Morphological and Physiological Response of Maize (Zea mays L.) to Drought Stress during Reproductive Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Site Description
2.2. Stress Treatment
2.3. Measurement of Morphological and Growth-Related Variables
2.4. Measurement of Physiological Variables
2.4.1. Potential Quantum Yield Efficiency of PSII (Fv/Fm)
2.4.2. Photosynthetic Parameters
2.5. Statistical Analysis
3. Results
3.1. Morphological and Growth-Related Variables
3.2. Physiological Parameters
3.2.1. Potential Quantum Yield Efficiency of PSII (Fv/Fm) under Drought
3.2.2. Photosynthetic Variables under Drought Stress
3.2.3. Correlation and Multiple Regression Analyses
4. Discussion
4.1. Morphological and Growth-Related Variables
4.2. Physiological Variables
4.2.1. Potential Quantum Yield Efficiency of PSII (Fv/Fm)
4.2.2. Photosynthetic Parameters
4.2.3. Correlation and Multiple Regression Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sahoo, S.; Adhikari, S.; Joshi, A.; Singh, N.K. Use of wild progenitor teosinte in maize (Zea mays subsp. mays) improvement: Present status and future prospects. Trop. Plant Biol. 2021, 14, 156–179. [Google Scholar] [CrossRef]
- USDA. Corn Production. 2022. Available online: https://fas.usda.gov/data/mexico-grain-and-feed-update-22 (accessed on 29 January 2024).
- Ramírez-Vega, H.; Vázquez-Carrillo, G.; Muñóz-Rosales, G.M.; Martínez-Loperena, R.; Heredia-Nava, D.; Martínez-Sifuentes, J.Á.; Anaya-Esparza, L.M.; Gómez-Rodríguez, V.M. Physical and chemical characteristics of native maize from the Jalisco highlands and their influence on the nixtamalization process. Agriculture 2022, 12, 1293. [Google Scholar] [CrossRef]
- Ureta, C.; González, E.J.; Espinosa, A.; Trueba, A.; Piñeyro-Nelson, A.; Álvarez-Buylla, E.R. Maize yield in Mexico under climate change. Agric. Syst. 2020, 177, 102697. [Google Scholar] [CrossRef]
- Revilla, P.; Anibas, C.M.; Tracy, W.F. Sweet corn research around the world 2015–2020. Agronomy 2021, 11, 534. [Google Scholar] [CrossRef]
- Różewicz, M. Production, use and efficiency of utilising grains of various cereal species as feed resources for poultry production. Pol. J. Agron. 2019, 38, 66–74. [Google Scholar]
- Sánchez Hernández, M.Á.; Cruz Vázquez, M.; Sánchez Hernández, C.; Morales Terán, G.; Rivas Jacobo, M.A.; Villanueva Verduzco, C. Forage yield of maize adapted to the humid tropic of Mexico. Rev. Mex. Cienc. Agric. 2019, 10, 699–712. [Google Scholar]
- Ibarrola-Rivas, M.J.; Castillo, G.; González, J. Social, economic and production aspects of maize systems in Mexico. Investig. Geográficas 2020, 102, 1–8. [Google Scholar]
- Safian, N.; Naderi, M.R.; Torabi, M.; Soleymani, A.; Salemi, H.R. Corn (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench) yield and nutritional quality affected by drought stress. Biocatal. Agric. Biotechnol. 2022, 45, 102486. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef]
- Yasin, M.; Ahmad, A.; Khaliq, T.; Habib-ur-Rahman, M.; Niaz, S.; Gaiser, T.; Ghafoor, I.; Hassan, H.S.U.; Qasim, M.; Hoogenboom, G. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models. Environ. Sci. Pollut. Res. 2022, 29, 18967–18988. [Google Scholar] [CrossRef]
