A Complex Approach to Control Black Dot Disease in Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study Arrangement
2.2. Weather Conditions
2.3. Evaluation of the Potato Resistance to Late Blight and Black Dot Occurrence
2.4. Evaluation of the Black Dot Occurrence on Potato Protected against Late Blight
- (1)
- No treatment (control);
- (2)
- In total, 6× treatment with a Shirlan fungicide (a.i. fluazinam, 0.4 L/ha) during a vegetation season;
- (3)
- The in-furrow application of a Quadris fungicide (a.i. azoxystrobin, 3 L/ha) during planting, plus a 6× treatment with a Shirlan fungicide (0.4 L/ha) during a vegetation season.
2.5. Statistical Data Treatment
3. Results
3.1. Correlation between the Late Blight Resistance Level and Black Dot Occurrence
3.2. Effect of Plant Protection against Late Blight on the Black Dot Occurrence and Marketable Yield Fraction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knudson, W.; Miller, S.R. Measuring the Economic Significance of the U.S. Potato Industry. Report for the National Potato Council. Available online: https://www.nationalpotatocouncil.org/wp-content/uploads/2023/02/NPCSpudNationReport.pdf (accessed on 12 March 2024).
- Afrianto, W.F.; Budioko, B. Do not judge these potatoes by its peel: Urban consumers’ perceptions of imperfect produce. Hexagro J. 2022, 6, 1–11. [Google Scholar] [CrossRef]
- Russian Statistical Yearbook 2023; Rosstat: Moscow, Russia, 2023. Available online: https://rosstat.gov.ru/storage/mediabank/Ejegodnik_2023.pdf (accessed on 15 June 2024).
- Sibiryaev, A.S. Results of the functioning of agriculture of RF in 2023: Challenges of the future. Bull. NGIEI 2024, 4, 99–110. [Google Scholar] [CrossRef]
- Potato Union: The Most Popular Potato Cultivars in Russia Are of the Foreign Breeding. Available online: https://www.agroinvestor.ru/markets/news/39995-kartofelnyy-soyuz-samye-populyarnye-sorta-kartofelya-v-rossii-importnoy-selektsii/ (accessed on 15 June 2024).
- Sanzo-Miró, M.; Simms, D.M.; Rezwan, F.I.; Terry, L.A.; Carmen Alamar, M. An integrated approach to control and manage potato black dot disease: A review. Am. J. Potato Res. 2023, 100, 362–370. [Google Scholar] [CrossRef]
- Çakır, E.; Karahan, A.; Kurbetli, İ. Involvement of Colletotrichum coccodes causing atypical symptoms of potato tubers in Turkey. J. Plant Dis. Prot. 2019, 126, 173–176. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Kumar, R.; Sharma, S.; Naga, K.C.; Subhash, S.; Sagar, V. Continuous and emerging challenges of silver scurf disease in potato. Int. J. Pest Manag. 2022, 68, 89–101. [Google Scholar] [CrossRef]
- Lan, Q.; Liu, Y.; Mu, R.; Wang, X.; Zhou, Q.; Islam, R.; Su, X.; Tian, Y. Biological control effect of antagonistic bacteria on potato black scurf disease caused by Rhizoctonia solani. Agronomy 2024, 14, 351. [Google Scholar] [CrossRef]
- Belov, G.L.; Zeiruk, V.N.; Kokaeva, L.Y.; Kutuzova, I.A.; Elansky, S.N. Anthracnose or black dot of potato tubers. Zashchita Karantin Rastenii 2018, 10, 36–38. (In Russian) [Google Scholar]
- Kuznetsova, M.A.; Erokhova, M.D.; Demidova, V.N. Potato tuber blemish diseases and the methods for controlling. Zashchita Karantin Rastenii 2024, 1, 35–40. (In Russian) [Google Scholar]
- Kuznetsova, M.A.; Rogozhin, A.N.; Smetanina, T.I.; Denisenkov, I.A. Protection of potatoes from rhizoctonia, anthracnose, and silvery scab. Potato Veg. 2017, 4, 27–29. (In Russian) [Google Scholar]
- Kuznetsova, M.A.; Denisenkov, I.A.; Rogozhin, A.N.; Smetanina, T.I. Anthracnosis is a harmful disease of potato. Potato Veg. 2020, 6, 20–23. (In Russian) [Google Scholar]
- Jansegers, H. The Demand for Unwashed Potatoes is Declining. Available online: https://www.freshplaza.com/north-america/article/9197485/the-demand-for-unwashed-potatoes-is-declining/ (accessed on 13 March 2024).
