A Study of Growth and Yield of Four Peanut Varieties with Rhizobia Inoculation under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peanut Varieties
2.2. Peanut Rhizobia Agent
2.3. Experimental Design
2.4. Sampling Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Peanut Plant Height, Lateral Branch, Leaf Age, and Branch Number
3.2. Peanut Fresh Leaf, Stem, Fresh Root, and Fresh Fruit Weight
3.3. Leaf Area
3.4. Number of Root Nodules
3.5. Number of Peanut Fruit
3.6. Peanut Weight and Crop Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; Sujayanand, G.K.; Vadivel, R.; Das, T.K.; et al. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Chapter 7—Function of Nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 191–248. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Tian, D.; Xia, J.; Zhou, N.; Xu, M.; Li, X.; Zhang, L.; Du, S.; Gao, H. The Utilization of Phosphogypsum as a Sustainable Phosphate-Based Fertilizer by Aspergillus niger. Agronomy 2022, 12, 646. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.-C.; Gao, P.-D.; Wang, B.-Q.; Lin, W.-P.; Jiang, N.-H.; Cai, K.-Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agr. 2017, 16, 1819–1831. [Google Scholar] [CrossRef]
- Tian, D.; Gao, H.; Zhang, C.; Ye, X. Chapter 21—Sustainable release of phosphorus under heavy metal stresses: From microbiology to productivity. In Beneficial Microbes for Sustainable Agriculture under Stress Conditions; Sa, T., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 427–443. [Google Scholar]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Zhang, Y.; Shen, J.; Han, W.; Zhang, W.; Christie, P.; Goulding, K.; Vitousek, P.; Zhang, F. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1101. [Google Scholar] [CrossRef]
- Jones, K.M.; Kobayashi, H.; Davies, B.W.; Taga, M.E.; Walker, G.C. How rhizobial symbionts invade plants: The Sinorhizobium–Medicago model. Nat. Rev. Microbiol. 2007, 5, 619–633. [Google Scholar] [CrossRef]
- Sa, T. Chapter 1—Plant–microbe interactions for enhanced plant tolerance to stress. In Beneficial Microbes for Sustainable Agriculture under Stress Conditions; Sa, T., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 1–24. [Google Scholar]
- Shao, S.; Chen, M.; Liu, W.; Hu, X.; Wang, E.-T.; Yu, S.; Li, Y. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Syst. Appl. Microbiol. 2020, 43, 126101. [Google Scholar] [CrossRef]
- Prakamhang, J.; Tittabutr, P.; Boonkerd, N.; Teamtisong, K.; Uchiumi, T.; Abe, M.; Teaumroong, N. Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl. Soil Ecol. 2015, 85, 38–49. [Google Scholar] [CrossRef]
- Fabra, A.; Castro, S.; Taurian, T.; Angelini, J.; Ibañez, F.; Dardanelli, M.; Tonelli, M.; Bianucci, E.; Valetti, L. Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: How much is it known? Crit. Rev. Microbiol. 2010, 36, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From saprophytes to endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291–303. [Google Scholar] [CrossRef]
- Luis, R.S.; Catarina, B.; Ana Carolina, G.; José David, F.-F.; Martha Helena, R.-B.; Alvaro, P.; Encarna, V. Legume bioactive compounds: Influence of rhizobial inoculation. AIMS Microbiol. 2017, 3, 267–278. [Google Scholar] [CrossRef]
- Shang, J.Y.; Wu, Y.; Huo, B.; Chen, L.; Wang, E.T.; Sui, Y.; Chen, W.F.; Tian, C.F.; Chen, W.X.; Sui, X.H. Potential of Bradyrhizobia inoculation to promote peanut growth and beneficial Rhizobacteria abundance. J. Appl. Microbiol. 2021, 131, 2500–2515. [Google Scholar] [CrossRef] [PubMed]
