An Assessment of Some Mechanical Properties of Harvested Potato Tubers cv. Spunta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Selecting the Fresh Potato Sample
2.4. Force–Deformation Curve
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analyzing Dimensions of the Potato Samples
3.2. Force–Deformation Curve Analysis
3.2.1. Compression Test
3.2.2. Penetration Test
3.2.3. Shear Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Agricultural Production Yearbook; FAO Statistics Series; FAO: Rome, Italy, 1986; Volume 36, pp. 126–127. [Google Scholar]
- Almady, S.S. Design and Evaluation of an Innovative Pneumatic Prototype Machine to Control the Colorado Potato Beetle, Leptinotarsa decemlineata (Say). Ph.D. Thesis, Université Laval, Faculté des Sciences de l’Agriculture et de l’Alimentation, Québec, QC, Canada, 2022; 109p. [Google Scholar]
- Mohammadi, A.; Shamabadi, Z. Evaluation the effect of conservation tillage on potato yield and energy efficiency. Int. J. Agric. Crop Sci. 2012, 4, 1778–1785. [Google Scholar]
- Balbach, F.W.; Boehn, H. Preparations of the potato planter. J. Artic. 1992, 43, 144–145. [Google Scholar]
- Bentini, M.; Caprara, C.; Martelli, R. Harvesting damage to potato tubers by analysis of impacts recorded with an instrumented sphere. Biosyst. Eng. Postharvest Technol. 2006, 94, 75–85. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Szostek, M.; Pawlak, R.; Gorzelany, J.; Migut, D. Effect of fertilisation with ash from biomass combustion on the mechanical properties of potato tubers (Solanum tuberosum L.) grown in two types of soil. Agronomy 2022, 12, 379. [Google Scholar] [CrossRef]
- Cieniawska, B.; Komarnicki, P.; Samelski, M.; Barć, M. Effect of calcium foliar spray technique on mechanical properties of strawberries. Plants 2023, 12, 2390. [Google Scholar] [CrossRef] [PubMed]
- Maikhuri, R.K.; Rao, K.S.; Saxena, K.G. Traditional crop diversity for sustainable development of central Himalayan agroecosystems. Int. J. Sustain. Dev. World Ecol. 1996, 3, 8–31. [Google Scholar] [CrossRef]
- Van Der Zaag, D.; Horton, D. Potato production and utilization in world perspective with special reference to the tropics and sub-tropics. Potato Res. 1983, 26, 323–362. [Google Scholar] [CrossRef]
- Harris, P.M. The Potato Crop, the Scientific Basis for Improvement; Champan and Hall Ltd.: London, UK, 1978. [Google Scholar]
- Ministry of Agriculture and Water. Practical Guidebook of Potato Planting Mechanization in the Kingdom of Saudi Arabia; Ministry of Agriculture and Water: Hongkong, China, 1988. [Google Scholar]
- Prestt, A.J.; Carr, M.V.K. Soil management and planting techniques for potatoes. Asp. Appl. Biol. 1984, 7, 187–204. [Google Scholar]
- Carter, M.; Sanderson, J.; Holmstrom, D.; Ivany, J.; DeHaan, K. Influence of conservation tillage and glyphosate on soil structure and organic carbon fractions through the cycle of a 3-year potato rotation in Atlantic Canada. Soil Tillage Res. 2007, 93, 206–221. [Google Scholar] [CrossRef]
- Eberlein, C.V.; Patterson, P.E.; Guttieri, M.J.; Stark, J.C. Efficacy and economics of cultivation for weed control in potato (Solanum tuberosum). Weed Technol. 1997, 11, 257–264. [Google Scholar] [CrossRef]
- Hoyt, G.D.; Monks, D.W. Weed management in strip-tilled Irish potato and sweet potato systems. Hort. Technol. 1996, 6, 238–240. [Google Scholar] [CrossRef]