- Denisenkov, I.A. Efficient protection of potato from diseases of various etiology under conditions of Bryansk region. Achiev. Sci. Technol. AIC 2018, 32, 76–78. (In Russian) [Google Scholar] [CrossRef]
- Massana-Codina, J.; Schnee, S.; Lecoultre, N.; Droz, E.; Dupuis, B.; Keiser, A.; de Werra, P.; Wolfender, J.-L.; Gindro, K.; Schürch, S. Influence of abiotic factors, inoculum source and cultivar susceptibility on the potato tuber blemish diseases black dot (Colletotrichum coccodes) and silver scurf (Helminthosporium solani). Plant Pathol. 2021, 70, 885–897. [Google Scholar] [CrossRef]
- Belov, D.A.; Khiutti, A.V. Modern phytopathogenic complex of potato diseases and measures to prevent their spread in Russia. Potato Veg. 2022, 5, 18–24. (In Russian) [Google Scholar] [CrossRef]
- El-Fawy, M.M.; Abo-Elyousr, K.A.M.; Sallam, N.M.A.; El-Sharkawy, R.M.I.; Ibrahim, Y.E. Fungicidal effect of guava wood vinegar against Colletotrichum coccodes causing black dot disease of potatoes. Horticulturae 2023, 9, 710. [Google Scholar] [CrossRef]
- Lees, A.K.; Hilton, A.J. Black dot (Colletotrichum coccodes): An increasingly important disease of potato. Plant Pathol. 2003, 52, 3–12. [Google Scholar] [CrossRef]
- Colon, L.; Nielsen, B.; Darsow, U. Field Test for Foliage Blight Resistance. EUROBLIGHT Protocol ver.1.2. Available online: https://agro.au.dk/fileadmin/Field_Test_Foliar_Blight_revised.pdf (accessed on 15 June 2024).
- James, W.C.; Shih, C.S.; Hodgson, W.A.; Callbeck, L.C. The quantitative relationship between late blight of potato and loss in tuber yield. Phytopathology 1972, 62, 92–96. [Google Scholar] [CrossRef]
- Filippov, A.; Kuznetsova, M.; Rogozhin, A.; Iakusheva, O.; Demidova, V.; Statsyuk, N. Development and testing of a weather-based model to determine potential yield losses caused by potato late blight and optimize fungicide application. Front. Agr. Sci. Eng. 2018, 5, 462–468. [Google Scholar]
- van der Plank, J.E. Disease Resistance in Plants; Academic Press Inc.: New York, NY, USA; London, UK, 1968. [Google Scholar]
- Kuznetsova, M.A.; Spiglazova, S.Y.; Rogozhin, A.N.; Smetanina, T.I.; Filippov, A.V. Late blight assessment of potato cultivars using a new express method. In Agrosym 2013: Books of Proceedings; Kovacevic, D., Ed.; Poljoprivredni fakultet: Istočno Sarajevo, Bosnia and Herzegovina, 2013; pp. 601–606. Available online: http://www2.agrosym.rs.ba/agrosym/agrosym_2013/documents/2pfs/pfs13.pdf (accessed on 15 June 2024).
