ECWS: Soil Salinity Measurement Method Based on Electrical Conductivity and Moisture Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Salinity Measurement ECWS Model
2.2. Experimental Design
2.3. Experimental Treatment
2.3.1. TDR Sensors
2.3.2. PWMER Sensors
2.3.3. Soil Sample Settings
2.3.4. Measurement Method
3. Results
3.1. TDR Sensor Verification Results
3.2. PWMER Sensor NaCl Verification Results
3.3. PWMER Sensor KCl and K2SO4 Verification Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Corwin, D.L.; Yemoto, K. Measurement of soil salinity: Electrical conductivity and total dissolved solids. Soil Sci. Soc. Am. J. 2019, 83, 1–2. [Google Scholar] [CrossRef]
- Moret-Fernández, D.; Vicente, B.; Aragüé, R.; Peña, C.; López, M.V. A new TDR probe for measurements of soil solution electrical conductivity. J. Hydrol. 2012, 448–449, 73–79. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, Y.; Zhang, A.; Jiao, Z. Baseline-based soil salinity index (bssi): A novel remote sensing monitoring method of soil salinization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 202–214. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Shen, Q.; Yao, Y.; Zhang, S.; Wei, H.; Yao, R.; Zhang, Y. Estimation of soil salt and ion contents based on hyperspectral remote sensing data: A case study of baidunzi basin, China. Water 2021, 13, 559. [Google Scholar] [CrossRef]
- Bughici, T.; Skaggs, T.H.; Corwin, D.L.; Scudiero, E. Ensemble HYDRUS-2D modeling to improve apparent electrical conductivity sensing of soil salinity under drip irrigation. Agric. Water Manag. 2022, 272, 107813. [Google Scholar] [CrossRef]
- Yuan, C. Simulation soil water–salt dynamics in saline wasteland of Yongji Irrigation Area in Hetao Irrigation District of China. Water Supply 2020, 21, 2681–2690. [Google Scholar] [CrossRef]
- Chen, Y.; Du, Y.; Yin, H.; Wang, H.; Chen, H.; Li, X.; Zhang, Z.; Chen, J. Radar remote sensing-based inversion model of soil salt content at different depths under vegetation. Environ. Sci. 2022, 10, e13306. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Zhou, X.; Chan, N.W.; Tan, M.L.; Kung, H.; Shi, J. Retrieval of soil salinity based on multi-source remote sensing data and differential transformation technology. Int. J. Remote Sens. 2023, 44, 1348–1368. [Google Scholar] [CrossRef]
- Wang, D.; Chen, H.; Wang, Z.; Ma, Y. Inversion of soil salinity according to different salinization grades using multi-source remote sensing. Geocarto Int. 2022, 37, 1274–1293. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, C.; Zhou, C.; Ma, H.; Zhijun, W. Soil salinity inversion model of oasis in arid area based on uav multispectral remote sensing. Remote Sens. 2022, 14, 1804. [Google Scholar] [CrossRef]
- Gao, L.; Song, X.; Li, X.; Ma, J.; Leng, P.; Wang, W.; Zhu, X. An enhanced saline soil dielectric constant model used for remote sensing soil moisture and salinity retrieval. Remote Sens. 2024, 16, 452. [Google Scholar] [CrossRef]
- Avdan, U.; Kaplan, G.; Kucuk, M.D.; Avdan, Z.Y.; Erdem, F.; Mizik, E.T.; Demirtas, İ. Soil salinity prediction models constructed by different remote sensors. Phys. Chem. Earth 2022, 128, 1474–7065. [Google Scholar] [CrossRef]
- Dai, Y.H.; Guan, Y.; Feng, C.Y.; Jang, M.; He, X.H. Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling. Remote Sens. Nat. Resour. 2023, 35, 205–212, (In Chinese with English abstract). [Google Scholar]
