Nutritional Value of Coloured Flesh Potato Tubers in Terms of Their Micronutrient Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. Characteristics of Potato Cultivars
2.3. Experimental Design—Cultivation and Protection
2.4. Meteorological Conditions
2.5. Tuber Sampling and Laboratory Analyses
2.6. Statistical Analysis
3. Results
3.1. Iron Content in Potato Tuber Yield
3.2. Iron Uptake with the Potato Tuber Yield
3.3. Zinc Content in Potato Tuber Yield
3.4. Zn Uptake with Potato Tuber Yield
3.5. Manganese Content in Potato Tuber Yield
3.6. Manganese Uptake with Potato Tuber Yield
3.7. Aluminium Content in Potato Tuber Yield
3.8. Aluminium Uptake with the Potato Tuber Yield
3.9. Lithium Content in Potato Tuber Yield
3.10. Lithium Uptake with Potato Tuber Yield
3.11. Correlation Index
3.12. Mean Daily Intake of Iron, Zinc and Manganese with a Potato Diet
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dzwonkowski, W. Potato market–state and perspectives. Anal. Rynk. 2022, 49, 6–37. (In Polish) [Google Scholar]
- Karan, Y.B. Mineral nutrient variability of potato (Solanum tuberosum L.) tubers with different colors grown in Niksar, Kazova and Artova locations of Tokat Province, Turkey. Peer J. 2023, 11, e15262. [Google Scholar] [CrossRef] [PubMed]
- Andrivon, D. Potato facing global challenges: How, how much, how well? Eur. Potato J. 2017, 60, 389–400. [Google Scholar] [CrossRef]
- Devaux, A.; Goffart, J.P.; Kromann, P.; Andrade-Piedra, J.; Polar, V.; Hareau, G. The potato of the future: Opportunities and challenges in sustainable agri-food systems. Potato Res. 2021, 64, 681–720. [Google Scholar] [CrossRef] [PubMed]
- Leszczyński, W. Nutrition value of potato and potato products. Biul. IHAR 2012, 266, 5–20. (In Polish) [Google Scholar] [CrossRef]
- McGill, C.R.; Kurilich, A.C.; Davignon, J. The role of potatoes and potato components in cardiometabolic health: A review. Ann. Med. 2013, 45, 467–473. [Google Scholar] [CrossRef]
- Khalid, W.; Khalid, M.Z.; Aziz, A.; Tariq, A.; Ikram, A.; Rehan, M.; Younas, S.; Bashir, A.; Fatima, A. Nutritional composition and health benefits of potato. Adv. Food Nutr. Sci. 2020, 5, 7–16. [Google Scholar] [CrossRef]
- Barbaś, P.; Noaema, A.H.; Sawicka, B. Potato (Solanum tuberosum L.) as a rich source of nutrients and bioactive compounds: A Review. J. Cell Tissue Res. 2023, 23, 7337–7355. [Google Scholar]
- Saar-Reismaa, P.; Kotkas, K.; Rosenberg, V.; Kulp, M.; Kuhtinskaja, M.; Vaher, M. Analysis of total phenols, sugars, and mineral elements in colored tubers of Solanum tuberosum L. Foods 2020, 9, 1862. [Google Scholar] [CrossRef]
- Grudzińska, M.; Mańkowski, D. Bioactive compounds in yellow, light yellow, and cream-coloured potato tubers after short-term storage and boiling. Ital. J. Food Sci. 2020, 32, 778–794. [Google Scholar] [CrossRef]
