Next Article in Journal
Detection of Localized Damage in Tomato Based on Bioelectrical Impedance Spectroscopy
Previous Article in Journal
Irrigation of ‘Prata-Anã’ Banana with Partial Root-Zone Drying in a Semi-Arid Environment
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

The Influence of Cuprous Oxide Nanoparticles on Photosynthetic Efficiency, Antioxidant Responses and Grain Quality throughout the Soybean Life Cycle

1
College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471000, China
2
School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
*
Authors to whom correspondence should be addressed.
Agronomy 2024, 14(8), 1821; https://doi.org/10.3390/agronomy14081821 (registering DOI)
Submission received: 7 July 2024 / Revised: 31 July 2024 / Accepted: 14 August 2024 / Published: 17 August 2024

Abstract

The widespread application of nanoparticles (NPs) in agriculture has not only enhanced the efficiency of agrochemical use but also introduced environmental pollution, potentially impacting human health through absorption and accumulation in edible plants. The purpose of this study was to evaluate the toxic effects and ecological risks of Cu2O nanoparticles (nCu2O) in the life cycle of soybean, and to provide a theoretical basis for the safe application of NPs in agriculture. Soybeans were grown in natural soil modified with nCu2O, bulk cuprous oxide (bCu2O) and copper sulfate (CuSO4) at concentrations of 0, 50, 200, and 800 mg/kg. Samples and grains from treated soybeans were collected at the flowering, podding, and seed-filling stages for analysis. The results indicated that treatments with nCu2O, bCu2O, and Cu2+ reduced the chlorophyll content in soybean leaves, thereby affecting photosynthesis. Significant reductions were observed in the net photosynthetic rate (Pn), the transpiration rate (Tr), stomatal conductance (Gs), the quantum yield of photosystem II (Y(II)), photochemical quenching (qP), and the electron transport rate (ETR) at high concentrations. However, the toxicity of nCu2O to photosynthesis recovers as the plant grows. Almost all treatments increased the levels of antioxidant enzymes (SOD, POD, CAT) and reduced oxidative stress. In the nCu2O and bCu2O treatments, grain protein content was significantly reduced, while fat and water content increased. Phosphorus (P) content decreased, whereas sulfur (S), potassium (K), magnesium (Mg) and calcium (Ca) contents increased. The accumulation of copper in plants followed the order nCu2O > bCu2O > Cu2+, with the bCu2O treatment being slightly more toxic than the nCu2O treatment, and both being more toxic than the Cu2+ treatment. The above data indicated that nCu2O had a dose-dependent effect, which significantly inhibited soybean growth and changed grain quality at high concentrations.
Keywords: photosynthesis; grains; metal oxide nanoparticles; soybeans; phytotoxicity photosynthesis; grains; metal oxide nanoparticles; soybeans; phytotoxicity

Share and Cite

MDPI and ACS Style

Wang, N.; Tian, X.; Song, P.; Guo, W.; Zhang, K.; Li, J.; Ma, Z. The Influence of Cuprous Oxide Nanoparticles on Photosynthetic Efficiency, Antioxidant Responses and Grain Quality throughout the Soybean Life Cycle. Agronomy 2024, 14, 1821. https://doi.org/10.3390/agronomy14081821

AMA Style

Wang N, Tian X, Song P, Guo W, Zhang K, Li J, Ma Z. The Influence of Cuprous Oxide Nanoparticles on Photosynthetic Efficiency, Antioxidant Responses and Grain Quality throughout the Soybean Life Cycle. Agronomy. 2024; 14(8):1821. https://doi.org/10.3390/agronomy14081821

Chicago/Turabian Style

Wang, Nan, Xiangrong Tian, Peipei Song, Wei Guo, Kaiyue Zhang, Juan Li, and Zhanqiang Ma. 2024. "The Influence of Cuprous Oxide Nanoparticles on Photosynthetic Efficiency, Antioxidant Responses and Grain Quality throughout the Soybean Life Cycle" Agronomy 14, no. 8: 1821. https://doi.org/10.3390/agronomy14081821

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop