The Performance of Agronomic and Quality Traits of Quinoa under Different Altitudes in Northwest of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Experiment
2.2. Measurement of Agronomic Traits
2.3. Quality Traits Analysis
2.4. Statistical Analysis
3. Results
3.1. Agronomic Traits of Quinoa Genotypes in Various Altitudes
3.2. Yield Performances and Phenology for All Tested Varieties by Site
3.2.1. Yining City
3.2.2. Nilka County
3.2.3. Tekes County
3.2.4. Zhaosu County
3.3. Nutritional Quality Analysis
3.4. Traits across the Study Area
3.5. The Relationship between Seed Yield and Agronomic and Nutritional Traits
4. Discussion
4.1. Ecological Adaptability of Quinoa in Different Regions
4.2. Selection of Agronomic Traits for High-Yield Quinoa
4.3. Factors Affecting the Quality of Quinoa in Different Regions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazile, D.; Jacobsen, S.-E.; Verniau, A. The global expansion of quinoa: Trends and limits. Front. Plant Sci. 2016, 7, 622. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Srivastava, S. Quinoa: Botany, Production and Uses; Jain, S., Lainsbury, A., Hill, S., Eds.; CABI: London, UK, 2013; pp. 3–6. [Google Scholar]
- Filho, A.M.M.; Pirozi, M.R.; Borges, J.T.D.S.; Pinheiro Sant’Ana, H.M.; Chaves, J.B.P.; Coimbra, J.S.D.R. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 57, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.-E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 2003, 19, 167–177. [Google Scholar] [CrossRef]
- Jacobsen, S.-E.; Mujica, A.; Jensen, C. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 2003, 19, 99–109. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Quinoa starch: Structure, properties, and applications. Carbohydr. Polym. 2018, 181, 851–861. [Google Scholar] [CrossRef]
- Ruiz, K.B.; Biondi, S.; Oses, R.; Acuña-Rodríguez, I.S.; Antognoni, F.; Martinez-Mosqueira, E.A.; Coulibaly, A.; Canahua-Murillo, A.; Pinto, M.; Zurita-Silva, A. Quinoa biodiversity and sustainability for food security under climate change. A review. Agron. Sustain. Dev. 2014, 34, 349–359. [Google Scholar] [CrossRef]
- FAO. 2013 International Year of Quinoa. Available online: http://www.fao.org/quinoa-2013/en/ (accessed on 12 June 2019).
- Gongbuzhaxi, W.; Zhang, C.X.; Yang, Q.S. Biological characteristics of South American quinoa in Tibet. Southwest China J. Agric. Sci. 1994, 3, 54–62. (In Chinese) [Google Scholar]
- Gongbuzhaxi, W.m. Biological characteristics and cultivation techniques of South American quinoa. Tibet. Sci. Technol. 1995, 4, 19–22. (In Chinese) [Google Scholar]
- Gongbuzhaxi, W.M.; Wang, L. Research on the original materials of South American quinoa breeding. Tibet. Sci. Technol. 1996, 3, 13–17. (In Chinese) [Google Scholar]
- FAO. Descriptors for Quinoa (Chenopodium quinoa Willd.) and Wild Relatives. Available online: https://www.fao.org/plant-treaty/tools/toolbox-for-sustainable-use/details/en/c/1367911/ (accessed on 15 March 2017).
- GB5009.4-2016; National Food Safety Standard—Determination of Ash in Food. National Standard of the People’s Republic of China: Beijing, China, 2016.
- GB20264-2006; Grain and Oilseed—Determination of Moisture Content—Twice Drying Method. National Standard of the People’s Republic of China: Beijing, China, 2006.
- GB5009.5-2016; National Food Safety Standard—Determination of Protein in Food. National Standard of the People’s Republic of China: Beijing, China, 2016.
- NY/T 4-1982; Method for the Determination of Crude Fats in Cereals and Oil Crop Seeds. The Agricultural Trade Standard of the People’s Republic of China: Beijing, China, 1982.
- Qin, P.; Wang, Q.; Shan, F.; Hou, Z.; Ren, G. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. Technol. 2010, 45, 951–958. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M. Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chem. 1999, 76, 902–906. [Google Scholar] [CrossRef]
- Oomah, B.D.; Mazza, G. Flavonoids and antioxidative activities in buckwheat. J. Agric. Food Chem. 1996, 44, 1746–1750. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Iafelice, G.; Lavini, A.; Pulvento, C.; Caboni, M.F.; Marconi, E. Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J. Agric. Food Chem. 2012, 60, 4620–4627. [Google Scholar] [CrossRef] [PubMed]
- Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfur1c acid. Planta Medica 1976, 29, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Angeli, V.; Miguel Silva, P.; Crispim Massuela, D.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Bazile, D.; Biaggi, M.C.; Jara, B. Quinoa’s spreading at global level: State of the art, trends, and challenges. In Biology and Biotechnology of Quinoa: Super Grain for Food Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–15. [Google Scholar] [CrossRef]
- Jacobsen, S.E. The scope for adaptation of quinoa in Northern Latitudes of Europe. J. Agron. Crop Sci. 2017, 203, 603–613. [Google Scholar] [CrossRef]
- Afzal, I.; Basra, S.M.A.; Rehman, H.U.; Iqbal, S.; Bazile, D. Trends and limits for quinoa production and promotion in Pakistan. Plants 2022, 11, 1603. [Google Scholar] [CrossRef]
- Fita, A.; Rodríguez-Burruezo, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 2015, 6, 978. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.A.; Burns, C. Photobiology in protected horticulture. Food Energy Secur. 2016, 5, 223–238. [Google Scholar] [CrossRef]
- Ferrante, A.; Mariani, L. Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae 2018, 4, 21. [Google Scholar] [CrossRef]
- Pedersen, P.; Lauer, J.G. Soybean growth and development in various management systems and planting dates. Crop Sci. 2004, 44, 508–515. [Google Scholar] [CrossRef]
- Lesjak, J.; Calderini, D.F. Increased night temperature negatively affects grain yield, biomass and grain number in Chilean quinoa. Front. Plant Sci. 2017, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Granado-Rodríguez, S.; Aparicio, N.; Matías, J.; Pérez-Romero, L.F.; Maestro, I.; Gracés, I.; Pedroche, J.J.; Haros, C.M.; Fernandez-Garcia, N.; Navarro del Hierro, J. Studying the impact of different field environmental conditions on seed quality of quinoa: The case of three different years changing seed nutritional traits in southern Europe. Front. Plant Sci. 2021, 12, 649132. [Google Scholar] [CrossRef] [PubMed]