- Mystkowska, I.; Zarzecka, K.; Gugała, M.; Ginter, A. Changes in the content of carotenoids in edible potato cultivated with the application of biostimulants and herbicide. J. Plant Prot. Res. 2023, 63, 263–270. [Google Scholar] [CrossRef]
- Sharma, J.D.; Sharma, V.; Dua, V.K.; Gupta, V.K.; Kumar, D. Variations in micronutrient content in tubers of Indian potato varieties. Potato J. 2017, 44, 101–109. [Google Scholar]
- Burgos, G.; Zum Felde, T.; Andre, C.; Kubow, S. The potato and its contribution to the human diet and health. In The Potato Crop, 1st ed.; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020; pp. 37–74. [Google Scholar]
- Dederko-Kantowicz, P.; Przewodowski, W. Health-promoting proterties of potatoes. Ziem. Pol. 2021, 2, 47–52. (In Polish) [Google Scholar]
- Dereje, B.; Chibuzo, N. Nutritional composition and biochemical properties of Solanum tuberosum. In Solanum tuberosum a Promising Crop for Starvation Problem, 1st ed.; Yildiz, M., Ozgen, Y., Eds.; IntechOpen: London, UK, 2021; pp. 1–12. [Google Scholar]
- Friedrich, M. Minerals in Human and Animal Nutrition, 2nd ed.; West Pomeranian University of Technology in Szczecin: Szczecin, Poland, 2013; pp. 1–96. (In Polish) [Google Scholar]
- Wierzbowska, J.; Rychcik, B.; Światły, A. The effect of different production systems on the content of micronutrients and trace elements in potato tubers. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2018, 68, 701–708. [Google Scholar] [CrossRef]
- Pandey, J.; Gautam, S.; Scheuring, D.C.; Koym, J.W.; Vales, M.I. Variation and genetic basis of mineral content in potato tubers and prospects for genomic selection. Front. Plant Sci. 2023, 14, 1301297. [Google Scholar] [CrossRef]
- Gugała, M.; Zarzecka, K.; Mystkowska, I.; Sikorska, A. Iron and manganese content and uptake with the yield of potato tubers as affected by herbicides and biostimulants, and potato tuber nutritional value. Emir. J. Food Agric. 2018, 30, 1051–1057. [Google Scholar] [CrossRef]
- Zhou, L.; Mu, T.; Ma, M.; Zhang, R.; Sun, Q.; Xu, Y. Nutritional evaluation of different cultivars of potatoes (Solanum tuberosum L.) from China by grey relational analysis (GRA) and its application in potato steamed bread making. J. Integ. Agric. 2019, 18, 231–245. [Google Scholar] [CrossRef]
- Lal, K.; Kumar, A.; Kumar, A.; Jena, R.; Raigond, P.; Kumar, D.; Thakur, N.; Singh, B. Minerals in potato. In Potato, 1st ed.; Raigond, P., Singh, B., Dutt, S., Chakrabarti, S., Eds.; Springer: Singapore, 2020; pp. 87–112. [Google Scholar]
- WRB. World reference database for soil resources. In World Soil Resources Reports; FAO: Rome, Italy, 2014; Volume 106, p. 192. [Google Scholar]
- Michałowska, D.; Piskorz, J. Colored potatoes in vitro gene bank. In Proceedings of the Seed and Protection of Potatoes, Dźwirzyno, Poland, 7–9 June 2017. [Google Scholar]
- Potato Cultivars Collected in the In Vitro Gene Bank in Bonin. Available online: https://ziemniak-bonin.pl/katalogi/bank-genow/ (accessed on 7 May 2024).