- Polyakov, I.Y.; Persov, M.P.; Smirnov, V.A. Forecasting of the Development of Pests and Diseases of Agricultural Crops; Textbook for a Practical Training; Kolos: Leningrad, Russia, 1984. [Google Scholar]
- Dickson, B.T. The black dot disease of potato. Phytopathology 1926, 16, 23–40. [Google Scholar]
- Chesters, C.G.C.; Hornby, D. Studies on Colletotrichum coccodes 1. The taxonomic significance of variation in isolates from tomato roots. Trans. Brit. Mycol. Soc. 1965, 48, 573–581. [Google Scholar] [CrossRef]
- Tsror (Lahkim), L.; Hazanovsky, M. Effect of coinoculation by Verticillium dahliae and Colletotrichum coccodes on disease symptoms and fungal colonization in four potato cultivars. Plant Pathol. 2001, 50, 483–488. [Google Scholar] [CrossRef]
- Nikitina, E.V. Potato black dot. Kartof. Ovoshchi 1972, 3, 40–41. (In Russian) [Google Scholar]
- Kazartsev, I.A.; Gomzhina, M.M.; Gasich, E.L.; Khlopunova, L.D.; Gannibal, P.B. Biodiversity of Colletotrichum spp. on several wild and cultivated plants. Mikol. Fitopatol. 2022, 56, 127–139. [Google Scholar] [CrossRef]
- Cullen, D.W.; Lees, A.K.; Toth, I.K.; Duncan, J.M. Detection of Colletotrichum coccodes from soil and potato tubers by conventional and quantitative real-time PCR. Plant Pathol. 2002, 51, 281–292. [Google Scholar] [CrossRef]
- Read, P.J. The susceptibility of tubers of potato cultivars to black dot (Colletotrichum coccodes (Wallrs.) Hughes). Ann. Appl. Biol. 1991, 119, 475–482. [Google Scholar] [CrossRef]
- Massana-Codina, J.; Schnee, S.; Allard, P.-M.; Rutz, A.; Boccard, J.; Michellod, E.; Cléroux, M.; Schürch, S.; Gindro, K.; Wolfender, J.-L. Insights on the structural and metabolic resistance of potato (Solanum tuberosum) cultivars to tuber black dot (Colletotrichum coccodes). Front. Plant Sci. 2020, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.A.; Geary, B.; Tsror, L. Potato black dot—The elusive pathogen, disease development and management. Am. J. Potato Res. 2018, 95, 340–350. [Google Scholar] [CrossRef]
- Brierley, J.L.; Hilton, A.J.; Wale, S.J.; Peters, J.C.; Gladders, P.; Bradshaw, N.J.; Ritchie, F.; MacKenzie, K.; Lees, A.K. Factors affecting the development and control of black dot on potato tubers. Plant Pathol. 2015, 64, 167–177. [Google Scholar] [CrossRef]
- Cummings, T.F.; Johnson, D.A. Effectiveness of early-season, single applications of azoxystrobin for the control of potato black dot as evaluated by three assessment methods. Am. J. Potato Res. 2008, 85, 422–431. [Google Scholar] [CrossRef]
- Ingram, J.; Cummings, T.F.; Johnson, D.A. Response of Colletotrichum coccodes to selected fungicides using a plant inoculation assay and efficacy of azoxystrobin applied by chemigation. Am. J. Potato Res. 2011, 88, 309–317. [Google Scholar] [CrossRef]
- Johnson, D.A.; Miliczky, E.R. Effects of wounding and wetting duration on infection of potato foliage by Colletotrichum coccodes. Plant Dis. 1993, 77, 13–17. [Google Scholar] [CrossRef]
- Schepers, H.; Hausladen, H.; Hansen, J.; Kwesi Abuley, I.; Andersson, B.; Liljeroth, E.; Edin, E.; Bain, R.; Kennedy, C.; Ritchie, F.; et al. Epidemics and control of early & late blight, 2017 & 2018, in Europe. PPO-Spec. Rep. 2019, 19, 11–34. Available online: https://agro.au.dk/fileadmin/euroblight/Workshops/York/Presentations_and_posters/Proceedings/1._Huub_Schepers-p11-34.pdf (accessed on 16 June 2024).
- Kuznetsova, M.A.; Iakusheva, O.I.; Rogozhin, A.N.; Statsyuk, N.V.; Borovsky, K.V.; Demidova, V.N. Risk of development of epiphytoties of potato late blight in the regions of the Russian Federation: Assessment for the period 2019–2023. Dostizheniya Nauk. Tech. APK 2024, 38, 4–10. Available online: https://www.elibrary.ru/item.asp?id=65637065 (accessed on 15 June 2024). (In Russian).