- Zurita-Silva, A.; Fuentes, F.; Zamora, P.; Jacobsen, S.-E.; Schwember, A.R. Breeding quinoa (Chenopodium quinoa Willd.): Potential and perspectives. Mol. Breed. 2014, 34, 13–30. [Google Scholar] [CrossRef]
- Bertero, H.D.; De la Vega, A.; Correa, G.; Jacobsen, S.; Mujica, A. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Res. 2004, 89, 299–318. [Google Scholar] [CrossRef]
- Afiah, S.A.; Hassan, W.A.; Al Kady, A. Assessment of six quinoa (Chenopodium quinoa Willd.) genotypes for seed yield and its attributes under Toshka conditions. Zagazig J. Agric. Res. 2018, 45, 2281–2294. [Google Scholar] [CrossRef]
- Maliro, M.F.; Guwela, V.F.; Nyaika, J.; Murphy, K.M. Preliminary studies of the performance of quinoa (Chenopodium quinoa Willd.) genotypes under irrigated and rainfed conditions of central Malawi. Front. Plant Sci. 2017, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Bois, J.-F.; Winkel, T.; Lhomme, J.-P.; Raffaillac, J.-P.; Rocheteau, A. Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: Effects on germination, phenology, growth and freezing. Eur. J. Agron. 2006, 25, 299–308. [Google Scholar] [CrossRef]
- Christiansen, J.; Jacobsen, S.-E.; Jørgensen, S. Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agric. Scand. Sect. B-Soil Plant Sci. 2010, 60, 539–544. [Google Scholar] [CrossRef]
- Thiam, E.; Allaoui, A.; Benlhabib, O. Quinoa productivity and stability evaluation through varietal and environmental interaction. Plants 2021, 10, 714. [Google Scholar] [CrossRef]
- Bendevis, M.A.; Sun, Y.; Shabala, S.; Rosenqvist, E.; Liu, F.; Jacobsen, S.-E. Differentiation of photoperiod-induced ABA and soluble sugar responses of two quinoa (Chenopodium quinoa Willd.) cultivars. J. Plant Growth Regul. 2014, 33, 562–570. [Google Scholar] [CrossRef]
- Curti, R.N.; De la Vega, A.; Andrade, A.J.; Bramardi, S.J.; Bertero, H.D. Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crops Res. 2014, 166, 46–57. [Google Scholar] [CrossRef]
- Curti, R.N.; De la Vega, A.; Andrade, A.J.; Bramardi, S.J.; Bertero, H.D. Adaptive responses of quinoa to diverse agro-ecological environments along an altitudinal gradient in North West Argentina. Field Crops Res. 2016, 189, 10–18. [Google Scholar] [CrossRef]
- Capristo, P.R.; Rizzalli, R.H.; Andrade, F.H. Ecophysiological yield components of maize hybrids with contrasting maturity. Agron. J. 2007, 99, 1111–1118. [Google Scholar] [CrossRef]
- Nanduri, K.R.; Hirich, A.; Salehi, M.; Saadat, S.; Jacobsen, S.E. Quinoa: A new crop for harsh environments. Sabkha Ecosyst. Vol. VI Asia/Pac. 2019, 49, 301–333. [Google Scholar] [CrossRef]
