Detection of Straw Coverage under Conservation Tillage Based on an Improved Mask Regional Convolutional Neural Network (Mask R-CNN)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition and Preprocessing
2.2. Data Annotation
2.3. Improved Mask R-CNN Algorithm
2.4. Experimental Environment and Model Evaluation
2.5. Transfer Learning
3. Results and Discussion
3.1. Model Training
3.2. Evaluation of Model’s Adaptability to Varying Straw Coverage
3.3. Calculation of Straw Coverage
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Zhang, Y.; Yan, C.; Liu, E.; Chen, B. Soil nitrogen and its fractions between long-term conventional and no-tillage systems with straw retention in dryland farming in northern China. Geoderma 2016, 269, 139–144. [Google Scholar] [CrossRef]
- Shi, Z.; Jia, T.; Wang, Y.; Wang, J.; Sun, R.; Wang, F.; Li, X.; Bi, Y. Comprehensive utilization status of crop straw and estimation of carbon from burning in China. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 32–37. [Google Scholar]
- An, X.; Wang, P.; Luo, C.; Meng, Z.; Chen, L.; Zhang, A. A straw coverage calculation method based on K-means clustering and zoning optimization. Trans. Chin. Soc. Agric. Mach. 2021, 52, 84–89. [Google Scholar]
- Sun, L.; Gai, Z.; Wang, Q.; Zhang, J. Advances in straw mulch technology and its prospect in China. Anhui Agric. Sci. Bull. 2015, 21, 96–98. [Google Scholar]
- Yue, J.; Tian, Q. Estimating Fractional Cover of Crop, Crop Residue, and Soil in Cropland Using Broadband Remote Sensing Data and Machine Learning. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102089. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, X.; Sun, Z.; Liang, D.; An, X.; Chen, L.; Yang, G.; Huang, L.; Xu, S.; Yang, M. Estimation of Winter Wheat Residue Coverage Based on GF-1 Imagery and Machine Learning Algorithm. Agronomy 2022, 12, 1051. [Google Scholar] [CrossRef]
- Memon, M.; Chen, S.; Niu, Y.; Zhou, W.; Elsherbiny, O.; Liang, R.; Du, Z.; Guo, X. Evaluating the Efficacy of Sentinel-2B and Landsat-8 for Estimating and Mapping Wheat Straw Cover in Rice–Wheat Fields. Agronomy 2023, 13, 2691. [Google Scholar] [CrossRef]
- Zhou, D.; Li, M.; Li, Y.; Qi, J.; Liu, K.; Cong, X.; Tian, X. Detection of ground straw coverage under conservation tillage based on deep learning. Comput. Electron. Agric. 2020, 172, 105369. [Google Scholar] [CrossRef]
- Riegler-Nurscher, P.; Prankl, J.; Vincze, M. Tillage Machine Control Based on a Vision System for Soil Roughness and Soil Cover Estimation. In Proceedings of the International Conference on Computer Vision Systems, Thessaloniki, Greece, 23–25 September 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Wang, Y.; Yu, H.; Geng, C.; He, M. Detection of straw cover in conservation tillage fields using improved U-Net models. Opt. Precis. Eng. 2022, 30, 1101–1112. [Google Scholar] [CrossRef]
- Li, J.; Lü, C.; Yuan, Y.; Li, Y.; Wei, L.; Qin, Q. Automatic recognition of corn straw coverage based on fast Fourier transform and SVM. Trans. Chin. Soc. Agric. Eng. 2019, 35, 194–201. (In Chinese) [Google Scholar]
- Su, Y.; Zhang, D.; Li, H.; He, J.; Wang, Q.; Li, H. A straw coverage detection system based on automatic threshold segmentation algorithm. Agric. Mech. Res. 2012, 34, 138–142. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, H.; Fang, T.; Zhang, C. Straw recognition and coverage detection technology based on improved AdaBoost algorithm. Trans. Chin. Soc. Agric. Mach. 2021, 52, 177–183. [Google Scholar]
- Ma, Q.; Wan, C.; Wei, J.; Wang, W.; Wu, C. Calculation method of straw coverage based on U-Net and feature pyramid network. J. Agric. Mach. 2023, 54, 224–234. [Google Scholar]
- Yang, X.; Zhang, W. Enhanced Detection of Straw Coverage Using a Refined AdaBoost Algorithm and Improved Otsu Method. Trait. Signal 2023, 40, 927–937. [Google Scholar] [CrossRef]
- Yan, E.; Ji, Y.; Yin, X.; Mo, D. Rapid estimation of camellia oleifera yield based on automatic detection of canopy fruits using UAV images. Trans. CSAE 2021, 37, 39–46. [Google Scholar]
- Rong, M.; Ban, B.; Wang, Z.; Guo, X.; Zhang, W. Measurement method of leaf circumference and area based on Mask R-CNN. Jiangsu Agric. Sci. 2022, 13, 199–206. [Google Scholar] [CrossRef]
- Zhao, Z.; Hicks, Y.; Sun, X.; Luo, C. Peach ripeness classification based on a new one-stage instance segmentation model. Comput. Electron. Agric. 2023, 214, 108369. [Google Scholar] [CrossRef]