- Institute of Plant Protection. Plant Protection Recommendations for 2018/2019; National Research Institute: Poznań, Poland, 2018; pp. 1–359. (In Polish) [Google Scholar]
- Adamczewski, K.; Matysiak, K. The Key to Determining the Development Phases of Mono—And Dicotyledonous Plants on the BBCH Scale; Institute of Plant Protection—National Research Institute: Poznań, Poland, 2011; pp. 1–132. (In Polish) [Google Scholar]
- Roztropowicz, S. Methodology of Observation, Measurements and Sampling in Agricultural Experiments with Potatoes, 1st ed.; Plant Breeding and Acclimatization Institute: Section Jadwisin, Poland, 1999; pp. 1–50. (In Polish) [Google Scholar]
- Nowacki, W. Methodology of Integrated Potato Production, 4th ed.; Chief Inspectorate of Plant Protection and Seed Inspection: Warsaw, Poland, 2020; pp. 1–84. (In Polish) [Google Scholar]
- Skowera, B.; Jędrszczyk, E.S.; Kopcińska, J.; Ambroszczyk, A.M.; Kołton, A. The effects of hydrothermal conditions during vegetation period on fruit quality of processing tomatoes. Pol. J. Environ. Stud. 2014, 23, 195–202. [Google Scholar]
- Nowacki, W. Share of marketable yield in total yield edible potato cultivars. Zesz. Probl. Postępów Nauk Rol. 2006, 511, 429–439. (In Polish) [Google Scholar]
- Polish Standard PN-EN 12145; Fruit and Vegetable Juices—Determination of Total Dry Matter—Gravimetric Method with Loss of Mass on Drying. Polish Committee for Standardization: Warsaw, Poland, 2001. (In Polish)
- Trętowski, J.; Wójcik, R. Methodology of Agricultural Experiments, 1st ed.; Higher School of Agriculture and Pedagogy: Siedlce, Poland, 1991; pp. 31–334. (In Polish) [Google Scholar]
- EFSA. European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Iron. 2015. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4254 (accessed on 5 April 2024).
- Jarosz, E.; Rychlik, E.; Stoś, K.; Charzewska, J. Nutritional Standards for the Population of Poland and Their Application, 1st ed.; National Institute of Public Health—National Institute of Hygiene: Warsaw, Poland, 2020; pp. 1–463. (In Polish) [Google Scholar]
- EFSA. European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Zinc. 2014. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/3844 (accessed on 6 April 2024).
- EFSA. European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Manganese. 2013. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/3419 (accessed on 26 April 2024).
- Singh, B.; Sharma, J.; Sood, S.D.; Kardile, H.B.; Kumar, A.; Goutam, U.; Bhardwaj, V. Genetic variability for micronutrient content in andigena potato genotypes. Plant Cell Biotech. Molec. Biol. 2020, 21, 1–10. Available online: https://ikprress.org/index.php/PCBMB/article/view/4934 (accessed on 3 April 2024).
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Dalamu, S.K.; Tiwari, J.K.; Sharma, J.; Raigond, P.; Chaudhary, B.; Sharma, A.K. Nutritional composition of potato (Solanum tuberosum L.) genetic resources. Curr. Sci. 2023, 124, 1454–1461. [Google Scholar] [CrossRef]
- Sawicka, B.; Barbaś, P.; Skiba, D. Fluctuations of sodium, copper, zinc, iron and manganese in potato tubers in the organic and integrated production system. J. Elem. 2016, 12, 539–547. [Google Scholar] [CrossRef]
- Mystkowska, I. The content of iron and manganese in potato tubers treated with biostimulators and their nutritional value. Appl. Ecol. Environ. Res. 2018, 16, 6633–6641. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Trawczyński, C. Effect of irrigation and soil’s microorganisms on the macro and micronutrient contents in organic potato tubers. Fragm. Agron. 2011, 28, 139–148. (In Polish) [Google Scholar]
- Zhao, D.; Huang, Y.; Wang, B.; Chen, H.; Pan, W.; Yang, M.; Xia, Z.; Zhang, R.; Yuan, C. Dietary intake levels of iron, copper, zinc, and manganese in relation to cognitive function. A cross-sectional study. Nutrients 2023, 15, 704. [Google Scholar] [CrossRef] [PubMed]
- Mystkowska, I.; Rogóż-Matyszczak, A. Content and uptake of selected microelements with potato tuber yield treated with biostimulators. J. Ecol. Engin. 2019, 20, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Treiber, N.; Maity, P.; Singh, K.; Ferchiu, F.; Wlaschek, M.; Scharffetter-Kochanek, K. The role of manganese superoxide dismutase in skin aging. Dermato-Endocrinology 2012, 4, 232–235. [Google Scholar] [CrossRef]
- Wołonciej, M.; Milewska, E.; Roszkowska-Jakimiec, W. Trace elements as an activator of antioxidant enzymes. Postępy Hig. Med. Dośw. 2016, 70, 1483–1498. [Google Scholar] [CrossRef]
- Wekesa, M.; Okoth, M.; Abong’, G.; Muthoni, J.; Kabira, J. Effect of soil characteristics on potato tuber minerals composition of selected Kenyan varieties. J. Agric. Sci. 2014, 6, 163–171. [Google Scholar] [CrossRef]
- Langauer-Lewowicka, H. Aluminium—Environmental hazards. Med. Sr. 2005, 8, 59–64. (In Polish) [Google Scholar]
- EFSA. European Food Safety Authority. Safety of Aluminium from Dietary Intake—Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). Available online: https://www.efsa.europa.eu/en/efsajournal/pub/754 (accessed on 26 April 2024).