- Król-Badziak, A.; Kozyra, J.; Rozakis, S. Assessment of Suitability Area for Maize Production in Poland Related to the Climate Change and Water Stress. Sustainability 2024, 16, 852. [Google Scholar] [CrossRef]
- Harvey, C.A.; Saborio-Rodríguez, M.; Martinez-Rodríguez, M.R.; Viguera, B.; Chain-Guadarrama, A.; Vignola, R.; Alpizar, F. Climate change impacts and adaptation among smallholder farmers in Central America. Agric. Food Secur. 2018, 7, 57. [Google Scholar] [CrossRef]
- Ndlovu Kim, W.; Iizumi, T.; Nishimori, M. Global patterns of crop production losses associated with droughts from 1983 to 2009. J. Appl. Meteorol. Climatol. 2019, 58, 1233–1244. [Google Scholar]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Lukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Razi, K.; Muneer, S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit. Rev. Biotechnol. 2021, 41, 669–691. [Google Scholar] [CrossRef] [PubMed]
- Jedmowski, C.; Ashoub, A.; Brüggemann, W. Reactions of Egyptian landraces of Hordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescence transient analysis. Acta Physiol. Plant. 2013, 35, 345–354. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, L.; Wang, C.; Zhu, X.; Wang, Z.; Xing, B. Photosynthetic response mechanisms in typical C3 and C4 plants upon La 2 O 3 nanoparticle exposure. Environ. Sci. Nano 2020, 7, 81–92. [Google Scholar] [CrossRef]
- Foyer, C.H.; Harbinson, J. Oxygen metabolism and the regulation of photosynthetic electron transport. In Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, 1st ed.; Foyer, C.H., Mullineaux, P.M., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–42. [Google Scholar]
- Różewicz, M.; Grabiński, J.; Wyzińska, M. Effect of strip-till and cultivar on photosynthetic parameters and grain yield of winter wheat. Int. Agrophys. 2024, 38, 279–291. [Google Scholar] [CrossRef]
- Stępień-Warda, A. Effect of soil cultivation system on the efficiency of the photosynthetic apparatus in maize leaves (Zea mays L.). Pol. J. Agron. 2020, 43, 57–62. [Google Scholar]
- Ndlovu, E.; Van Staden, J.; Maphosa, M. Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress 2021, 2, 100018. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.; Bai, Y.W.; Camberato, J.J.; Xue, J.Q.; Zhang, R.H. Effects of drought stress on the photosynthesis in maize. Russ. J. Plant Physl. 2018, 65, 849–856. [Google Scholar] [CrossRef]
- Wang, B.; Liu, C.; Zhang, D.; He, C.; Zhang, J.; Li, Z. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biol. 2019, 19, 335. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, Y.; Huang, S.; Xu, C.; Wang, X.; Gao, J.; Meng, Q.; Wang, P. The impact of drought and heat stress at flowering on maize kernel filling: Insights from the field and laboratory. Agric. For. Meteorol. 2022, 312, 108733. [Google Scholar] [CrossRef]