- De Santis, G.; Ronga, D.; Caradonia, F.; Ambrosio, T.D.; Troisi, J.; Rascio, A.; Fragasso, M.; Pecchioni, N.; Rinaldi, M. Evaluation of two groups of quinoa (Chenopodium quinoa Willd.) accessions with different seed colours for adaptation to the Mediterranean environment. Crop Pasture Sci. 2018, 69, 1264–1275. [Google Scholar] [CrossRef]
- Manjarres-Hernández, E.H.; Arias-Moreno, D.M.; Morillo-Coronado, A.C.; Ojeda-Pérez, Z.Z.; Cárdenas-Chaparro, A. Phenotypic characterization of quinoa (Chenopodium quinoa Willd.) for the selection of promising materials for breeding programs. Plants 2021, 10, 1339. [Google Scholar] [CrossRef]
- Hinojosa, L.; Matanguihan, J.B.; Murphy, K.M. Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 2019, 205, 33–45. [Google Scholar] [CrossRef]
- Hakeem, K.R. Crop Production and Global Environmental Issues; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Matías, J.; Rodríguez, M.J.; Cruz, V.; Calvo, P.; Reguera, M. Heat stress lowers yields, alters nutrient uptake and changes seed quality in quinoa grown under Mediterranean field conditions. J. Agron. Crop Sci. 2021, 207, 481–491. [Google Scholar] [CrossRef]
- Präger, A.; Munz, S.; Nkebiwe, P.M.; Mast, B.; Graeff-Hönninger, S. Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in Southwestern Germany. Agronomy 2018, 8, 197. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, M.J.; Maureira, H.; Martínez, E.A. Nutritional aspects of six quinoa (Chenopodium quinoa Willd.) ecotypes from three geographical areas of Chile. Chil. J. Agric. Res. 2012, 72, 175. [Google Scholar] [CrossRef]
- Abidi, I.; Daoui, K.; Abouabdillah, A.; Belqadi, L.; Mahyou, H.; Bazile, D.; Douaik, A.; Gaboun, F.; Hassane Sidikou, A.A.; Alaoui, S.B. Quinoa–Olive Agroforestry System Assessment in Semi-Arid Environments: Performance of an Innovative System. Agronomy 2024, 14, 495. [Google Scholar] [CrossRef]
- Kaur, H.; Grewal, S.K.; Gill, R.K.; Gill, P.S. Characterization of quinoa (Chenopodium quinoa Willd.) genotypes for nutritional quality and antioxidant potential. Agric. Res. J. 2022, 59, 486. [Google Scholar] [CrossRef]
Location | Longitude | Latitude | Altitude (masl) | Average Temperature (°C) | Precipitation mm yr −1 | Frost-Free Period | Soil Type | Preceding Crop | Planting Date |
---|---|---|---|---|---|---|---|---|---|
Yining city | 81°23′ E | 43°55′ N | 670 | 9 | 240 | 185 | sierozem | peanut | 11 April |
Nilka county | 82°53′ E | 43°82′ N | 1050 | 6 | 402 | 150 | sierozem | maize | 5 May |
Tekes county | 81°81′ E | 43°23′ N | 1400 | 5.3 | 474 | 130 | sierozem | wheat | 7 May |
Zhaosu county | 81°08′ E | 43°15′ N | 2200 | 3 | 459 | 110 | chernozem | cabbage | 9 May |
Genotypes | Locations | G × L | ||||