- Bañón, S.; Álvarez, S.; Bañón, D.; Ortuño, M.F.; Sánchez-Blanco, M.J. Assessment of soil salinity indexes using electrical conductivity sensors. Sci. Hortic. 2021, 285, 110171. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J.; Yao, R.; Wang, X. Spatial and temporal variability of soil salinity in the yangtze river estuary using electromagnetic induction. Remote Sens. 2021, 13, 1875. [Google Scholar] [CrossRef]
- Hossain, M.S.; Rahman, G.K.M.M.; Solaiman, A.R.M.; Rahman, M.M.; Mia, M.A.B. Estimating electrical conductivity for soil salinity monitoring using various soil-water ratios depending on soil texture. Commun. Soil Sci. Plant Anal. 2020, 51, 1391–1401. [Google Scholar] [CrossRef]
- Ismayilov, A.I.; Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Levy, G.J. Soil salinity type effects on the relationship between the electrical conductivity and salt content for 1:5 soil-to-water extract. Sustainability 2021, 13, 3395. [Google Scholar] [CrossRef]
- Mu, W.Y.; Han, N.; Qu, Z.; Bai, Y.G.; Zheng, M.; Wang, Q.J. Coupling calibration method for multivariate nonlinear soil conductivity sensor. Trans. Chin. Soc. Agric. Mach. 2023, 54, 356–363. [Google Scholar]
- Rhoades, J.D.; Manteghi, N.A.; Shouse, P.J.; Alves, W.J. Soil electrical conductivity and soil salinity: New formulations and calibrations. Soil Sci. Soc. Am. J. 1989, 53, 433–439. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Corwin, D.L. Soil electrical conductivity: Effects of soil properties and application to soil salinity appraisal. Commun. Soil Sci. Plant Anal. 1990, 21, 837–860. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Raats, P.; Prather, R.J. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J. 1976, 40, 651–655. [Google Scholar] [CrossRef]
- Bohn, H.L.; Ben-Asher, J.; Tabbara, H.S.; Marwan, M. Theories and tests of electrical conductivity in soils. Soil Sci. Soc. Am. J. 1982, 46, 1143–1146. [Google Scholar] [CrossRef]
- Duan, Z.; Yan, X.; Sun, Q.; Dong, C.X.; Tan, X. Effects of water content and salt content on electrical resistivity of loess. Environ. Earth Sci. 2021, 80, 469. [Google Scholar] [CrossRef]
- Saglam, U.; Ulutas, K.; Parim, Y.; Yakut, S.; Deger, D. A theoretical approach to conductivity. Int. J. Geom. Methods Mod. Phys. 2019, 17, 2050004. [Google Scholar] [CrossRef]
- Seo, B.S.; Jeong, Y.J.; Baek, N.R.; Park, H.J.; Yang, H.I.; Park, S.I.; Choi, W.J. Soil texture affects the conversion factor of electrical conductivity from 1:5 soil-water to saturated paste extracts. Pedosphere 2022, 32, 905–915. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.; Sotirakoglou, K. The effect of soil texture on the conversion factor of 1:5 soil/water extract electrical conductivity (EC1:5) to soil saturated paste extract electrical conductivity (ECE). Water 2022, 14, 642. [Google Scholar] [CrossRef]
- Dai, Y.H.; Guan, Y.; Zhang, Q.K.; Sun, J.J.; He, X.H. Remote sensing monitoring and temporal and spatial characteristics of soil salinization in Aral Reclamation Area. Arid. Land Geogr. 2022, 45, 1176–1185. [Google Scholar]
- Li, W.; Yang, J.; Tang, C.; Liu, X.Y.; Xie, W.P.; Yao, R.J.; Wang, W.P. The temporal—Spatial dynamic distributions of soil water and salt under deep vertical rotary tillage on coastal saline soil. Water 2022, 14, 3370. [Google Scholar] [CrossRef]