- Ghazavi, M.A. Potato mechanization in Iran. In Proceedings of the 4th International Crop Science Congress in Brisbane, Queensland, Australia, 26–27 September 2004. [Google Scholar]
- Skorupinska, A.; Wasilewska, B. Polish potato bibliography 1991. Biul. Inst.-Ziemniaka 1993, 42, 123–146. [Google Scholar]
- Saue, T.; Viil, P.; Kadaja, J. Do different tillage and fertilization methods influence weather risks on potato yield? Agron. Res. 2010, 8, 427–432. [Google Scholar]
- Alamar, M.C.; Zarzo, M.; Suay, R.; MoltÛ, E.; Vanstreels, E.; Verlinden, B.; NicolaÔ, B.; Loodts, J.; Tijskens, E.; Ramon, H. Micromechanical Behavior of Apple Tissue in Tensile and Compression Tests. In Proceedings of the Information and Technology for Sustainable Fruit and Vegetable Production FRUTIC 05, Montpellier, France, 12–16 September 2005; pp. 409–420. [Google Scholar]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Alhamdan, A.; Abdelkarim, D.; Atia, A. Textural properties of date pastes as influenced by date cultivar. Int. J. Res. Appl. Nat. Soc. Sci. 2016, 4, 99–106. [Google Scholar]
- Abbott, J.A. Quality measurement of fruits and vegetables. Postharvest Biol. Technol. 1999, 15, 207–225. [Google Scholar] [CrossRef]
- Abdalgawad, G.A.; Khater, E.G.; Bahnasawy, A.H.; Mosa, M.M. Some physical, mechanical and chemical properties of potato tubers (spunta variety). Misr J. Agric. Eng. 2023, 40, 217–226. [Google Scholar] [CrossRef]
- Lammari, L.; Khlifa, S.B.; Hamed, L.; Hamraoui, K.; Kharroubi, H. Determination of physical and mechanical properties of potatoes and the importance in food chemistry. Rev. Chim. 2022, 73, 62–72. [Google Scholar] [CrossRef]
- Parihar, N.S.; Sharma, S.; Khar, S. Physical and mechanical properties of potato (Kufri jyoti) tubers. Pharma Innov. J. 2021, 10, 1777–1780. [Google Scholar]
- Cevher, E.Y.; Yıldırım, D. Using artificial neural network application in modeling the mechanical properties of loading position and storage duration of pear fruit. Processes 2022, 10, 2245. [Google Scholar] [CrossRef]
- Harker, F.R.; Redgwell, R.J.; Hallett, I.C.; Murray, S.H.; Carter, G. Texture of fresh fruit. Hortic. Rev. 1997, 20, 121–224. [Google Scholar] [CrossRef]
- Brown, G.K.; Sarig, Y., Jr. (Eds.) Nondestructive technologies for quality evaluation of fruits and vegetables. In Proceedings of the International Workshop, US-Israel BARD Fund, Spokane, WA, USA, 15–19 June 1993; American Society for Agricultural Engineering: St. Joseph, MI, USA, 1994. [Google Scholar]
- Chen, P.; McCarthy, M.J.; Kim, S.M.; Zion, B. Development of a high-speed NMR technique for sensing maturity of avocados. Trans. ASAE 1996, 39, 2205–2209. [Google Scholar] [CrossRef]
- Abbott, J.A.; Lu, R.; Upchurch, B.L.; Stroshine, R.L. Technologies for nondestructive quality evaluation of fruits and vegetables. Hortic. Rev. 1997, 20, 1–120. [Google Scholar]
- Chokyn Rha. Theory, Determination and Control of Physical Properties of Food Materials; Chokyn Rha: Dordrecht, The Netherlands, 1975; pp. 161–170. [Google Scholar]
- Rosenthal, A.J. Food texture: Measurement and perception. In Food Science and Technology; International Series Academic Press: London, UK, 1999. [Google Scholar]
- Peleg, M. On fundamental issues in texture evaluation and texturization—A view. Food Hydrocoll. 2006, 20, 405–414. [Google Scholar] [CrossRef]
- ASAE S368.4 DEC2000; Compression Test of Food Materials of Convex Shape. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008.