---|---|---|---|---|---|---|
Sum of Square | p Value | Sum of Square | p Value | Sum of Square | p Value | |
Flowering (Day) | 2553.28 | <0.001 | 5763.22 | <0.001 | 2706.61 | <0.001 |
Crop cycle (Day) | 3913.17 | <0.001 | 3014.00 | <0.001 | 639.50 | <0.001 |
Plant height (cm) | 8383.59 | <0.001 | 2897.91 | <0.001 | 3695.85 | 0.031 |
Stem diameter (cm) | 0.78 | 0.053 | 0.39 | 0.13 | 1.08 | 0.38 |
Branches (#) | 96.41 | 0.002 | 2082.40 | <0.001 | 456.90 | <0.001 |
Panicle length (cm) | 307.29 | 0.32 | 3854.70 | <0.001 | 2226.98 | 0.002 |
1000 seed weight (g) | 3.37 | <0.001 | 4.97 | <0.001 | 1.66 | 0.01 |
Seed yield (t/ha) | 12.18 | <0.001 | 3.14 | <0.001 | 4.81 | <0.001 |
Fat (%) | 15.66 | <0.001 | 14.16 | <0.001 | 3.39 | <0.001 |
Protein (%) | 15.43 | <0.001 | 84.22 | <0.001 | 13.38 | <0.001 |
Ash (%) | 2.48 | <0.001 | 0.96 | <0.001 | 2.07 | <0.001 |
Total starch (%) | 184.63 | <0.001 | 94.82 | <0.001 | 151.1 | <0.001 |
Total polyphenol (mg/g) | 0.87 | <0.001 | 0.24 | <0.001 | 2.30 | <0.001 |
Total flavonoids (mg/g) | 0.23 | <0.001 | 0.09 | <0.001 | 0.24 | <0.001 |
Total saponins (mg/g) | 14.16 | <0.001 | 13.09 | <0.001 | 11.03 | <0.001 |
Location | Nongli 3 | Beijing 1 | Longli 4 | Beijing 2 | Longli 1 | Jinli 1 | Mean | p Value | |
---|---|---|---|---|---|---|---|---|---|
Plant height (cm) | Yining city | 153.33 ± 6.05 b | 187.11 ± 3.95 ab | 174.33 ± 3.40 ab | 202.33 ± 5.01 a | 176.22 ± 15.03 ab | 182.78 ± 4.75 ab | 179.35 ± 4.41 | 0.013 |
Nilka county | 144.27 ± 11.59 b | 176.10 ± 5.22 ab | 166.97 ± 3.42 ab | 184.17 ± 6.11 a | 188.57 ± 5.49 a | 185.63 ± 11.79 a | 174.28 ± 4.59 | 0.017 | |
Tekes county | 152.93 ± 7.79 b | 175.07 ± 4.31 ab | 171.57 ± 2.44 ab | 188.30 ± 7.47 a | 171.17 ± 4.81 ab | 181.63 ± 4.50 a | 173.44 ± 3.27 | 0.013 | |
Zhaosu county | 184.90 ± 1.31 bc | 183.43 ± 4.28 bc | 177.633 ± 3.88 c | 185.53 ± 1.75 bc | 196.97 ± 4.57 ab | 207.83 ± 2.11 a | 189.38 ± 2.68 | <0.001 | |
Stem diameter (cm) | Yining city | 1.72 ± 0.26 a | 1.91 ± 0.75 a | 1.72 ± 0.16 a | 2.14 ± 0.13 a | 1.80 ± 0.36 a | 1.45 ± 0.19 a | 1.79 ± 0.09 | 0.403 |
Nilka county | 1.61 ± 0.04 a | 1.67 ± 0.24 a | 1.43 ± 0.09 a | 1.69 ± 0.13 a | 1.62 ± 0.07 a | 1.63 ± 0.09 a | 1.61 ± 0.05 | 0.748 | |
Tekes county | 1.70 ± 0.09 a | 1.86 ± 0.15 a | 1.60 ± 0.03 a | 1.80 ± 0.05 a | 1.69 ± 0.12 a | 1.79 ± 0.17 a | 1.74 ± 0.04 | 0.671 | |
Zhaosu county | 1.78 ± 0.13 ab | 1.84 ± 0.12 ab | 1.41 ± 0.07 b | 1.86 ± 0.14 ab | 1.72 ± 0.10 ab | 2.12 ± 0.02 a | 1.79 ± 0.06 | 0.011 | |
Branches | Yining city | 18.89 ± 2.11 a | 25.56 ± 1.28 a | 23.67 ± 1.76 a | 26.00 ± 1.64 a | 23.44 ± 0.80 a | 23.00 ± 2.83 a | 23.43 ± 0.85 | 0.175 |