- Pearson, A.J.; Ashmore, E. Risk assessment of antimony, barium, beryllium, boron, bromine, lithium, nickel, strontium, thallium and uranium concentrations in the New Zealand diet. Food Addit. Contam. 2020, 37 Pt A, 451–464. [Google Scholar] [CrossRef]
- Emsley, J. Nature’s Building Blocks: An A–Z Guide to the Elements, 1st ed.; Oxford University Press: Oxford, UK, 2001; pp. 1–539. [Google Scholar]
- Exley, C.; House, E.R. Aluminium in the human brain. Monatsh. Chem. 2011, 142, 357–363. [Google Scholar] [CrossRef]
- Walton, J.R. Chronic aluminum intake causes Alzheimer’s disease: Applying Sir Austin Bradford Hill’s causality criteria. J. Alzheimer’s Dis. 2014, 40, 765–838. [Google Scholar] [CrossRef]
- Widłak, M. The toxicity of aluminium environmental challenge (reviev of literature). Rocz. Świętokrzyski. Ser. B Nauki Przyr. 2011, 32, 131–140. (In Polish) [Google Scholar]
- Melnikov, P.; Cônsolo, F.Z.; Zanoni, L.Z.; Silva, A.F.; Rimoli, J.; Nascimento, V.A. Trace elements in common potatoes, sweet potatoes, Cassava, Yam and Taro. Int. J. Medic. Plants Nat. Prod. 2016, 2, 8–12. [Google Scholar] [CrossRef]
- Gunko, S.; Vakuliuk, P.; Naumenko, O.; Bober, A.; Boroday, V.; Nasikovskyi, V.; Muliar, O. The mineral composition of potatoes and its influence on the darkening of tubers pulp. Food Sci. Technol. 2023, 17, 21–28. [Google Scholar] [CrossRef]
- Bedoya-Perales, N.S.; Maus, D.; Neimaier, A.; Escobedo-Pacheco, E.; Pumi, G. Assessment of the variation of heavy metals and pesticide residues in native and modern potato (Solanum tuberosum L.) cultivars grown at different altitudes in a typical mining region in Peru. Toxicol. Rep. 2023, 11, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Szklarska, D.; Rzymski, P. Is lithium a micronutrient? From biological activity and epidemiological observation to food fortification. Biol. Trace Elem. Res. 2019, 189, 18–27. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Kalinowska, M.; Szymańska, M. A study on selected physiological parameters of plants grown under supplementation. Biol. Trace Elem. Res. 2012, 149, 425–430. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Hassan, W.; Shah, A.N.; Anjum, S.A.; Cheema, S.A.; Ali, L. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities–a review. Plant Physiol. Bioch. 2016, 107, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, L.; Tian, C.Y. High lithium tolerance of Apocy mum venetum seeds during germination. Environ. Sci. Pollut. Res. 2018, 25, 5040–5046. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, M.; Hasanuzzaman, M.; Wang, L. Lithium in Environment and potential targets to reduce lithium toxicity in plants. J. Plant Growth Regul. 2019, 38, 1574–1586. [Google Scholar] [CrossRef]
