |
T4 | 9.35 ± 0.77 b | 82.22 ± 4.96 b | 59.86 ± 7.62 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhang, H.; Jia, X.; Fang, Y.; Lin, C. Soil Fertility and Bacterial Community Composition in Response to the Composting of Biochar-Amended Chicken Manure. Agronomy 2024, 14, 886. https://doi.org/10.3390/agronomy14050886
Chen L, Zhang H, Jia X, Fang Y, Lin C. Soil Fertility and Bacterial Community Composition in Response to the Composting of Biochar-Amended Chicken Manure. Agronomy. 2024; 14(5):886. https://doi.org/10.3390/agronomy14050886
Chicago/Turabian StyleChen, Longjun, Hui Zhang, Xianbo Jia, Yu Fang, and Chenqiang Lin. 2024. "Soil Fertility and Bacterial Community Composition in Response to the Composting of Biochar-Amended Chicken Manure" Agronomy 14, no. 5: 886. https://doi.org/10.3390/agronomy14050886
APA StyleChen, L., Zhang, H., Jia, X., Fang, Y., & Lin, C. (2024). Soil Fertility and Bacterial Community Composition in Response to the Composting of Biochar-Amended Chicken Manure. Agronomy, 14(5), 886. https://doi.org/10.3390/agronomy14050886