Nilka county | 7.67 ± 0.96 b | 9.37 ± 1.13 ab | 12.43 ± 0.43 a | 7.93 ± 1.27 b | 11.27 ± 0.93 ab | 7.90 ± 0.35 b | 9.43 ± 0.54 | 0.012 | |
Tekes county | 11.20 ± 0.49 bc | 10.33 ± 0.87 bc | 12.20 ± 1.33 b | 17.47 ± 0.27 a | 8.77 ± 0.39 c | 10.70 ± 0.55 bc | 11.78 ± 0.71 | <0.001 | |
Zhaosu county | 12.40 ± 0.67 b | 11.63 ± 1.08 b | 8.43 ± 0.30 b | 10.63 ± 0.88 b | 20.67 ± 0.68 a | 12.90 ± 1.82 b | 12.78 ± 0.99 | <0.001 | |
Panicle length (cm) | Yining city | 49.89 ± 2.44 b | 62.00 ± 1.17 a | 64.78 ± 1.09 a | 60.44 ± 1.16 a | 59.56 ± 2.35 a | 62.44 ± 1.49 a | 59.85 ± 1.29 | 0.001 |
Nilka county | 38.87 ± 1.84 a | 37.77 ± 2.84 a | 35.40 ± 2.96 a | 41.97 ± 2.13 a | 45.87 ± 3.67 a | 46.13 ± 1.99 a | 41.00 ± 1.33 | 0.069 | |
Tekes county | 46.03 ± 3.66 b | 45.63 ± 2.60 b | 42.77 ± 1.13 b | 62.97 ± 2.56 a | 39.87 ± 6.79 b | 53.93 ± 1.28 ab | 48.53 ± 2.24 | 0.006 | |
Zhaosu county | 43.17 ± 6.17 a | 45.27 ± 5.60 a | 54.87 ± 6.89 a | 38.63 ± 10.07 a | 42.70 ± 2.05 a | 33.70 ± 6.99 a | 43.06 ± 2.79 | 0.404 | |
1000 seed weight (g) | Yining city | 3.08 ± 0.09 a | 2.38 ± 0.03 b | 3.01 ± 0.04 a | 2.93 ± 0.17 a | 2.38 ± 0.15 b | 2.89 ± 0.07 a | 2.78 ± 0.08 | 0.001 |
Nilka county | 2.43 ± 0.03 b | 2.47 ± 0.03 b | 2.70 ± 0.10 ab | 2.87 ± 0.09 a | 2.57 ± 0.03 ab | 2.83 ± 0.09 a | 2.64 ± 0.05 | 0.003 | |
Tekes county | 2.53 ± 0.23 b | 2.77 ± 0.20 ab | 3.00 ± 0.06 ab | 3.30 ± 0.12 a | 2.70 ± 0.00 ab | 3.23 ± 0.09 a | 2.92 ± 0.08 | 0.013 | |
Zhaosu county | 3.60 ± 0.12 a | 2.93 ± 0.07 b | 3.40 ± 0.12 a | 3.60 ± 0.06 a | 2.93 ± 0.07 b | 3.60 ± 0.06 a | 3.34 ± 0.08 | <0.001 | |
Seed yield (t/ha) | Yining city | 2.20 ± 0.07 c | 2.32 ± 0.10 bc | 2.30 ± 0.06 bc | 3.06 ± 0.09 a | 2.59 ± 0.08 b | 3.34 ± 0.08 a | 2.63 ± 0.11 | <0.001 |
Nilka county | 1.79 ± 0.62 e | 2.29 ± 0.07 d | 3.36 ± 0.05 a | 2.40 ± 0.06 cd | 2.59 ± 0.04 c | 3.02 ± 0.04 b | 2.58 ± 0.12 | <0.001 | |
Tekes county | 2.31 ± 0.07 d | 2.79 ± 0.08 c | 2.67 ± 0.07 c | 3.38 ± 0.06 b | 3.46 ± 0.09 b | 4.05 ± 0.07 a | 3.11 ± 0.14 | <0.001 | |
Zhaosu county | 2.11 ± 0.07 e | 2.37 ± 0.11 de | 2.87 ± 0.06 bc | 2.56 ± 0.07 cd | 3.14 ± 0.11 ab | 3.28 ± 0.07 a | 2.72 ± 0.10 | <0.001 |
Location | Nongli 3 | Beijing 1 | Longli 4 | Beijing 2 | Longli 1 | Jinli 1 | Mean | |
---|---|---|---|---|---|---|---|---|
Flowering time (Day) | Yining city | 78.67 ± 0.88 c | 94.00 ± 0.58 b | 68.67 ± 0.88 de | 67.67 ± 0.67 e | 99.33 ± 0.67 a | 71.67 ± 0.88 d | 80.00 ± 3.02 |
Nilka county | 101.67 ± 0.33 a | 87.33 ± 0.67 b | 87.33 ± 0.67 b | 77.33 ± 0.67 c | 98.67 ± 2.19 a | 76.00 ± 1.16 c | 88.06 ± 2.37 | |
Tekes county | 91.00 ± 0.58 a | 71.00 ± 0.58 c | 80.33 ± 0.33 b | 79.00 ± 3.00 b | 84.00 ± 0.58 b | 82.00 ± 0.58 b | 81.22 ± 1.52 | |