- Długaszek, M.; Kłos, A.; Bertrandt, J. Lithium supply in the daily food rations of students. Probl. Hig. Epidemiol. 2012, 93, 867–870. (In Polish) [Google Scholar]
- Rogóż, A.; Wiśniowska-Kielian, B. Content and Circulation of Circulation of Lithium in the Environment, 1st ed.; Stanislaw Staszic Academy of Mining and Metallurgy in Krakow: Kraków, Poland, 2019; pp. 2011–2017. [Google Scholar]
- Xu, J.; Li, Y.; Kaur, L.; Singh, J.; Zeng, F. Functional Food Based on Potato. Foods 2023, 12, 2145. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicka, A. Mineral content of potato tubers grown in the organic system, their nutritional value and interaction. J. Res. Appl. Agric. Enging. 2012, 57, 188–192. (In Polish) [Google Scholar]
- Leszczyński, W. The quality of table potato. Żywność 2000, 4 (Suppl. S25), 5–27. (In Polish) [Google Scholar]
- Rubio, C.; Gutiérrez, A.J.; Revert, C.; Reguera, J.I.; Burgos, A.; Hardisson, A. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population. Int. J. Food Sci. Nutr. 2009, 60, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Zarzecka, K.; Ginter, A.; Gugała, M.; Mystkowska, I. Effect of herbicide and biostimulants on the content and uptake of selected micronutrients by edible potato tubers. J. Elem. 2024, 29, 57–71. [Google Scholar] [CrossRef]
- BfR. Bundesinstitut für Risikobewertung. Reducing Aluminium Intake Can Minimise Potential Health Risks. 2019. Available online: https://www.openagrar.de/receive/openagrar_mods_00054035 (accessed on 10 June 2024).
- Simonsen, L.; Johnsen, H.; Lund, S.P.; Matikainen, E.; Midtgard, U.; Wennberg, A. Methodological approach to the evaluation of neurotoxicology data and the classification of neurotoxic chemicals. Scand. J. Work Environ. Health 1994, 20, 1–12. [Google Scholar] [CrossRef]
- Chmielewska, M.; Tys, J.; Petkowicz, J.; Petkowicz, B. Food—First, to do no harm (a review). Acta Agroph. 2018, 25, 17–34. [Google Scholar] [CrossRef]
Properties | Description | ||
---|---|---|---|
2021 | 2022 | 2023 | |
pH (in 1 M KC) | 5.48 | 5.62 | 5.00 |
Organic matter (g·kg−1) | 22.0 | 22.8 | 15.9 |
Phosphorus—available (mg·kg−1) | 72.0 | 66.0 | 69.9 |
Potassium—available (mg·kg−1) | 151.0 | 159.0 | 123.2 |
Magnesium—available (mg·kg−1) | 64.0 | 63.0 | 46.0 |
Iron—total forms (mg·kg−1) | 886.0 | 1620.0 | 897.0 |
Zinc—total forms (mg·kg−1) | 17.4 | 18.1 | 11.3 |
Manganese—total forms (mg·kg−1) | 58.4 | 56.1 | 104.0 |