- Basal, O.; Szabó, A.; Veres, S. Physiology of soybean as affected by PEG-induced drought stress. Curr. Plant Biol. 2020, 22, 100135. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Singh, A.K.; Ansari, M.I. Effect of drought stress on crop production. In New Frontiers in Stress Management for Durable Agriculture; Rakshit, A., Singh, H.B., Singh, A.K., Singh, U.S., Fraceto, L., Eds.; Springer: Singapore, 2020; pp. 35–47. [Google Scholar]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Lee, J.G. Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae 2021, 7, 238. [Google Scholar] [CrossRef]
- Badr, A.; Brüggemann, W. Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica 2020, 58, 38–645. [Google Scholar] [CrossRef]
- Ruban, A.V. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 2016, 170, 1903–1916. [Google Scholar] [CrossRef] [PubMed]
- Stirbet, A.; Lazár, D.; Kromdijk, J.; Govindjee. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Krause, G.H. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant. 1988, 74, 566–574. [Google Scholar] [CrossRef]
- Krause, A.G.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Biol. 1991, 42, 313–349. [Google Scholar] [CrossRef]
- Öquist, G.; Chow, W.S.; Anderson, J.M. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta 1992, 186, 450–460. [Google Scholar] [CrossRef]
- Mehta, P.; Allakhverdiev, S.I.; Jajoo, A. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosyn. Res. 2010, 105, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Zushi, K.; Matsuzoe, N. Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci. Hortic. 2017, 219, 216–221. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Malnoë, A. Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environ. Exp. Bot. 2018, 154, 123–133. [Google Scholar] [CrossRef]
- He, W.; Yoo, G.; Ryu, Y. Evaluation of effective quantum yields of photosystem II for CO2 leakage monitoring in carbon capture and storage sites. PeerJ 2021, 9, e10652. [Google Scholar] [CrossRef] [PubMed]
- Bheemanahalli, R.; Ramamoorthy, P.; Poudel, S.; Samiappan, S.; Wijewardane, N.; Reddy, K.R. Effects of drought and heat stresses during reproductive stage on pollen germination, yield, and leaf reflectance properties in maize (Zea mays L.). Plant Direct 2022, 6, e434. [Google Scholar] [CrossRef]
- Imakumbili, M.L. Making Water Stress Treatments in Pot Experiments: An Illustrated Step-by-Step Guide; Sokoine University of Agriculture: Morogoro, Tanzania, 2019; pp. 1–17. [Google Scholar]
- Montgomery, E. Correlation studies in corn. Neb. Agric. Exp. Stn. Annu. Rep 1911, 24, 108–159. [Google Scholar]
- Zhang, Y.; Liu, P.; Zhang, X.; Zheng, Q.; Chen, M.; Ge, F.; Li, Z.; Sun, W.; Guan, Z.; Liang, T.; et al. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Front. Plant Sci. 2018, 9, 611. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, B.C.; Turner, N.C.; Li, F.M. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning. Eur. J. Agron. 2010, 33, 257–266. [Google Scholar] [CrossRef]
- Galicia-Juárez, M.; Zavala-García, F.; Sinagawa-García, S.R.; Gutiérrez-Diez, A.; Williams-Alanís, H.; Cisneros-López, M.E.; Valle-Gough, R.E.; Flores-Garivay, R.; Santillano-Cázares, J. Identification of Sorghum (Sorghum bicolor (L.) Moench) Genotypes with Potential for Hydric and Heat Stress Tolerance in Northeastern Mexico. Plants 2021, 10, 2265. [Google Scholar] [CrossRef] [PubMed]
