Deficit Irrigation and High Planting Density Improve Nitrogen Uptake and Use Efficiency of Cotton in Drip Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Field Management
2.3. Measurements
2.3.1. Seed Cotton Yields
2.3.2. Biomass, Nitrogen Uptake, and NUE
2.3.3. Soil Nitrate Nitrogen Content
2.4. Statistical Analysis
3. Results
3.1. Seed Cotton Yield and NUE
3.2. Biomass
3.3. Nitrogen Uptake Dynamics
3.4. Cotton Plant N Distribution and N Economic Coefficient
3.5. Spatial Distribution of Soil Nitrate Nitrogen Content
4. Discussion
4.1. Effects of Irrigation Amount and Planting Density on Biomass and Yield
4.2. Effects of Irrigation Amount and Planting Density on Nitrogen Uptake and Utilization in Cotton
4.3. Effects of Irrigation Amount and Planting Density on Soil Nitrate Nitrogen
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ul-Allah, S.; Rehman, A.; Hussain, M.; Farooq, M. Fiber yield and quality in cotton under drought: Effects and management. Agric. Water Manag. 2021, 255, 106994. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wang, Z.H.; Zhang, J.Z.; Ma, K. An optimum combination of irrigation amount, irrigation water salinity and nitrogen application rate can improve cotton (for fiber) nitrogen uptake and final yield. Ind. Crop. Prod. 2022, 187, 115386. [Google Scholar] [CrossRef]
- Feng, L.; Wan, S.; Zhang, Y.; Dong, H. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crop. Res. 2024, 312, 109401. [Google Scholar] [CrossRef]
- Wang, R.S.; Kang, Y.H.; Wan, S.Q.; Hu, W.; Liu, S.P.; Liu, S.H. Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area. Agric. Water Manag. 2011, 100, 58–69. [Google Scholar] [CrossRef]
- Dai, Y.L.; Liao, Z.Q.; Lai, Z.L.; Bai, Z.T.; Zhang, F.C.; Li, Z.J.; Fan, J.L. Interactive effects of planting pattern, supplementary irrigation and planting density on grain yield, water-nitrogen use efficiency and economic benefit of winter wheat in a semi-humid but drought-prone region of northwest China. Agric. Water Manag. 2023, 287, 108438. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Z.; Zhi, J.; Bai, X.; Yang, L.; Xia, W. Effects of Irrigation and Nitrogen Fertilizer on Soil Carbon Leaching in Cotton Fields in Arid Areas. Sustainability 2023, 15, 11356. [Google Scholar] [CrossRef]
- Wang, J.T.; Du, G.F.; Tian, J.S.; Jiang, C.D.; Zhang, Y.L.; Zhang, W.F. Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity. Agric. Water Manag. 2021, 255, 106992. [Google Scholar] [CrossRef]
- Wang, K.; Su, L.J.; Wang, Q.J. Cotton growth model under drip irrigation with film mulching: A case study of Xinjiang, China. Agron. J. 2021, 113, 2417–2436. [Google Scholar] [CrossRef]
- Patel, N.; Rajput, T.B.S. Simulation and modeling of water movement in potato (Solanum tuberosum) under subsurface drip system. Indian. J. Agric. Sci. 2011, 81, 25–32. [Google Scholar]
- Kodur, S.; Shrestha, U.B.; Maraseni, T.N.; Deo, R.C. Environmental and economic impacts and trade-offs from simultaneous management of soil constraints, nitrogen and water. J. Clean. Prod. 2019, 222, 960–970. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, J. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. J. Exp. Bot. 2004, 55, 2437–2446. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Mao, L.L.; Shi, J.L.; Nie, J.J.; Song, X.L.; Sun, X.Z. Effects of plant density and nitrogen rate on cotton yield and nitrogen use in cotton stubble retaining fields. J. Integr. Agric. 2021, 20, 2090–2099. [Google Scholar] [CrossRef]
- Chen, Z.K.; Niu, Y.P.; Zhao, R.H.; Han, C.L.; Han, H.Y.; Luo, H.H. The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton. Agric. Water Manag. 2019, 218, 139–148. [Google Scholar] [CrossRef]