Cultivar | Earliness | Flesh Colour | Peel Colour | Taste | Yield of Tubers | Country of Origin | Year of Registration |
---|---|---|---|---|---|---|---|
Eurostar | medium late | light yellow | light yellow | good | large | The Netherlands | 2013 |
Rote Emmalie | early | red | red | distinctive | large | Germany | 2004 |
Herbie 26 | medium late | red | red | good | medium | Czech Republic | - |
Provita | early | purple | purple | good | medium | Poland | 2021 |
Salad Blue | medium early | purple | blue | good nutty | medium | United Kingdom | 1900 |
Blue Annelise | medium early | purple | dark purple | delicate | medium | Germany | 2007 |
Vitelotte Noire | medium late/late | purple | purple | slightly bitter, nutty | medium | France | - |
Bora Valley | medium late | dark purple | dark purple | good delicate | very large | Korea | - |
Years | Months | ||||||
---|---|---|---|---|---|---|---|
April (IV) | May (V) | June (VI) | July (VII) | August (VIII) | September (IX) | April–September (IV–IX) | |
Air temperature (°C) | |||||||
2021 | 6.6 | 12.4 | 20.4 | 22.7 | 17.1 | 12.9 | 15.4 mean |
2022 | 7 | 13.6 | 19.9 | 19.3 | 21 | 11.8 | 14.8 mean |
2023 | 8.7 | 13.4 | 18 | 20.3 | 21.3 | 18 | 16.6 mean |
Long-term mean (1980–2009) | 7.9 | 11.2 | 16.7 | 19.3 | 18.0 | 13.0 | 14.4 mean |
Rainfall (mm) | |||||||
2021 | 42.0 | 29.5 | 33.8 | 50.0 | 95.4 | 42.1 | 292.8 sum |
2022 | 31.5 | 31.4 | 26.5 | 95.7 | 39.3 | 64.9 | 289.0 sum |
2023 | 12.4 | 46.5 | 53.6 | 31.4 | 25.0 | 16.6 | 185.5 sum |
Long-term mean (1980–2009) | 49.6 | 48.2 | 60.7 | 45.7 | 53.0 | 50.7 | 307.9 sum |
Cultivars | Content of Fe | Uptake of Fe | ||||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | |
Eurostar | 38.95 D | 39.93 E | 38.72 D | 39.20 e | 460.4 AB | 387.7 ABC | 286.1 A | 378.1 a |
Rote Emmalie | 60.59 B | 63.27 C | 56.30 A | 60.05 bc | 399.9 AB | 361.9 ABC | 166.1 AB | 309.3 abc |
Herbie 26 | 86.15 A | 99.33 A | 47.47 BC | 77.65 a | 319.6 ABC | 458.9 A | 258.7 AB | 345.7 ab |
Provita | 61.73 B | 65.22 C | 57.97 A | 61.64 b | 475.3 AB | 431.8 AB | 205.5 AB | 370.9 a |
Salad Blue | 50.78 C | 52.90 D | 49.03 BC | 50.90 d | 262.0 BC | 279.8 BC | 223.6 AB | 255.1 bc |
Blaue Annelise | 40.92 D | 45.36 E | 39.56 D | 41.95 e | 184.5 C | 220.4 C | 207.3 AB | 204.1 c |
Vitelotte Noire | 57.10 BC | 60.63 C | 55.17 AB | 57.63 c | 268.4 BC | 330.5 ABC | 157.2 AB | 252.0 bc |
Bora Valley | 70.20 A | 75.14 B | 37.52 D | 60.95 bc | 530.0 A | 435.8 AB | 110.7 B | 358.8 a |
Mean | 58.30 a | 62.27 a | 47.72 b | 56.25 | 362.5 a | 363.3 a | 201.9 b | 309.2 |