- Requena, N.; Perez-Solis, E.; Azcón-Aguilar, C.; Jeffries, P.; Barea, J.-M. Management of Indigenous Plant-Microbe Symbioses Aids Restoration of Desertified Ecosystems. Appl. Environ. Microb. 2001, 67, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Brockwell, J.; Bottomley, P.J.; Thies, J.E. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment. Plant Soil 1995, 174, 143–180. [Google Scholar] [CrossRef]
- Mondal, M.; Skalicky, M.; Garai, S.; Hossain, A.; Sarkar, S.; Banerjee, H.; Kundu, R.; Brestic, M.; Barutcular, C.; Erman, M.; et al. Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency. Agronomy 2020, 10, 1513. [Google Scholar] [CrossRef]
- Ojiewo, C.O.; Janila, P.; Bhatnagar-Mathur, P.; Pandey, M.K.; Desmae, H.; Okori, P.; Mwololo, J.; Ajeigbe, H.; Njuguna-Mungai, E.; Muricho, G.; et al. Advances in Crop Improvement and Delivery Research for Nutritional Quality and Health Benefits of Groundnut (Arachis hypogaea L.). Front. Plant Sci. 2020, 11, 29. [Google Scholar] [CrossRef]
- Wang, H.-W.; Ma, C.-Y.; Xu, F.-J.; Lu, F.; Zhang, W.; Dai, C.-C. Root endophyte-enhanced peanut-rhizobia interaction is associated with regulation of root exudates. Microbiol. Res. 2021, 250, 126765. [Google Scholar] [CrossRef]
- Nguyen, H.; Miwa, H.; Obirih-Opareh, J.; Suzaki, T.; Yasuda, M.; Okazaki, S. Novel rhizobia exhibit superior nodulation and biological nitrogen fixation even under high nitrate concentrations. FEMS Microbiol. Ecol. 2019, 96, fiz184. [Google Scholar] [CrossRef]
- Thomas, L.; Singh, I. Microbial Biofertilizers: Types and Applications. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.-S., Varma, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–19. [Google Scholar]
- Li, H.; Li, C.; Song, X.; Liu, Y.; Gao, Q.; Zheng, R.; Li, J.; Zhang, P.; Liu, X. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Sci. Rep. 2022, 12, 2758. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-F.; Song, L.-X.; Xia, X.-J.; Mao, W.-H.; Shi, K.; Zhou, Y.-H.; Yu, J.-Q. Plant-Soil Feedbacks and Soil Sickness: From Mechanisms to Application in Agriculture. J. Chem. Ecol. 2013, 39, 232–242. [Google Scholar] [CrossRef]
- Argaw, A. Integrating inorganic NP application and Bradyrhizobium inoculation to minimize production cost of peanut (Arachis hypogea L.) in eastern Ethiopia. Agric. Food Secur. 2018, 7, 20. [Google Scholar] [CrossRef]
- Nievas, F.; Bogino, P.; Nocelli, N.; Giordano, W. Genotypic analysis of isolated peanut-nodulating rhizobial strains reveals differences among populations obtained from soils with different cropping histories. Appl. Soil Ecol. 2012, 53, 74–82. [Google Scholar] [CrossRef]
- Maenpuen, P.; Katabuchi, M.; Onoda, Y.; Zhou, C.; Zhang, J.-L.; Yajun, C. Sources and consequences of mismatch between leaf disc and whole-leaf leaf mass per area (LMA). Am. J. Bot. 2022, 109, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.J.; Sinclair, T.R.; Vadez, V. Genotypic variability among peanut (Arachis hypogea L.) in sensitivity of nitrogen fixation to soil drying. Plant Soil 2010, 330, 139–148. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Z.; Wang, J.; Zhao, J.; Liu, Y.; Zou, J.; Li, L.; Zhang, J.; Wan, S. Optimizing Initial Nitrogen Application Rates to Improve Peanut (Arachis hypogaea L.) Biological Nitrogen Fixation. Agronomy 2023, 13, 3020. [Google Scholar] [CrossRef]
- Arunyanark, A.; Pimratch, S.; Jogloy, S.; Wongkaew, S.; Vorasoot, N.; Akkasaeng, C.; Kesmala, T.; Patanothai, A.; Holbrook, C.C. Association between aflatoxin contamination and N2 fixation in peanut under drought conditions. Int. J. Plant Prod. 2012, 6, 161–172. [Google Scholar] [CrossRef]