- Padhi, B.; Chauhan, G.; Kandoi, D.; Stirbet, A.; Tripathy, B.C.; Govindjee, G. A comparison of chlorophyll fluorescence transient measurements, using Handy PEA and FluorPen fluorometers. Photosynthetica 2021, 59, 399–408. [Google Scholar] [CrossRef]
- Hasan, S.A.; Rabei, S.H.; Nada, R.M.; Abogadallah, G.M. Water use efficiency in the drought-stressed sorghum and maize in relation to expression of aquaporin genes. Biol. Plant. 2017, 61, 127–137. [Google Scholar] [CrossRef]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.J.; Reddy, V.R.; Timlin, D. Drought-induced responses in maize under different vapor pressure deficit conditions. Plants 2022, 11, 2771. [Google Scholar] [CrossRef] [PubMed]
- Wach, D.; Skowron, P. An overview of plant responses to the drought stress at morphological, physiological and biochemical levels. Pol. J. Agron. 2022, 50, 25–34. [Google Scholar]
- Salgado-Aguilar, M.; Molnar, T.; Pons-Hernández, J.L.; Covarrubias-Prieto, J.; Ramírez-Pimentel, J.G.; Raya-Pérez, J.C.; Hearne, S.; Iturriaga, G. Physiological and biochemical analyses of novel drought-tolerant maize lines reveal osmoprotectant accumulation at silking stage. Chil. J. Agric. Res. 2020, 80, 241–252. [Google Scholar] [CrossRef]
- Laskari, M.; Menexes, G.; Kalfas, I.; Gatzolis, I.; Dordas, C. Water stress effects on the morphological, physiological characteristics of maize (Zea mays L.), and on environmental cost. Agronomy 2022, 12, 2386. [Google Scholar] [CrossRef]
- Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 2022, 11, 1620. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ashraf, U.; Tanveer, M.; Khan, I.; Hussain, S.; Shahzad, B.; Zohaib, A.; Abbas, F.; Saleem, M.F.; Ali, I.; et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 2017, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef] [PubMed]
- Wada, S.; Takagi, D.; Miyake, C.; Makino, A.; Suzuki, Y. Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I, P700, under drought and high temperatures in rice. Int. J. Mol. Sci. 2019, 20, 2068. [Google Scholar] [CrossRef] [PubMed]
- Qaseem, M.F.; Qureshi, R.; Shaheen, H. Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci. Rep. 2019, 9, 6955. [Google Scholar] [CrossRef] [PubMed]
- Kohzuma, K.; Cruz, J.A.; Akashi, K.; Hoshiyasu, S.; Munekage, Y.N.; Yokota, A.; Kramer, D.M. The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ. 2009, 32, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Chiango, H.; Figueiredo, A.; Sousa, L.; Sinclair, T.; da Silva, J.M. Assessing drought tolerance of traditional maize genotypes of Mozambique using chlorophyll fluorescence parameters. S. Afr. J. Bot. 2021, 138, 311–317. [Google Scholar] [CrossRef]
- Liu, M.; Qi, H.; Zhang, Z.P.; Song, Z.W.; Kou, T.J.; Zhang, W.J.; Yu, J.L. Response of photosynthesis and chlorophyll fluorescence to drought stress in two maize cultivars. Afr. J. Agric. Res. 2012, 7, 4751–4760. [Google Scholar]