Cultivars | Content of Zn | Uptake of Zn | ||||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | |
Eurostar | 17.00 A | 19.22 A | 9.39 D | 15.20 bc | 200.9 A | 186.6 A | 69.4 A | 152.3 a |
Rote Emmalie | 16.93 A | 17.85 A | 15.80 A | 16.86 a | 111.7 B | 102.1 B | 46.61 B | 86.8 bc |
Herbie 26 | 16.45 AB | 18.92 A | 12.48 BC | 15.95 a | 61.0 B | 87.4 B | 68.0 B | 72.1 bcd |
Provita | 14.95 BC | 15.53 B | 14.21 A | 14.90 cd | 115.1 B | 102.8 B | 50.4 B | 89.4 b |
Salad Blue | 13.20 C | 14.14 BC | 11.88 BCD | 13.07 e | 68.1 B | 74.8 B | 54.2 B | 65.7 bcd |
Blaue Annelise | 16.97 A | 19.16 A | 6.73 E | 14.29 d | 76.5 B | 93.1 B | 35.3 B | 68.3 bcd |
Vitelotte Noire | 13.38 C | 13.42 C | 13.37 AB | 13.39 e | 62.9 B | 73.1 B | 38.1 B | 58.0 d |
Bora Valley | 12.27 C | 11.31 D | 11.91 BCD | 11.83 f | 92.6 B | 65.6 B | 35.1 B | 64.4 bcd |
Mean | 15.14 a | 16.19 a | 11.97 b | 14.43 | 98.6 a | 98.2 a | 49.6 b | 82.1 |
Cultivars | Content of Mn | Uptake of Mn | ||||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | |
Eurostar | 9.10 A | 8.78 A | 16.49 A | 11.46 a | 107.6 A | 85.3 A | 121.9 A | 104.9 a |
Rote Emmalie | 2.20 G | 1.84 G | 7.10 F | 3.71 h | 14.5 B | 10.5 B | 20.9 D | 15.3 d |
Herbie 26 | 4.61 D | 4.64 C | 14.70 C | 7.98 d | 17.1 B | 21.4 B | 80.1 B | 39.5 bc |
Provita | 5.40 C | 5.29 B | 15.14 B | 8.61 c | 41.6 B | 35.0 B | 53.7 BC | 43.4 b |
Salad Blue | 6.10 B | 5.38 B | 15.24 B | 8.91 b | 31.5 B | 28.5 B | 69.5 B | 43.2 b |
Blaue Annelise | 3.20 F | 2.20 F | 10.16 E | 5.19 g | 14.4 B | 10.7 B | 53.2 BC | 26.1 cd |
Vitelotte Noire | 3.23 EF | 2.86 E | 13.23 D | 6.44 f | 15.2 B | 15.6 B | 37.7 CD | 22.8 d |
Bora Valley | 3.50 E | 3.67 D | 14.53 C | 7.23 e | 26.4 B | 21.3 B | 42.9 CD | 30.2 bcd |
Mean | 4.67 b | 4.33 b | 13.32 a | 7.44 | 33.5 b | 28.5 b | 60.0 a | 40.7 |
Cultivars | Content of Al | Uptake of Al | ||||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | |
Eurostar | 60.13 C | 61.87 E | 38.74 C | 53.58 f | 710.7 A | 600.8 A | 286.3 A | 532.6 a |
Rote Emmalie | 64.20 BC | 65.37 DE | 63.17 A | 64.25 cd | 423.7 BC | 373.9 BC | 186.4 A | 328.0 bcd |
Herbie 26 | 66.13 BC | 70.00 CD | 38.37 C | 58.17 e | 245.3 CD | 323.4 BC | 209.1 A | 259.3 cd |
Provita | 70.10 B | 70.83 CD | 60.89 A | 67.27 c | 539.8 A | 468.9 AB | 216.2 A | 408.3 ab |
Salad Blue | 68.21 B | 70.12 CD | 43.68 BC | 60.67 de | 352.0 BC | 370.9 BC | 199.2 A | 307.4 bcd |
Blaue Annelise | 42.88 D | 44.03 F | 46.26 B | 44.39 g | 193.4 D | 214.0 C | 242.4 A | 216.6 d |
Vitelotte Noire | 96.40 A | 80.50 B | 65.67 A | 80.86 a | 453.1 BC | 438.7 B | 187.2 A | 359.7 bc |