- Qiao, M.; Sun, R.; Wang, Z.; Dumack, K.; Xie, X.; Dai, C.; Wang, E.; Zhou, J.; Sun, B.; Peng, X.; et al. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nat. Commun. 2024, 15, 2924. [Google Scholar] [CrossRef]
- Chang, Y.L.; Wang, J.Y.; Wang, E.T.; Liu, H.C.; Sui, X.H.; Chen, W.X. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int. J. Syst. Evol. Microbiol. 2011, 61, 2496–2502. [Google Scholar] [CrossRef]
- Bogino, P.; Banchio, E.; Rinaudi, L.; Cerioni, G.; Bonfiglio, C.; Giordano, W. Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. in soils of Argentina. Ann. Appl. Biol. 2006, 148, 207–212. [Google Scholar] [CrossRef]
- Mishra, M.; Kumar, U.; Mishra, P.; Prakash, V. Efficiency of Plant Growth Promoting Rhizobacteria for the Enhancement of Cicer arietinum L. Growth and Germination under Salinity. Adv. Biol. Res. 2010, 4, 92–96. [Google Scholar]
- Kositsup, B.; Kasemsap, P.; Thanisawanyangkura, S.; Chairungsee, N.; Satakhun, D.; Teerawatanasuk, K.; Ameglio, T.; Thaler, P. Effect of leaf age and position on light-saturated CO2 assimilation rate, photosynthetic capacity, and stomatal conductance in rubber trees. Photosynthetica 2010, 48, 67–78. [Google Scholar] [CrossRef]
- Sarkar, S.; Cazenave, A.-B.; Oakes, J.; McCall, D.; Thomason, W.; Abbott, L.; Balota, M. Aerial high-throughput phenotyping of peanut leaf area index and lateral growth. Sci. Rep. 2021, 11, 21661. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, N.; Parreira, M.; Panosso, A.; Volpe, C. Modelling of leaf area of two peanut cultivars as function of linear dimensions of the leaflets. Biosci. J. 2014, 30, 101–107. [Google Scholar]
- Bhattacharjee, O.; Raul, B.; Ghosh, A.; Bhardwaj, A.; Bandyopadhyay, K.; Sinharoy, S. Nodule INception-independent epidermal events lead to bacterial entry during nodule development in peanut (Arachis hypogaea). New Phytol. 2022, 236, 2265–2281. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; DeLaune, P.; Gentry, T. Microbiome analysis revealed distinct microbial communities occupying different sized nodules in field-grown peanut. Front. Microbiol. 2023, 14, 1075575. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, J.; Wang, X.; Zeng, R.; Zhang, L. Improving Peanut Growth and Yield Responses with Monoseeding and Paclobutrazol Applications in Southern China. Legume Res. 2022, 45, 327–333. [Google Scholar] [CrossRef]
- Zheng, W.; Dai, J.; Li, N.; Zhao, H.; Chang, H.; Liao, X.; Sheng, F.; Qin, L. Comparative Evaluation of Microbially-Produced Biostimulants on Peanut Growth. Sustainability 2023, 15, 8025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, B.; Feng, M.; Wang, R.; Chang, L.; Jiang, Y.; Xie, J.; Tian, D. A Study of Growth and Yield of Four Peanut Varieties with Rhizobia Inoculation under Field Conditions. Agronomy 2024, 14, 1410. https://doi.org/10.3390/agronomy14071410
Ding B, Feng M, Wang R, Chang L, Jiang Y, Xie J, Tian D. A Study of Growth and Yield of Four Peanut Varieties with Rhizobia Inoculation under Field Conditions. Agronomy. 2024; 14(7):1410. https://doi.org/10.3390/agronomy14071410
Chicago/Turabian StyleDing, Bin, Mengshi Feng, Rui Wang, Lei Chang, Ying Jiang, Jixian Xie, and Da Tian. 2024. "A Study of Growth and Yield of Four Peanut Varieties with Rhizobia Inoculation under Field Conditions" Agronomy 14, no. 7: 1410. https://doi.org/10.3390/agronomy14071410
APA StyleDing, B., Feng, M., Wang, R., Chang, L., Jiang, Y., Xie, J., & Tian, D. (2024). A Study of Growth and Yield of Four Peanut Varieties with Rhizobia Inoculation under Field Conditions. Agronomy, 14(7), 1410. https://doi.org/10.3390/agronomy14071410