- Singh, K.K.; Reddy, B.S.; Varshney, A.C.; Mangraj, S. Physical and Frictional properties of orange and sweet lemon. Am. Soc. Agric. Eng. 2004, 20, 821–825. [Google Scholar] [CrossRef]
- Patel, M.B.; Nath, A.; Mayan, J.M. Evaluation of physical and mechanical properties of fresh potato. Int. J. Chem. Stud. 2018, 6, 1454–1459. [Google Scholar]
- Golmohammadi, A. Determination of mechanical properties of potato flesh during storage. Int. J. Agric. Crop Sci. 2013, 6, 1273–1278. [Google Scholar]
- Solomon, W.K.; Jindal, V.K. Modeling changes in rheological properties of potatoes during storage under constant and variable conditions. J. LWT 2007, 40, 170–178. [Google Scholar] [CrossRef]
- Ahangarnezhad, N.; Najafi, G.; Jahanbakhshi, A. Determination of the physical and mechanical properties of a potato (the Agria variety) in order to mechanise the harvesting and post-harvesting operations. Res. Agric. Eng. 2019, 65, 33–39. [Google Scholar] [CrossRef]
- Fekete, A.; Sass, P. Elasticity characteristics of fruits. International Symposium on Postharvest Treatment of Horticultural Crops. Acta Hortic. 1994, 368, 199–205. [Google Scholar] [CrossRef]
- Jindal, V.K.; Techasena, O. Compression test for measuring the firmness of potatoes. In Engineering for Potatoes; Cargill, B.F., Ed.; ASAE Publication: St. Joseph, MI, USA, 1986; pp. 52–76. [Google Scholar]
- Pang, C.H.; Scanlon, M.G. Mechanical properties of the parenchyma of potato (Solanum tuberosum cv. Russet burbank). Can. J. Bot. 1996, 74, 859–869. [Google Scholar] [CrossRef]
- Solomon, W.K.; Jindal, V.K. Comparison of axial and radial compression tests for determining elasticity modulus of potatoes. Int. J. Food Prop. 2006, 9, 855–862. [Google Scholar] [CrossRef]
- Al-Hamed, S.A.; Wahby, M.F.; Sayedahmed, A.A. Effect of three tillage implements on potato yield and water use efficiency. Am. J. Exp. Agric. 2016, 12, 1–6. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT 9.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Ávila, A.F.; de Jesus, G.A.R.; Mesania, A.A.; Scari, A.S. Food mechanics: A new device for testing fruits and vegetables. J. Braz. Soc. Mech. Sci. Eng. 2007, 29, 6. [Google Scholar] [CrossRef]
- Juzl, M.; Břenek, P.; Povolná, S.; Nedomová, S. Physical quality of potato varieties (Solanum tuberosum L.). In Proceedings of the 8th International Conference of Food Physicists Physics and Physical Chemistry of Food, Plovdiv, Bulgaria, 24–27 September 2008; Volume 21, pp. 45–74. [Google Scholar]
- Jahanbakhshi, A.; Yeganeh, R.; Shahgoli, G. Determination of mechanical properties of banana fruit under quasi-static loading in pressure, bending, and shearing tests. Int. J. Fruit Sci. 2019, 20, 314–322. [Google Scholar] [CrossRef]
- Sadowska, J.; Vacek, J.; Fornal, J.; Zagrski-Ostoja, W. Effect of antiviral genetical modification on softening of potato tubers during cooking. Eur. Food Res. Technol. 2005, 221, 336–341. [Google Scholar] [CrossRef]
- Oey, M.L.; Vanstreels, E.; De Baerdemaeker, J.; Tijskens, E.; Ramon, H.; Hertog, M.; Nicolaï, B. Effect of turgor on micromechanical and structural properties of apple tissue: A quantitative analysis. Postharvest Biol. Technol. 2006, 44, 240–247. [Google Scholar] [CrossRef]
- Varela, P.; Salvador, A.; Fiszman, S. Changes in apple tissue with storage time: Rheological, textural and microstructural analyses. Food Eng. 2007, 78, 622–629. [Google Scholar] [CrossRef]
- Billy, L.; Mehinagic, E.; Royer, G.; Renard, M.G.C.; Arvisenet, G.; Prost, C.; Jourjon, F. Relationship between texture and pectin composition of two apple cultivars during storage. Postharvest Biol. Technol. 2008, 47, 315–324. [Google Scholar] [CrossRef]