- Liao, R.; Yang, P.; Zhu, Y. Effect of superabsorbent polymer on root water uptake and quantification of water uptake from soil profile in dry land. Evol. Ecol. Res. 2017, 18, 482–486. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, H.; Yi, H. Impact of fertilizer on crop yield and c:n:p stoichiometry in arid and semi-arid soil. Int. J. Environ. Res. Public Health 2021, 18, 4341. [Google Scholar] [CrossRef]
- Zhao, K.; Luo, D.H.; Guo, C.; Tan, F.R.; Liu, E.Z.; Zhang, Y.H. Soil salinization features in aral area, Xinjiang. Coal Geol. China 2018, 30, 46–49. [Google Scholar]
- Cristi, F.; Fierro, V.; Suárez, F.; Muñoz, J.F.; Hausner, M.B. A TDR-waveform approach to estimate soil water content in electrically conductive soils. Comput. Electron. Agric. 2016, 121, 160–168. [Google Scholar] [CrossRef]
- Agah, A.; ErfaniMeire, P.; De Deckere, E. Laboratory calibration of tdr probes for simultaneous of measurements soil water content and electrical conductivity. Commun. Soil Sci. Plant Anal. 2019, 50, 1525–1540. [Google Scholar] [CrossRef]
- Wang, D.; Yang, W.; Meng, C.; Cao, Y.; Li, M. Research on vehicle-mounted soil electrical conductivity and moisture content detection system based on current–voltage six-terminal method and spectroscopy. Comput. Electron. Agric. 2023, 205, 107640. [Google Scholar] [CrossRef]
- Han, C.J.; Yang, W.Q.; Dou, H.J.; Wang, X.; Hu, L.N.; Zhai, C.Y. Design and experiment of rapid detection system for field soil conductivity. Trans. Chin. Soc. Agric. Mach. 2022, 53, 301–310. [Google Scholar]
- Zhao, Y.D.; Li, N.; Pi, T.T. Soil electrical conductivity online real-time detection system based on four-electrode method. Trans. Chin. Soc. Agric. Mach. 2015, 46, 299–307. [Google Scholar]
- Xu, A.Z.; Hu, J.M.; Xiong, Y.; Zou, Q.G.; Chen, X.A. Comparison of soil moisture measurement using TDR method, dry burning method and oven drying method. J. Water Resour. Water Eng. 2018, 29, 253–256. [Google Scholar]
- Han, Y.; Yang, W.; Li, M.; Meng, C. Comparative study of two soil conductivity meters based on the principle of current-voltage four-terminal method. IFAC-PapersOnLine 2019, 52, 36–42. [Google Scholar] [CrossRef]
- Mahaqi, A. Groundwater quality for drinking and agricultural purposes, Saleh Abad (NE Iran): Geochemical and statistical approaches. Carbonates Evaporites 2021, 36, 58. [Google Scholar] [CrossRef]
- Liu, Y.; Ao, C.; Zeng, W.; Gaiser, T.; Wu, J.; Huang, J. Simulating water and salt transport in subsurface pipe drainage systems with HYDRUS-2D. J. Hydrol. 2021, 592, 125823. [Google Scholar] [CrossRef]
- Tian, F.; Miao, Q.; Shi, H.; Li, R.; Dou, X.; Duan, J.; Liu, J.; Feng, W.Y. Study on water and salt transport under different subsurface pipe arrangement conditions in severe saline–alkali land in hetao irrigation district with drainmod model. Water. 2023, 15, 3001. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Zhou, S.; Zhao, Y.; Ren, J.H. Quantitative study on salinity estimation of salt-affected soils by combining different types of crack characteristics using ground-based remote sensing observation. Remote Sens. 2023, 15, 3249. [Google Scholar] [CrossRef]