Zhaosu county | 108.67 ± 0.33 a | 101.33 ± 0.88 c | 99.00 ± 0.58 c | 101.00 ± 0.58 c | 104.00 ± 0.58 b | 101.00 ± 0.58 c | 102.5 ± 0.79 | |
Crop Cycle (Day) | Yining city | 145.00 ± 0.58 a | 136.00 ± 0.58 b | 125.33 ± 1.45 c | 127.67 ± 0.67 c | 134.33 ± 0.67 b | 128.00 ± 0.58 c | 132.72 ± 1.64 |
Nilka county | 130.00 ± 0.00 a | 115.00 ± 0.58 c | 114.00 ± 0.58 c | 109.00 ± 0.58 d | 123.00 ± 0.58 b | 105.33 ± 0.88 e | 116.06 ± 2.02 | |
Tekes county | 133.00 ± 0.58 a | 113.67 ± 0.67 b | 108.00 ± 0.58 c | 112.67 ± 0.67 b | 132.00 ± 0.58 a | 109.00 ± 0.58 c | 118.06 ± 2.53 | |
Zhaosu county | 132.67 ± 0.33 a | 124.33 ± 0.88 c | 116.00 ± 0.58 e | 120.00 ± 0.58 d | 129.00 ± 0.58 b | 121.00 ± 0.58 d | 123.83 ± 1.38 |
Location | Nongli 3 | Beijing 1 | Longli 4 | Beijing 2 | Longli 1 | Jinli 1 | Mean | |
---|---|---|---|---|---|---|---|---|
Total starch (%) | Yining city | 59.16 ± 0.28 ab | 55.54 ± 0.07 bc | 62.04 ± 1.63 a | 57.58 ± 0.33 b | 52.23 ± 0.74 c | 56.41 ± 1.32 b | 57.16 ± 0.80 |
Nilka county | 55.98 ± 0.01 ab | 54.17 ± 1.06 b | 57.27 ± 0.09 a | 56.04 ± 0.00 ab | 51.65 ± 0.52 c | 51.47 ± 0.41 c | 54.43 ± 0.57 | |
Tekes county | 56.20 ± 0.17 bc | 56.94 ± 0.51 bc | 57.95 ± 0.46 ab | 59.13 ± 0.04 a | 55.66 ± 0.88 c | 57.78 ± 0.02 ab | 57.28 ± 032 | |
Zhaosu county | 54.42 ± 2.03 a | 53.66 ± 2.21 a | 57.65 ± 0.19 a | 56.37 ± 0.05 a | 55.05 ± 0.18 a | 58.66 ± 0.72 a | 55.97 ± 0.61 | |
Protein (%) | Yining city | 16.72 ± 0.02 b | 16.47 ± 0.17 b | 15.95 ± 0.05 c | 16.58 ± 0.01 b | 15.23 ± 0.03 d | 17.21 ± 0.07 a | 16.36 ± 0.15 |
Nilka county | 14.04 ± 0.11 bc | 13.58 ± 0.20 c | 13.87 ± 0.11 bc | 14.47 ± 0.27 b | 13.50 ± 0.18 c | 15.22 ± 0.12 a | 14.11 ± 0.16 | |
Tekes county | 14.49 ± 0.06 a | 13.44 ± 0.05 bc | 13.74 ± 0.23 b | 13.20 ± 0.00 cd | 12.79 ± 0.19 d | 13.14 ± 0.01 cd | 13.47 ± 0.14 | |
Zhaosu county | 15.72 ± 0.05 a | 13.50 ± 0.06 c | 14.70 ± 0.01 b | 15.52 ± 0.00 a | 14.75 ± 0.05 b | 15.46 ± 0.23 a | 14.94 ± 0.19 | |
Fat (%) | Yining city | 4.56 ± 0.03 e | 6.17 ± 0.08 b | 5.43 ± 0.04 d | 5.70 ± 0.08 c | 6.03 ± 0.08 b | 6.55 ± 0.04 a | 5.74 ± 0.16 |
Nilka county | 6.28 ± 0.09 c | 7.26 ± 0.02 a | 6.82 ± 0.03 b | 6.59 ± 0.05 bc | 6.34 ± 0.13 c | 7.41 ± 0.07 a | 6.78 ± 0.11 | |
Tekes county | 5.73 ± 0.05 d | 7.14 ± 0.00 b | 6.85 ± 0.02 c | 7.07 ± 0.04 b | 6.69 ± 0.08 c | 7.61 ± 0.02 a | 6.85 ± 0.14 | |
Zhaosu county | 5.94 ± 0.13 c | 6.81 ± 0.03 a | 6.07 ± 0.04 bc | 6.23 ± 0.00 b | 5.93 ± 0.06 c | 6.79 ± 0.03 a | 6.30 ± 0.09 | |
Ash (%) | Yining city | 3.18 ± 0.03 b | 3.12 ± 0.00 bc | 3.13 ± 0.06 bc | 2.81 ± 0.03 d | 3.50 ± 0.03 a | 3.02 ± 0.02 c | 3.13 ± 0.06 |
Nilka county | 3.46 ± 0.00 a | 3.24 ± 0.00 b | 3.03 ± 0.00 c | 3.24 ± 0.02 b | 3.52 ± 0.03 a | 3.02 ± 0.02 c | 3.25 ± 0.05 | |