- Błaszczak, W.; Sadowska, J.; Fornal, J.; Vacek, J.; Flis, B.; Zagrski-Ostoja, W. Influence of cooking and microwave heating on microstructure and mechanical properties of transgenic potatoes. Nahrung 2004, 48, 169–176. [Google Scholar] [CrossRef]
- Lubis, A.; Mandang, T.; Hermawan, W. Sutrisno Study of the physical and mechanical characteristics of patchouli plants. AIMS Agric. Food 2021, 6, 525–537. [Google Scholar] [CrossRef]
- Buitrago, G.V.; Lopez, A.P.; Coronado, A.P.; Osorno, F.L. Determination of physical characteristics and mechanical properties of potatoes cultivated in Columbia. Rev. Bras. Eng. Agríc. Ambient. 2004, 8, 102–110. [Google Scholar] [CrossRef]
- Canet, W.; Alvarez, M.D.; Gil, M.J. The effect of test conditions on failure parameters during uniaxial compression of potato tissue. Int. J. Food Sci. Technol. 2007, 42, 728–738. [Google Scholar] [CrossRef]
- Camps, C.; Guillermin, P.; Mauget, J.C.; Bertrand, D. Data analysis of penetrometric force deformation curves for the characterization of whole apple fruits. J. Texture Stud. 2005, 36, 387–401. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Q.; Li, H.; Liu, Y. Experimental research on mechanical properties of apple peels. J. Eng. Technol. Sci. 2015, 47, 688–705. [Google Scholar] [CrossRef]
- Vincent, J.F.V. The quantification of crispness. Food Agric. 1998, 78, 162–168. [Google Scholar] [CrossRef]
- Guinard, J.-X.; Mazzucchelli, R. The sensory perception of texture and mouthfeel. Trends Food Sci. Technol. 1996, 7, 213–219. [Google Scholar] [CrossRef]
- Soliman, N.S.; El-Sayed, A.E. Penetration and stress-strain behavior of potato tubers during storage. Misr J. Agric. Eng. 2017, 34, 2291–2310. [Google Scholar] [CrossRef]
- Emadi, B.; Abbaspour-Fard, M.H.; Yarlagadda, P.K. Mechanical properties of melon measured by compression, shear, and cutting modes. Int. J. Food Prop. 2009, 12, 780–790. [Google Scholar] [CrossRef]
- Rosca, A.; Rosca, D. Instrumental texture analysis—An objective measuring method for quality assurance in food industry. Univ. Craiova 2011, 41, 361–367. [Google Scholar]
- Linares, J.A.; Castillo, B.; Londoño, M.T. Characterization of the mechanical properties of the sweet passion fruit (Passiflora ligularis Juss.). Agron. Colomb. 2013, 31, 208–214. [Google Scholar]
- Rasli, A.M.M.; Nawi, N.M.; Ahmad, D.; Yahya, A. The effect of crop parameters on mechanical properties of oil palm fruitlets. Sci. Hortic. 2019, 250, 352–358. [Google Scholar] [CrossRef]
- Wei, X.; Chen, X.; Liao, P.; Huang, W. Study on the mechanical properties and the way of breaking the shell of fresh Camellia oleifera fruit. Horticulturae 2023, 9, 236. [Google Scholar] [CrossRef]
- Jahanbakhshi, A. Determination of some engineering properties of snake melon (Cucumis melo var. flexuosus) fruit. Agric. Eng. Int. CIGR J. 2018, 20, 171–176. [Google Scholar]
Parameters | Soil | Water |
---|---|---|
Sand | 82.9 (%) ± 1.2 | ------ |
Silt | 13.08 (%) ± 0.7 | ------ |
Clay | 4.02 (%) ± 0.12 | ------ |
Organic matter | 0.98 (%) ± 0.04 | ------ |
Calcium carbonate | 6.85 (%) ± 1.1 | ------ |
pH | 8.5 ± 0.1 | 7.57 ± 0.3 |
EC | 4.6 (dS/m) ± 0.1 | 4.81 (dS/m) ± 0.2 |
Na+ | 48.66 (ppm) ± 2.1 | 372.07 (mg/L) ± 1.2 |
K+ | 4.91 (ppm) ± 0.12 | ------ |
Ca++ | 140.59 (ppm) ± 3.15 | 404.75 (mg/L) ± 1.3 |
Mg++ | 8.76 (ppm) ± 0.2 | 109.78 (mg/L) ± 1.1 |
SO4 | 55.06 (ppm) ± 0.2 | 1237.6 (mg/L) ± 10.1 |
Cl | 41.72 (ppm) ± 0.5 | ------ |
NH3 | 19.61 (ppm) ± 0.13 | 8.11 (mg/L) ± 0.8 |
TDS | ------ | 3204.79 (mg/L) ± 1.1 |