- Zhang, D.M.; Luo, Z.; Liu, S.H.; Li, W.J.; Tang, W.; Dong, H.Z. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crop. Res. 2016, 197, 1–9. [Google Scholar] [CrossRef]
- Pask, A.J.D.; Sylvester-Bradley, R.; Jamieson, P.D.; Foulkes, M.J. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crop. Res. 2012, 126, 104–118. [Google Scholar] [CrossRef]
- Iqbal, A.; Dong, Q.; Wang, Z.; Wang, X.R.; Gu, H.P.; Zhang, H.H.; Pang, N.; Zhang, X.L.; Song, M.Z. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. Plant Physiol. Bioch. 2020, 149, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.R.; Liu, Z.Y.; Jin, D.; Chen, Y.; Zhang, X.; Chen, D.H. Effects of Growth Regulator and Planting Density on Cotton Yield and N, P, and K Accumulation in Direct-Seeded Cotton. Agronomy 2023, 13, 501. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, Q.Y.; Tang, W.; Wang, X.W.; Lu, H.Q.; Zhang, Z.; Liu, T.; Kong, X.Q. Effects of N fertilizer rate and planting density on short-season cotton yield, N agronomic efficiency and soil N using 15N tracing technique. Eur. J. Agron. 2022, 138, 126546. [Google Scholar] [CrossRef]
- Janat, M.; Khalout, A.R. Evaluation of Drip-Irrigated Cotton Grown under Different Plant Population Densities and Two Irrigation Regimes. Commun. Soil Sci. Plant Anal. 2011, 42, 741–752. [Google Scholar] [CrossRef]
- Khan, A.; Wang, L.S.; Ali, S.; Tung, S.A.; Hafeez, A.; Yang, G.Z. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crop. Res. 2017, 214, 164–174. [Google Scholar] [CrossRef]
- Wu, Y.; Bian, S.F.; Liu, Z.M.; Wang, L.C.; Wang, Y.J.; Xu, W.H.; Zhou, Y. Drip irrigation incorporating water conservation measures: Effects on soil water–nitrogen utilization, root traits and grain production of spring maize in semi-arid areas. J. Integr. Agric. 2021, 20, 3127–3142. [Google Scholar] [CrossRef]
- Sakamoto, C.M.; Johnson, K.S.; Coletti, L.J. Improved algorithm for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnol. Oceanogr. Methods 2009, 7, 132–143. [Google Scholar] [CrossRef]
- Zhang, Z.; Chattha, M.S.; Ahmed, S.; Liu, J.H.; Liu, A.D.; Yang, L.R.; Lv, N.; Ma, X.F.; Li, X.e.; Hao, F.R.; et al. Nitrogen reduction in high plant density cotton is feasible due to quicker biomass accumulation. Ind. Crop. Prod. 2021, 172, 114070. [Google Scholar] [CrossRef]
- Dadgale, P.R.; Chavan, D.A.; Gudade, B.A.; Jadhav, S.G.; Deshmukh, V.A.; Pal, S. Productivity and quality of Bt cotton (Gossypium hirsutum) as influenced by planting geometry and nitrogen levels under irrigated and rainfed conditions. Indian J. Agric. Sci. 2014, 84, 1069–1072. [Google Scholar] [CrossRef]
- Ermanis, A.; Gobbo, S.; Snider, J.L.; Cohen, Y.; Liakos, V.; Lacerda, L.; Perry, C.D.; Aaron Bruce, M.; Virk, G.; Vellidis, G. Defining physiological contributions to yield loss in response to irrigation in cotton. J. Agron. Crop Sci. 2020, 207, 186–196. [Google Scholar] [CrossRef]
- Dai, J.L.; Li, W.J.; Tang, W.; Zhang, D.M.; Li, Z.H.; Lu, H.Q.; Eneji, A.E.; Dong, H.Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crop. Res. 2015, 180, 207–215. [Google Scholar] [CrossRef]
- Qi, D.L.; Pan, C. Responses of shoot biomass accumulation, distribution, and nitrogen use efficiency of maize to nitrogen application rates under waterlogging. Agric. Water Manag. 2022, 261, 107352. [Google Scholar] [CrossRef]
- Zhao, B.; Ata-Ul-Karim, S.T.; Lemaire, G.; Duan, A.W.; Liu, Z.D.; Guo, Y.; Qin, A.Z.; Ning, D.F.; Liu, Z.G. Exploring the nitrogen source-sink ratio to quantify ear nitrogen accumulation in maize and wheat using critical nitrogen dilution curve. Field Crop. Res. 2021, 274, 108332. [Google Scholar] [CrossRef]