- Amente, G.; Baker, J.M.; Reece, C.F. Estimation of soil solution electrical conductivity from bulk soil electrical conductivity in sandy soils. Soil Sci. Soc. Am. J. 2000, 64, 1931–1939. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, X.; Lai, X.; Huang, Y.H. Experimental study on relation between whole-salt quantity and electric conductivity. Int. J. Bioautomotion 2019, 23, 97–104. [Google Scholar] [CrossRef]
Terminology | Abbreviations |
---|---|
soil salinity content | SSC |
soil electrical conductivity | EC |
soil moisture content | WS |
soil initial salt content | b |
soil bulk conductivity | |
soil solution conductivity | |
volumetric water content | |
salt addition | |
the measured value of SSC | |
the predicted value of SSC | |
soil salinity conductivity conversion coefficient | |
soil leaching solution salinity conductivity conversion coefficient | |
Parameter | b | /% | |||||
---|---|---|---|---|---|---|---|
−3.35 | 0.29 | 1.83 | 1.91 | −3.97 | 0.85 | 0.33 | |
3.20 | 0.05 | 1.84 | −3.45 | 0.91 | 0.41 | ||
3.78 | 0.04 | 1.91 | 0.34 | 0.95 | 0.35 | ||
4.78 | 0.02 | 1.93 | 1.02 | 0.97 | 0.35 | ||
3.00 | 0.02 | 2.00 | 4.71 | 0.96 | 0.51 | ||
3.97 | 0.01 | 1.87 | −2.00 | 0.97 | 0.24 | ||
3.42 | 0.01 | 1.87 | −2.04 | 0.98 | 0.14 | ||
3.10 | 0.01 | 1.98 | 3.61 | 0.99 | 0.16 | ||
2.99 | 0.00 | 1.89 | −1.11 | 0.97 | 0.16 | ||
2.93 | 0.00 | 1.96 | 2.89 | 0.98 | 0.21 |
Parameter | b/ | / | /% | ||||
---|---|---|---|---|---|---|---|
6.97 | 0.04 | 1.80 | 1.89 | −4.78 | 0.92 | 0.04 | |
3.42 | 0.05 | 1.82 | −3.63 | 0.88 | 0.33 | ||
2.00 | 0.02 | 1.85 | −1.95 | 0.86 | 0.44 | ||
8.10 | −0.04 | 1.87 | −0.86 | 0.88 | 0.26 | ||
5.73 | −0.03 | 1.90 | 0.74 | 0.96 | 0.12 | ||
3.62 | −0.01 | 1.91 | 1.26 | 0.94 | 0.22 | ||
0.13 | 0.03 | 1.90 | 0.53 | 0.89 | 0.43 | ||
4.55 | −0.04 | 1.94 | 2.78 | 0.90 | 0.37 | ||
1.15 | 0.02 | 1.98 | 4.63 | 0.95 | 0.29 | ||
3.02 | −0.02 | 1.89 | 0.34 | 0.95 | 0.21 |
Salt | KCl | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | ||||||||
(cm·mS−1) | 10.79 | 7.00 | 4.03 | 1.09 | 8.25 | 7.75 | 3.26 | 0.30 |
(cm·mS−1) | 0.05 | −0.01 | 0.02 | 0.04 | 0.00 | −0.07 | −0.02 | 0.04 |
b (g·kg−1) | 1.85 | 1.81 | 1.86 | 1.83 | 1.89 | 1.97 | 1.91 | 1.89 |
(g·kg−1) | 1.84 | 1.92 | ||||||
(%) | 0.65 | −1.55 | 1.18 | −0.44 | −1.32 | 2.79 | −0.26 | −1.32 |
0.97 | 0.99 | 0.98 | 0.99 | 0.98 | 0.93 | 0.97 | 0.97 | |
(g·kg−1) | 0.15 | 0.01 | 0.18 | 0.20 | 0.07 | 0.37 | 0.25 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, W.; Han, N.; Qu, Z.; Zheng, M.; Shan, Y.; Guo, X.; Sun, Y.; Mu, Y. ECWS: Soil Salinity Measurement Method Based on Electrical Conductivity and Moisture Content. Agronomy 2024, 14, 1345. https://doi.org/10.3390/agronomy14071345
Mu W, Han N, Qu Z, Zheng M, Shan Y, Guo X, Sun Y, Mu Y. ECWS: Soil Salinity Measurement Method Based on Electrical Conductivity and Moisture Content. Agronomy. 2024; 14(7):1345. https://doi.org/10.3390/agronomy14071345
Chicago/Turabian StyleMu, Weiyi, Ning Han, Zhi Qu, Ming Zheng, Yuyang Shan, Xin Guo, Yang Sun, and Yujie Mu. 2024. "ECWS: Soil Salinity Measurement Method Based on Electrical Conductivity and Moisture Content" Agronomy 14, no. 7: 1345. https://doi.org/10.3390/agronomy14071345
APA StyleMu, W., Han, N., Qu, Z., Zheng, M., Shan, Y., Guo, X., Sun, Y., & Mu, Y. (2024). ECWS: Soil Salinity Measurement Method Based on Electrical Conductivity and Moisture Content. Agronomy, 14(7), 1345. https://doi.org/10.3390/agronomy14071345