Bora Valley | 99.07 A | 91.00 A | 39.52 BC | 76.53 b | 748.0 A | 527.8 A | 116.6 A | 464.1 ab |
Mean | 70.89 a | 69.22 a | 49.54 b | 63.22 | 458.2 a | 414.8 a | 205.4 b | 359.5 |
Cultivars | Content of Li | Uptake of Li | ||||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | |
Eurostar | 0.75 A | 0.77 A | 0.70 A | 0.74 b | 8.86 A | 7.48 A | 5.17 A | 7.17 a |
Rote Emmalie | 0.71 A | 0.71 A | 0.70 A | 0.71 c | 4.69 BC | 4.06 B | 2.07 B | 3.61 b |
Herbie 26 | 0.81 A | 0.83 A | 0.71 A | 0.78 a | 3.01 C | 3.84 B | 3.82 B | 3.56 b |
Provita | 0.70 A | 0.71 A | 0.70 A | 0.70 c | 5.39 B | 4.70 B | 2.49 B | 4.19 b |
Salad Blue | 0.71 A | 0.72 A | 0.70 A | 0.71 c | 3.66 C | 3.81 B | 3.19 B | 3.55 b |
Blaue Annelise | 0.71 A | 0.70 A | 0.70 A | 0.70 c | 3.20 C | 3.40 B | 3.67 B | 3.42 b |
Vitelotte Noire | 0.75 A | 0.77 A | 0.70 A | 0.74 b | 3.53 C | 4.20 B | 2.00 B | 3.24 b |
Bora Valley | 0.78 A | 0.79 A | 0.70 A | 0.76 ab | 5.89 B | 4.58 B | 2.07 B | 4.18 b |
Mean | 0.74 a | 0.75 a | 0.70 a | 0.73 | 4.78 a | 4.51 a | 3.06 a | 4.12 |
Studied Feature | Fe | Zn | Mn | Al |
---|---|---|---|---|
Total rainfall in the years studied 2021–2023 | +0.94906 | +0.96106 | −0.99751 | +0.99918 |
Soil nutrients content (Fe, Zn, Mn) | −0.47930 | +0.98800 | +0.99999 | - |
Micronutrient | Mean in Dry Matter (mg·kg−1) | Mean in Fresh Matter (mg·100 g−1) | Dietary Reference Intake/Day * (mg) | Dietary Reference Intake/Day ** (mg) | Percent of Realisation | |
---|---|---|---|---|---|---|
[33,35,36] | [34] | |||||
Iron | 56.25 | 1.15 | 7.0–16.0 | 10–18 | 7–16 | 6–11.5 |
Zinc | 14.43 | 0.30 | 7.5–16.3 | 8–11 | 2–4 | 3–4 |
Manganese | 7.44 | 0.15 | 3.0 | 1.8–2.3 | 5 | 6.5–8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarzecka, K.; Ginter, A.; Gugała, M.; Durakiewicz, W. Nutritional Value of Coloured Flesh Potato Tubers in Terms of Their Micronutrient Content. Agronomy 2024, 14, 1537. https://doi.org/10.3390/agronomy14071537
Zarzecka K, Ginter A, Gugała M, Durakiewicz W. Nutritional Value of Coloured Flesh Potato Tubers in Terms of Their Micronutrient Content. Agronomy. 2024; 14(7):1537. https://doi.org/10.3390/agronomy14071537
Chicago/Turabian StyleZarzecka, Krystyna, Agnieszka Ginter, Marek Gugała, and Waldemar Durakiewicz. 2024. "Nutritional Value of Coloured Flesh Potato Tubers in Terms of Their Micronutrient Content" Agronomy 14, no. 7: 1537. https://doi.org/10.3390/agronomy14071537
APA StyleZarzecka, K., Ginter, A., Gugała, M., & Durakiewicz, W. (2024). Nutritional Value of Coloured Flesh Potato Tubers in Terms of Their Micronutrient Content. Agronomy, 14(7), 1537. https://doi.org/10.3390/agronomy14071537