- Ghassemi-Golezani, K.; Heydari, S.; Dalil, B. Field performance of maize (Zea mays L.) cultivars under drought stress. Acta Agric. Slov. 2018, 111, 25–32. [Google Scholar] [CrossRef]
- Cai, F.; Zhang, Y.; Mi, N.; Ming, H.; Zhang, S.; Zhang, H.; Zhao, X. Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree. Agric. Water Manag. 2020, 241, 106379. [Google Scholar] [CrossRef]
- Yousaf, M.I.; Riaz, M.W.; Shehzad, A.; Jamil, S.; Shahzad, R.; Kanwal, S.; Ghani, A.; Ali, F.; Abdullah, M.; Ashfaq, M.; et al. Responses of maize hybrids to water stress conditions at different developmental stages: Accumulation of reactive oxygen species, activity of enzymatic antioxidants and degradation in kernel quality traits. PeerJ 2023, 11, e14983. [Google Scholar] [CrossRef]
- Cornic, G. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends Plant Sci. 2000, 5, 187–188. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Miner, G.L.; Bauerle, W.L. Seasonal variability of the parameters of the Ball–Berry model of stomatal conductance in maize (Zea mays L.) and sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Cell Environ. 2017, 40, 1874–1886. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Han, Z.; Feng, H.; Wang, Y.; Kang, J.; Han, X.; Wang, L.; Wang, C.; Li, H.; et al. Analysis of physiological indicators associated with drought tolerance in wheat under drought and re-watering conditions. Antioxidants 2022, 11, 2266. [Google Scholar] [CrossRef] [PubMed]
- Holá, D.; Benešová, M.; Honnerová, J.; Hnilička, F.; Rothová, O.; Kočová, M.; Hniličková, H. The evaluation of photosynthetic parameters in maize inbred lines subjected to water deficiency: Can these parameters be used for the prediction of performance of hybrid progeny? Photosynthetica 2010, 48, 545–558. [Google Scholar] [CrossRef]
- Djemel, A.; Álvarez-Iglesias, L.; Santiago, R.; Malvar, R.A.; Pedrol, N.; Revilla, P. Algerian maize populations from the Sahara desert as potential sources of drought tolerance. Acta Physiol. Plant. 2019, 41, 12. [Google Scholar] [CrossRef]
Parameters | M.Shum. | Error (Main-plot) | M.Sgen. | M.Sgen.×hum. | Error (Sub-plot) |
---|---|---|---|---|---|
Plant height | 404.42 ** | 5.69 | 1703.77 ** | 1.87 | 2.82 |
Leaf area | 1017.46 ** | 0.65 | 6692.83 ** | 17.88 | 66.30 |
Stem diameter | 21.49 ** | 0.449 | 118.24 ** | 0.99 | 3.426 |
Root length | 133.23 ** | 3.518 | 447.04 ** | 0.87 | 5.384 |
Root fresh weight | 417.70 ** | 7.54 | 3720.48 ** | 0.87 | 21.73 |
Root dry weight | 100.77 ** | 0.062 | 614.34 ** | 0.29 | 2.918 |
Fv/Fm | 0.51 ** | 1.5 × 10−3 | 0.01 ** | 0.005 ** | 4.2 × 10−4 |
Net photosynthetic rate | 260.52 ** | 0.055 | 11.50 ** | 0.15 | 0.273 |
Stomatal conductance | 5.69 × 10−3 ** | 1.00 × 10−5 | 9.70 × 10−4 ** | 4.00 × 10−5 | 8.00 × 10−5 |
Transpiration | 8.52 ** | 0.016 | 0.36 ** | 0.02 | 0.028 |
Instantaneous water-use efficiency | 1.68 ** | 0.04 | 0.28 | 0.16 | 0.10 |
Leaf temperature | 59.29 ** | 0.027 | 7.02 ** | 3.45 ** | 0.309 |
Intercellular CO2 concentration | 9842.51 ** | 4.13 | 4.28 ** | 68.85 ** | 0.51 |