Level of Infection, % | Description |
---|---|
0 | No signs of infection. |
0.1 | First single-spore-bearing lesions. |
1.0 | Weak level of infection (5–10 lesions per a plant). |
5.0 | ~50 lesions per a plant; 1 of 10 leaf lobes is infected. |
25.0 | Almost all leaves are infected, but plants still keep a normal form. The field looks green. |
50.0 | Each plant is infected; about 50% of the leaf area is dead. The field looks green with some brown areas. |
75.0 | The infection is spread over 75% of the leaf area. The field looks brown-and-green. |
95.0 | Plants have only single healthy leaves, but the stems are green. |
100.0 | All leaves died, and stems died or were dry. |
Estimated Yield Losses, % | Score | Resistance Level |
---|---|---|
0 | 9 | Resistant (R) |
<5 | 8 | |
5–10 | 7 | Moderately resistant (MR) |
10–15 | 6 | |
15–25 | 5 | Moderately susceptible (MS) |
25–35 | 4 | |
35–45 | 3 | Susceptible (S) |
45–55 | 2 | |
>55 | 1 |
No. | Cultivar | Late Blight Resistance Level | Black Dot Occurrence, % | |
---|---|---|---|---|
Score | Level * | |||
1. | Ametist | 3 | S | 90 |
2. | Arizona | 3 | S | 70 |
3. | Atletic | 3 | S | 90 |
4. | Bankir | 3 | S | 100 |
5. | Bintje | 3 | S | 100 |
6. | Borets | 3 | S | 90 |
7. | Dana | 3 | S | 90 |
8. | Eliksir | 3 | S | 100 |
9. | Gala | 3 | S | 60 |
10. | Isle of Jura | 3 | S | 60 |
11. | Izyuminka | 3 | S | 80 |
12. | Julia | 3 | S | 90 |
13. | Kuzmich | 3 | S | 90 |
14. | Legenda | 3 | S | 90 |
15. | Lorh | 3 | S | 70 |
16. | Mikhailovsky | 3 | S | 100 |
17. | Rubairu | 3 | S | 100 |
18. | Salyut | 3 | S | 90 |
19. | Tyumensky | 3 | S | 100 |
20. | Zhemchuzhina Kamchatki | 3 | S | 100 |
21. | Agata | 5 | MS | 70 |
22. | Alka | 5 | MS | 60 |
23. | Amulet | 5 | MS | 50 |
24. | Argo | 4 | MS | 30 |
25. | Armada | 4 | MS | 80 |
26. | Artemovets | 5 | MS | 40 |
27. | Artur | 5 | MS | 50 |
28. | Assol | 5 | MS | 70 |
29. | Azhur | 4 | MS | 60 |
30. | Babr | 4 | MS | 30 |
31. | Babyninsky | 5 | MS | 20 |
32. | Bagira | 4 | MS | 20 |
33. | Birsky | 5 | MS | 20 |
34. | Dachnitsa | 4 | MS | 60 |
35. | Dalnevostochny | 5 | MS | 20 |
36. | Dochka | 5 | MS | 50 |
37. | Dogoda | 4 | MS | 70 |
38. | Evpatiy | 4 | MS | 70 |
39. | Flagman | 4 | MS | 80 |
40. | Flamingo | 5 | MS | 30 |
41. | Gilchin | 5 | MS | 20 |
42. | Gorsky | 4 | MS | 20 |
43. | Kalibr | 5 | MS | 30 |
44. | Kalinka | 5 | MS | 20 |
45. | Kashtan | 5 | MS | 20 |
46. | Kometa | 5 | MS | 20 |
47. | Kornet | 4 | MS | 80 |
48. | Krasa Meshchery | 4 | MS | 20 |
49. | Kuzbassky | 5 | MS | 40 |
50. | Lekar | 5 | MS | 50 |
51. | Luchezarny | 4 | MS | 30 |
52. | Mada | 5 | MS | 20 |
53. | Margarita | 5 | MS | 20 |
54. | Miami | 4 | MS | 80 |
55. | Milano | 4 | MS | 70 |
56. | Moryak | 4 | MS | 60 |
57. | Nayada | 5 | MS | 20 |
58. | New York 121 | 5 | MS | 20 |
59. | Orlan | 5 | MS | 30 |
60. | Oskar | 5 | MS | 20 |
61. | Pamyati Anoshkina | 4 | MS | 30 |
62. | Pechersky | 4 | MS | 10 |
63. | Phoenix | 4 | MS | 80 |
64. | Polyarny | 5 | MS | 20 |
65. | Rozoviy Charodey | 5 | MS | 20 |
66. | Salsa | 5 | MS | 40 |
67. | Sante | 5 | MS | 40 |
68. | Serdolik | 4 | MS | 70 |