Source of Variation | DF | Pr > F | |||||
---|---|---|---|---|---|---|---|
Modulus of Elasticity (N/mm) | Bioyield Force | Elastic Range | Rupture Point (N) | Plastic Range (mm) | Hardness (N·mm) | ||
(N) | (mm) | ||||||
Planting season | 1 | 0.9963 | 0.8017 | 0.0511 | 0.0757 | 0.1262 | 0.8076 |
Tillage implements | 2 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Planting season × Tillage implements | 2 | 0.9997 | 0.7196 | 0.9787 | 0.8633 | 0.9616 | 0.8669 |
Mechanical Properties | Planting Season | Tillage Implements | |||
---|---|---|---|---|---|
DH | CHP | MBP | Overall Average | ||
Modulus of elasticity (N/mm) | First | 5.88 A,a ± 0.29 | 4.47 B,a ± 0.52 | 4.22 B,a ±0.33 | 4.89 ± 0.88 |
Second | 5.89 A,a ± 0.28 | 4.66 B,a ± 0.49 | 4.22 B,a ± 0.32 | ||
Bioyield force (N) | First | 113.45 A,a ± 3.33 | 94.82 B,a ± 4.03 | 85.59 C,a ± 1.95 | 97.83 ± 14.67 |
Second | 114.12 A,a ± 2.94 | 94.77 B,a ± 3.84 | 84.25 C,a ± 2.01 | ||
Elastic range (mm) | First | 3.52 A,a ± 0.008 | 2.76 B,a ± 0.010 | 2.73 C,a ± 0.015 | 3.00 ± 0.45 |
Second | 3.51 A,a ± 0.010 | 2.75 B,a ± 0.009 | 2.72 C,a ± 0.013 | ||
Rupture point (N) | First | 139.79 A,a ± 3.20 | 115.70 B,a ± 1.86 | 102.86 C,a ± 1.78 | 118.75 ± 18.91 |
Second | 138.58 A,a ± 2.98 | 114.69 B,a ± 2.13 | 100.90 C,a ± 1.22 | ||
Plastic range (mm) | First | 2.50 A,a ± 0.008 | 1.96 B,a ± 0.01 | 1.94 C,a ± 0.011 | 2.13 ± 0.32 |
Second | 2.49 A,a ± 0.007 | 1.95 B,a ± 0.01 | 1.93 C,a ± 0.010 | ||
Hardness (N·mm) | First | 1952.29 A,a ± 35.33 | 1627.92 B,a ± 16.68 | 1437.76 C,a ± 25.98 | 1671.52 ± 257.46 |
Second | 1943.08 A,a ± 34.11 | 1629.57 B,a ± 14.52 | 1438.52 C,a ± 24.15 |
Source of Variation | DF | Pr > F | |
---|---|---|---|
Maximum Force (N) | Hardness (N·mm) | ||
Planting season | 1 | 0.2105 | 0.8075 |
Tillage implements | 2 | <0.0001 | <0.0001 |
Planting season × Tillage implements | 2 | 0.9677 | 0.867 |
Source of Variation | DF | Pr > F | |
---|---|---|---|
Maximum Force (N) | Hardness (N·mm) | ||
Season | 1 | 0.4432 | 0.3463 |
Tillage implements | 2 | 0.909 | 0.0641 |
Season × Tillage implements | 2 | 0.8477 | 0.9306 |
Mechanical Properties | Planting Season | Tillage Implement | |||
---|---|---|---|---|---|
DH | CHP | MBP | Ovrall Average | ||
Maximum force (N) | First | 750.36 ± 205.01 | 772.67 ± 137.58 | 842.43 ± 319.49 | 754.49 ± 37.09 |
Second | 706.36 ± 138.49 | 750.67 ± 91.53 | 704.43 ± 389.44 | ||
Hardness (N·mm) | First | 21,428.12 ± 994.45 | 19,747.17 ± 1825.30 | 19,915.30 ± 1141.87 | 20,132.03 ± 821.28 |
Second | 20,728.12 ± 648.83 | 19,478.17 ± 1584.90 | 19,495.30 ± 1326.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almady, S.S.; Al-Hamed, S.A.; Marey, S.A.; Al-Sager, S.M.; Aboukarima, A.M. An Assessment of Some Mechanical Properties of Harvested Potato Tubers cv. Spunta. Agronomy 2024, 14, 1116. https://doi.org/10.3390/agronomy14061116
Almady SS, Al-Hamed SA, Marey SA, Al-Sager SM, Aboukarima AM. An Assessment of Some Mechanical Properties of Harvested Potato Tubers cv. Spunta. Agronomy. 2024; 14(6):1116. https://doi.org/10.3390/agronomy14061116
Chicago/Turabian StyleAlmady, Saad S., Saad A. Al-Hamed, Samy A. Marey, Saleh M. Al-Sager, and Abdulwahed M. Aboukarima. 2024. "An Assessment of Some Mechanical Properties of Harvested Potato Tubers cv. Spunta" Agronomy 14, no. 6: 1116. https://doi.org/10.3390/agronomy14061116
APA StyleAlmady, S. S., Al-Hamed, S. A., Marey, S. A., Al-Sager, S. M., & Aboukarima, A. M. (2024). An Assessment of Some Mechanical Properties of Harvested Potato Tubers cv. Spunta. Agronomy, 14(6), 1116. https://doi.org/10.3390/agronomy14061116