Tekes county | 3.68 ± 0.00 a | 2.65 ± 0.03 de | 2.87 ± 0.03 c | 2.71 ± 0.00 d | 3.14 ± 0.00 b | 2.59 ± 0.03 e | 2.94 ± 0.09 | |
Zhaosu county | 2.97 ± 0.03 b | 3.29 ± 0.03 a | 3.03 ± 0.00 b | 3.02 ± 0.04 b | 3.19 ± 0.03 a | 2.71 ± 0.00 c | 3.03 ± 0.05 | |
Total polyphenol (mg/g) | Yining city | 2.07 ± 0.03 ab | 2.34 ± 0.07 a | 2.25 ± 0.05 a | 1.89 ± 0.11 b | 2.21 ± 0.09 a | 1.82 ± 0.02 b | 2.09 ± 0.05 |
Nilka county | 2.36 ± 0.03 a | 2.23 ± 0.04 ab | 1.99 ± 0.03 c | 2.17 ± 0.04 b | 1.98 ± 0.06 c | 2.00 ± 0.03 c | 2.12 ± 0.04 | |
Tekes county | 2.21 ± 0.01 a | 2.07 ± 0.04 ab | 1.88 ± 0.06 b | 1.87 ± 0.08 b | 1.93 ± 0.05 b | 1.90 ± 0.02 b | 1.98 ± 0.03 | |
Zhaosu county | 2.50 ± 0.05 a | 1.88 ± 0.05 b | 1.79 ± 0.04 b | 2.43 ± 0.03 a | 1.72 ± 0.02 b | 2.37 ± 0.06 a | 2.11 ± 0.08 | |
Total flavonoids (mg/g) | Yining city | 0.60 ± 0.03 b | 0.69 ± 0.04 b | 0.57 ± 0.01 b | 0.90 ± 0.02 a | 0.67 ± 0.06 b | 0.57 ± 0.01 b | 0.67 ± 0.03 |
Nilka county | 0.68 ± 0.02 ab | 0.78 ± 0.03 a | 0.64 ± 0.01 c | 0.61 ± 0.05 c | 0.68 ± 0.02 ab | 0.64 ± 0.02 c | 0.67 ± 0.02 | |
Tekes county | 0.65 ± 0.01 c | 0.91 ± 0.02 a | 0.74 ± 0.04 bc | 0.71 ± 0.03 bc | 0.79 ± 0.02 b | 0.68 ± 0.01 c | 0.75 ± 0.02 | |
Zhaosu county | 0.63 ± 0.01 b | 0.74 ± 0.03 a | 0.63 ± 0.02 b | 0.72 ± 0.01 a | 0.63 ± 0.00 b | 0.60 ± 0.01 b | 0.66 ± 0.01 | |
Total saponins (mg/g) | Yining city | 5.07 ± 0.02 a | 5.14 ± 0.08 a | 4.02 ± 0.18 b | 4.26 ± 0.07 b | 5.24 ± 0.12 a | 3.83 ± 0.09 b | 4.59 ± 0.14 |
Nilka county | 5.83 ± 0.10 b | 5.83 ± 0.02 b | 5.81 ± 0.13 b | 5.03 ± 0.10 c | 6.34 ± 011 a | 5.73 ± 0.14 b | 5.76 ± 0.10 | |
Tekes county | 6.26 ± 0.06 a | 6.38 ± 0.17 a | 4.91 ± 0.13 b | 4.29 ± 0.10 c | 6.19 ± 0.18 a | 4.52 ± 0.11 bc | 5.43 ± 0.22 | |
Zhaosu county | 5.67 ± 0.25 a | 5.28 ± 0.09 a | 4.54 ± 0.03 b | 5.82 ± 0.09 a | 5.39 ± 0.04 a | 5.25 ± 0.24 a | 5.32 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Yao, Q.; Xing, B.; Zhou, B.; Shah, S.S.; Qin, P. The Performance of Agronomic and Quality Traits of Quinoa under Different Altitudes in Northwest of China. Agronomy 2024, 14, 1194. https://doi.org/10.3390/agronomy14061194
Cui H, Yao Q, Xing B, Zhou B, Shah SS, Qin P. The Performance of Agronomic and Quality Traits of Quinoa under Different Altitudes in Northwest of China. Agronomy. 2024; 14(6):1194. https://doi.org/10.3390/agronomy14061194
Chicago/Turabian StyleCui, Hongliang, Qing Yao, Bao Xing, Bangwei Zhou, Syed Sadaqat Shah, and Peiyou Qin. 2024. "The Performance of Agronomic and Quality Traits of Quinoa under Different Altitudes in Northwest of China" Agronomy 14, no. 6: 1194. https://doi.org/10.3390/agronomy14061194