- Torralba, A.; Russell, B.; Yuen, J. Labelme: Online image annotation and applications. Proc. IEEE 2010, 98, 1467–1484. [Google Scholar] [CrossRef]
- Sun, X.; Wu, P.; Hoi, S. Face detection using deep learning: An improved faster RCNN approach. Neurocomputing 2018, 299, 42–50. [Google Scholar] [CrossRef]
- Shu, J.; Nian, F.; Yu, M.; Li, X. An improved mask R-CNN model for multiorgan segmentation. Math. Probl. Eng. 2020, 2020, 8351725. [Google Scholar] [CrossRef]
- Gai, R.; Gao, J.; Xu, G. HPPEM: A High-Precision Blueberry Cluster Phenotype Extraction Model Based on Hybrid Task Cascade. Agronomy 2024, 14, 1178. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, G.; Liu, S.; Liu, Y.; Yang, H.; Sun, J.; Yan, Y.; Fan, G.; Wang, J.; Zhang, H. New Progress in Intelligent Picking: Online Detection of Apple Maturity and Fruit Diameter Based on Machine Vision. Agronomy 2024, 14, 721. [Google Scholar] [CrossRef]
- Wang, S.; Sun, G.; Zheng, B.; Du, Y. A crop image segmentation and extraction algorithm based on mask RCNN. Entropy 2021, 23, 1160. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; He, P.; Zhang, C.; Zhang, Z. A robust approach to reading recognition of pointer meters based on improved mask-RCNN. Neurocomputing 2020, 388, 90–101. [Google Scholar] [CrossRef]
- Jia, W.; Wei, J.; Zhang, Q.; Pan, N.; Niu, Y.; Yin, X.; Ding, Y.; Ge, X. Accurate segmentation of green fruit based on optimized mask RCNN application in complex orchard. Front. Plant Sci. 2022, 13, 955256. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, D. Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background. Comput. Electron. Agric. 2022, 196, 106864. [Google Scholar] [CrossRef]
- Yang, H.; Ni, J.; Gao, J.; Han, Z.; Luan, T. A novel method for peanut variety identification and classification by Improved VGG16. Sci. Rep. 2021, 11, 15756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. A novel ResNet101 model based on dense dilated convolution for image classification. SN Appl. Sci. 2022, 4, 9. [Google Scholar] [CrossRef]
- Singh, J.; Shekhar, S. Road damage detection and classification in smartphone captured images using mask R-CNN. arXiv 2018, arXiv:1811.04535. [Google Scholar]
- Danielczuk, M.; Matl, M.; Gupta, S.; Li, A.; Lee, A.; Mahler, J.; Goldberg, K. Segmenting unknown 3D objects from real depth images using mask R-CNN trained on synthetic point clouds. arXiv 2018, arXiv:1809.05825. [Google Scholar]
- Fang, S.; Zhang, B.; Hu, J. Improved mask R-CNN multi-target detection and segmentation for autonomous driving in complex scenes. Sensors 2023, 23, 3853. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; He, L.; Heinemann, P.; Schupp, J.; Karkee, M. Mask R-CNN based apple flower detection and king flower identification for precision pollination. Smart Agric. Technol. 2023, 4, 100151. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Lai, W.; Seng, G.; Selvaraj, J. Apestnet with mask R-CNN for liver tumor segmentation and classification. Cancers 2023, 15, 330. [Google Scholar] [CrossRef]
- Khan, M.; Akram, T.; Zhang, Y.; Sharif, M. Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework. Pattern Recognit. Lett. 2021, 143, 58–66. [Google Scholar] [CrossRef]
Parameters | Original Mask R-CNN | Improved Mask R-CNN |
---|---|---|
loss | 0.2071 | 0.07428 |
rpn_class_loss | 0.00012616 | 0.000066517 |
rpn_bbox_loss | 0.002452 | 0.004222 |
class_loss | 0.000088574 | 0.000045847 |
bbox_loss | 0.0023981 | 0.0025611 |
mask_loss | 0.2021 | 0.06739 |
P | 0.7825 | 0.8169 |
R | 0.7731 | 0.7948 |
F1 | 0.7778 | 0.8057 |
AP | 0.6728 | 0.7254 |
AP50 | 0.7862 | 0.8127 |
AP75 | 0.7191 | 0.7713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Guan, X.; Xuan, G.; Liu, H.; Li, X.; Gu, F.; Hu, Z. Detection of Straw Coverage under Conservation Tillage Based on an Improved Mask Regional Convolutional Neural Network (Mask R-CNN). Agronomy 2024, 14, 1409. https://doi.org/10.3390/agronomy14071409
Shao Y, Guan X, Xuan G, Liu H, Li X, Gu F, Hu Z. Detection of Straw Coverage under Conservation Tillage Based on an Improved Mask Regional Convolutional Neural Network (Mask R-CNN). Agronomy. 2024; 14(7):1409. https://doi.org/10.3390/agronomy14071409
Chicago/Turabian StyleShao, Yuanyuan, Xianlu Guan, Guantao Xuan, Hang Liu, Xiaoteng Li, Fengwei Gu, and Zhichao Hu. 2024. "Detection of Straw Coverage under Conservation Tillage Based on an Improved Mask Regional Convolutional Neural Network (Mask R-CNN)" Agronomy 14, no. 7: 1409. https://doi.org/10.3390/agronomy14071409