69. | Severyanin | 4 | MS | 60 |
70. | Shakh | 5 | MS | 30 |
71. | Smuglyanka | 5 | MS | 20 |
72. | Sokur | 5 | MS | 40 |
73. | Sprinter | 5 | MS | 50 |
74. | Surprize | 4 | MS | 60 |
75. | Tomichka | 4 | MS | 80 |
76. | Vostorg | 4 | MS | 70 |
77. | Vychegorodsky | 4 | MS | 30 |
78. | Zamir | 5 | MS | 30 |
79. | Zoya | 5 | MS | 60 |
80. | Zumba | 5 | MS | 60 |
81. | Ariel | 6 | MR | 0 |
82. | Batya | 6 | MR | 10 |
83. | Blossom | 6 | MR | 20 |
84. | Bravo | 6 | MR | 10 |
85. | Extra | 6 | MR | 0 |
86. | Golubka | 6 | MR | 20 |
87. | Irendyk | 6 | MR | 10 |
88. | Lugovskoy | 6 | MR | 0 |
89. | Nakhodka | 6 | MR | 0 |
90. | Nikulinsky | 7 | MR | 10 |
91. | Prints | 6 | MR | 0 |
92. | Sadok | 7 | MR | 0 |
93. | Signal | 7 | MR | 10 |
94. | Smolyanochka | 6 | MR | 0 |
95. | Udacha | 6 | MR | 10 |
96. | Vektor | 7 | MR | 10 |
97. | Alouette | 8 | R | 0 |
98. | Sapro Mira | 8 | R | 0 |
Late Blight Resistance Level * | Number of Cultivars | Black Dot Occurrence, % | ||
---|---|---|---|---|
Limits | Mean | Median | ||
R + MR | 18 | 0–20 | 6.0 | 5.0 |
MS | 60 | 20–80 | 43.1 | 40.0 |
S | 20 | 60–100 | 88.4 | 90.0 |
Cultivar | Treatment Variant | AUDPC (n = 132) | Black Dot Occurrence, % (n = 30) |
---|---|---|---|
Arizona | Untreated (control) | 2685 | 70 |
Shirlan 6× | 677 | 40 | |
Quadris + Shirlan 6× | 520 | 7 | |
LSD0.95 * | 210 | 12 | |
Sante | Untreated (control) | 1690 | 40 |
Shirlan 6× | 420 | 20 | |
Quadris + Shirlan 6× | 380 | 3 | |
LSD0.95 * | 178 | 10 |
Cultivar | Late Blight Resistance Level, Scores | Cultivar | Late Blight Resistance Level, Scores |
---|---|---|---|
Old cultivars | New promising cultivars | ||
Gala (DE) | 3 | Legenda (RU) | 3 |
Red Scarlett (NL) | 3 | Lyuks (RU) | 5 |
Lady Claire (NL) | 3 | Ariel (RU) | 6 |
Colomba (NL) | 4 | Kolymsky (RU) | 5 |
Rosara (DE) | 3 | Alyaska (RU) | 4 |
Queen Anne (DE) | 4 | Kortni (RU) | 5 |
Innovator (NL) | 3 | Flamingo (RU) | 4 |
Nevsky (RU) | 5 | Kalinka (RU) | 4 |
Riviera (NL) | 3 | Amulet (RU) | 5 |
Vineta (DE) | 3 | Sadon (RU) | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, M.A.; Statsyuk, N.V.; Demidova, V.N.; Semeniuk, I.N.; Smetanina, T.I.; Ukolova, A.Y.; Vyatchinov, A.A. A Complex Approach to Control Black Dot Disease in Potato. Agronomy 2024, 14, 1373. https://doi.org/10.3390/agronomy14071373
Kuznetsova MA, Statsyuk NV, Demidova VN, Semeniuk IN, Smetanina TI, Ukolova AY, Vyatchinov AA. A Complex Approach to Control Black Dot Disease in Potato. Agronomy. 2024; 14(7):1373. https://doi.org/10.3390/agronomy14071373
Chicago/Turabian StyleKuznetsova, Maria A., Natalia V. Statsyuk, Valentina N. Demidova, Irina N. Semeniuk, Tatiana I. Smetanina, Anastasiya Y. Ukolova, and Alexey A. Vyatchinov. 2024. "A Complex Approach to Control Black Dot Disease in Potato" Agronomy 14, no. 7: 1373. https://doi.org/10.3390/agronomy14071373
APA StyleKuznetsova, M. A., Statsyuk, N. V., Demidova, V. N., Semeniuk, I. N., Smetanina, T. I., Ukolova, A. Y., & Vyatchinov, A. A. (2024). A Complex Approach to Control Black Dot Disease in Potato. Agronomy, 14(7), 1373. https://doi.org/10.3390/agronomy14071373