Maize Cultivars | Treatments | Plant Height (cm) | Leaf Area (cm2) | Stem Diameter (mm) | Root Length (cm) | Root Fresh Weight(g) | Root Dry Weight(g) |
---|---|---|---|---|---|---|---|
P-3011w | Control | 57.44 ± 1.55 D | 321.81 ± 2.63 BC | 12.41 ± 0.69 BC | 17.12 ± 1.37 DE | 51.32 ± 2.80 DE | 10.99 ± 1.10 CD |
Drought | 48.89 ± 1.52 E | 302.86 ± 4.23 C | 10.16 ± 0.90 C | 13.00 ± 1.10 E | 42.76 ± 1.60 E | 7.04 ± 0.60 E | |
P-3092 | Control | 68.72 ± 1.51 C | 331.51 ± 3.85 B | 15.59 ± 0.91 B | 23.67 ± 2.12 C | 68.87 ± 3.06 C | 12.50 ± 1.16 C |
Drought | 59.56 ± 1.29 D | 319.09 ± 2.67 BC | 13.30 ± 0.77 BC | 18.22 ± 1.47 D | 59.78 ± 1.64 D | 8.91 ± 0.92 DE | |
iku20 | Control | 91.61 ± 1.32 A | 382.43 ± 4.23 A | 21.05 ± 0.91 A | 35.38 ± 2.65 A | 101.75 ± 2.07 A | 30.65 ± 1.33 A |
Drought | 80.89 ± 1.69 B | 368.70 ± 2.17 A | 19.04 ± 0.79 A | 29.22 ± 1.42 B | 90.51 ± 2.23 B | 24.00 ± 1.55 B | |
Genotype | ** | ** | ** | ** | ** | ** | |
Treatment | ** | ** | ** | ** | ** | ** | |
G × T | n.s | n.s | n.s | n.s | n.s | n.s |
Variables | Control | Drought Stress |
---|---|---|
Fv/Fm | 0.78 A | 0.44 B |
Variables | Control | Drought Stress |
---|---|---|
Net photosynthetic rate (PN) | 14.18 A | 6.58 B |
Stomatal conductance (gs) | 0.09 A | 0.05 B |
Transpiration (Tr) | 2.88 A | 1.50 B |
Instantaneous water-use efficiency (WUEi) | 4.98 A | 4.36 B |
Variables | Control | Drought Stress |
---|---|---|
Leaf temperature | 30.04 A | 33.67 B |
Intercellular CO2 concentration | 86.22 A | 132.99 B |
Traits | Fv/Fm | PN | gs | Tr | WUEi | Ci | Plant Height | Leaf Area | Stem Diameter | Root Dry Weight |
---|---|---|---|---|---|---|---|---|---|---|
Fv/Fm | 1 | 0.861 ** | 0.681 ** | 0.606 ** | 0.532 ** | −0.422 * | 0.526 ** | 0.620 ** | 0.375 | 0.303 |
PN | 0.861 ** | 1 | 0.775 ** | 0.676 ** | 0.604 ** | −0.503 ** | 0.455 * | 0.432 * | 0.395 * | 0.260 |
gs | 0.681 ** | 0.775 ** | 1 | 0.759 ** | 0.270 | −0.617 ** | 0.582 ** | 0.487 ** | 0.527 ** | 0.386 * |
Tr | 0.606 ** | 0.676 ** | 0.759 ** | 1 | −0.124 | −0.563 ** | 0.545 ** | 0.501 ** | 0.484 * | 0.418 * |
WUEi | 0.532 ** | 0.604 ** | 0.270 | −0.124 | 1 | −0.134 | 0.066 | 0.099 | 0.056 | 0.022 |
Ci | −0.422 * | −0.503 ** | −0.617 ** | −0.563 ** | −0.134 | 1 | −0.677 ** | −0.630 ** | −0.669 ** | −0.584 ** |
Plant Height | 0.526 ** | 0.455 * | 0.582 ** | 0.545 ** | 0.066 | −0.677 ** | 1 | 0.917 ** | 0.782 ** | 0.759 ** |
Leaf Area | 0.516 ** | 0.301 | 0.275 | 0.526 ** | 0.099 | −0.391 * | 0.749 ** | 1 | 0.571 ** | 0.512 ** |
Stem Diameter | 0.375 | 0.395 * | 0.527 ** | 0.484 * | 0.056 | −0.669 ** | 0.782 ** | 0.755 ** | 1 | 0.769 ** |
Root Dry Weight | 0.303 | 0.260 | 0.386 * | 0.418 * | 0.022 | −0.584 ** | 0.759 ** | 0.725 ** | 0.769 ** | 1 |
Traits | Fv/Fm | PN | gs | Tr | WUEi | Ci | Plant Height | Leaf Area | Stem Diameter | Root Dry Weight |
---|---|---|---|---|---|---|---|---|---|---|
Fv/Fm | 1 | 0.897 ** | 0.913 ** | 0.652 ** | 0.407 * | −0.305 | 0.570 ** | 0.635 ** | 0.473 * | 0.647 ** |
PN | 0.897 ** | 1 | 0.824 ** | 0.542 ** | 0.603 ** | −0.257 | 0.480 * | 0.557 ** | 0.465 * | 0.545 ** |
gs | 0.913 ** | 0.824 ** | 1 | 0.647 ** | 0.344 | −0.517** | 0.738 ** | 0.774 ** | 0.692 ** | 0.772 ** |
Tr | 0.652 ** | 0.542 ** | 0.647 ** | 1 | −0.297 | −0.246 | 0.388 * | 0.344 | 0.409 * | 0.473 * |
WUEi | 0.407 * | 0.603 ** | −0.344 | 0.297 | 1 | −0.130 | 0.252 | 0.299 | 0.175 | 0.203 |
Ci | −0.305 | −0.257 | −0.517 ** | −0.246 | −0.130 | 1 | −0.705 ** | −0.640 ** | −0.636 ** | −0.700 ** |
Plant height | 0.570 ** | 0.480 * | 0.738 ** | 0.388 * | 0.252 | −0.705 ** | 1 | 0.872 ** | 0.890 ** | 0.890 ** |
Leaf area | 0.613 ** | 0.450 * | 0.716 ** | 0.399 * | 0.299 | −0.644 ** | 0.873 ** | 1 | 0.737 ** | 0.908 ** |
Stem diameter | 0.473 * | 0.465 * | 0.692 ** | 0.409 * | 0.175 | −0.636 ** | 0.890 ** | 0.780 ** | 1 | 0.814 ** |
Root dry weight | 0.647 ** | 0.545 ** | 0.772 ** | 0.473 * | 0.203 | −0.700 ** | 0.903 ** | 0.932 ** | 0.816 ** | 1 |
Model | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Regression | 137.989 | 3 | 45.996 | 44.511 | <0.001 a |
Residual | 23.768 | 23 | 1.033 | ||
Total | 161.757 | 26 |
Model | Unstandardized Coefficients | R Square | |
---|---|---|---|
B | Std. Error | ||
(Constant) | −43.533 ** | 11.206 | |
Fv/Fm | 60.544 ** | 16.652 | 0.741 |
gs | 65.689 ** | 18.319 | 0.067 |
WUEi | 0.980 ** | 0.368 | 0.045 |
PN = −43.533 + 60.544 (Fv/Fm) + 65.689 (gs) + 0.980 (WUEi) |
Model | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Regression | 92.567 | 3 | 30.856 | 64.979 | <0.001 a |
Residual | 5.554 | 23 | 0.241 | ||
Total | 98.121 | 26 |
Model | Unstandardized Coefficients | R Square | |
---|---|---|---|
B | Std. Error | ||
(Constant) | −5.265 ** | 0.690 | |
Fv/Fm | 4.641 ** | 2.430 | 0.805 |
WUEi | 1.216 ** | 0.164 | 0.068 |
Tr | 2.974 ** | 0.556 | 0.071 |
PN = −5.265 + 4.641 (Fv/Fm) + 1.216 (WUEi) + 2.974 (Tr) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasin, S.; Zavala-García, F.; Niño-Medina, G.; Rodríguez-Salinas, P.A.; Gutiérrez-Diez, A.; Sinagawa-García, S.R.; Lugo-Cruz, E. Morphological and Physiological Response of Maize (Zea mays L.) to Drought Stress during Reproductive Stage. Agronomy 2024, 14, 1718. https://doi.org/10.3390/agronomy14081718
Yasin S, Zavala-García F, Niño-Medina G, Rodríguez-Salinas PA, Gutiérrez-Diez A, Sinagawa-García SR, Lugo-Cruz E. Morphological and Physiological Response of Maize (Zea mays L.) to Drought Stress during Reproductive Stage. Agronomy. 2024; 14(8):1718. https://doi.org/10.3390/agronomy14081718
Chicago/Turabian StyleYasin, Saba, Francisco Zavala-García, Guillermo Niño-Medina, Pablo Alan Rodríguez-Salinas, Adriana Gutiérrez-Diez, Sugey Ramona Sinagawa-García, and Eleazar Lugo-Cruz. 2024. "Morphological and Physiological Response of Maize (Zea mays L.) to Drought Stress during Reproductive Stage" Agronomy 14, no. 8: 1718. https://doi.org/10.3390/agronomy14081718
APA StyleYasin, S., Zavala-García, F., Niño-Medina, G., Rodríguez-Salinas, P. A., Gutiérrez-Diez, A., Sinagawa-García, S. R., & Lugo-Cruz, E. (2024). Morphological and Physiological Response of Maize (Zea mays L.) to Drought Stress during Reproductive Stage. Agronomy, 14(8), 1718. https://doi.org/10.3390/agronomy14081718