- Kong, L.G.; Xie, Y.; Hu, L.; Feng, B.; Li, S.D. Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.). Field Crop. Res. 2016, 196, 134–144. [Google Scholar] [CrossRef]
- Wang, N.; Fu, F.Z.; Wang, H.R.; Wang, P.; He, S.P.; Shao, H.Y.; Ni, Z.; Zhang, X.M. Effects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris L.). Sci. Rep. 2021, 11, 16651. [Google Scholar] [CrossRef]
- Wang, X.K.; Wang, G.; Turner, N.C.; Xing, Y.Y.; Li, M.T.; Guo, T. Determining optimal mulching, planting density, and nitrogen application to increase maize grain yield and nitrogen translocation efficiency in Northwest China. BMC Plant Biol. 2020, 20, 282. [Google Scholar] [CrossRef]
- Noor Shah, A.; Wu, Y.Y.; Iqbal, J.; Tanveer, M.; Bashir, S.; Ur Rahman, S.; Hafeez, A.; Ali, S.; Ma, X.; Alotaibi, S.S.; et al. Nitrogen and plant density effects on growth, yield performance of two different cotton cultivars from different origin. J. King Saud Univ. -Sci. 2021, 33, 101512. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.M.; Kronzucker, H.J. How Plant Root Exudates Shape the Nitrogen Cycle. Trends Plant Sci. 2017, 22, 661–673. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, W.; Fan, H.; Fan, Z.L.; Hu, F.L.; Yu, A.Z.; Zhao, C.; Chai, Q.; Aziiba, E.A.; Zhang, X.J. Photosynthetic Physiological Characteristics of Water and Nitrogen Coupling for Enhanced High-Density Tolerance and Increased Yield of Maize in Arid Irrigation Regions. Front. Plant Sci. 2021, 12, 726568. [Google Scholar] [CrossRef]
- Cao, Y.J.; Wang, L.C.; Gu, W.R.; Wang, Y.J.; Zhang, J.H. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J. Integr. Agric. 2021, 20, 494–510. [Google Scholar] [CrossRef]
- Ma, H.H.; Yang, T.; Niu, X.X.; Hou, Z.a.; Ma, X.W. Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China. Sustainability 2021, 13, 1002. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.T.; Wang, Z.B.; Sun, H.C.; Zhang, Y.J.; Lu, Z.Y.; Li, C.D. Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons. PLoS ONE 2018, 13, e0197284. [Google Scholar] [CrossRef]
- Bajpai, A.; Kaushal, A. Soil moisture distribution under trickle irrigation: A review. Water Supply 2020, 20, 761–772. [Google Scholar] [CrossRef]
Year | Irrigation Amount | Plant Density | Seed Cotton Yield | Total Nitrogen Uptake | N Use Efficiency |
---|---|---|---|---|---|
(mm) | (Plants m−2) | (kg ha−1) | kg ha−1 | kg kg−1 | |
2019 | W1 | M1 | 4602 b | 181.8 c | 25.4 a |
M2 | 4702 b | 202.7 b | 23.2 a | ||
M3 | 5303 a | 230.4 a | 23.0 a | ||
SE | 79 | 4.65 | 0.35 | ||
W2 | M1 | 4818 c | 224.8 b | 21.5 a | |
M2 | 5501 a | 281.2 a | 19.6 a | ||
M3 | 5146 b | 283.4 a | 18.2 b | ||
SE | 81 | 7.57 | 0.45 | ||
W3 | M1 | 5274 a | 251.1 b | 21.0 a | |
M2 | 5501 a | 275.2 ab | 18.7 ab | ||
M3 | 5146 b | 290.8 a | 16.7 b | ||
SE | 59 | 6.21 | 0.55 | ||
2020 | W1 | M1 | 4499 c | 183.3 c | 24.6 a |
M2 | 5396 b | 230.7 b | 23.3 a | ||
M3 | 5878 a | 251.5 a | 23.3 a | ||
SE | 147 | 7.08 | 0.45 | ||
W2 | M1 | 4972 c | 206.5 c | 24.1 a | |
M2 | 6007 a | 277.2 b | 21.7 a | ||
M3 | 5573 b | 290.5 a | 19.2 b | ||
SE | 118 | 8.43 | 0.45 | ||
W3 | M1 | 5391 a | 259.7 b | 20.7 a | |
M2 | 5280 b | 274.2 b | 19.3 b | ||
M3 | 5004 ab | 309.8 a | 16.1 b | ||
SE | 65 | 7.22 | 0.65 | ||
p-value | |||||
Year | 0.006 | 0.000 | 0.711 | ||
Irrigation | 0.012 | 0.007 | 0.008 | ||
Density | 0.004 | 0.005 | 0.005 | ||
Irrigation × Density | 0.009 | 0.008 | 0.004 | ||
Year × Irrigation × Density | 0.006 | 0.075 | 0.679 |
Year | Irrigation | Density | Vegetative Organ | Reproductive Organ | Total Dry Matter Accumulation |
---|---|---|---|---|---|
(mm) | (Plants m−2) | kg hm−2 | |||
2019 | W1 | M1 | 4900 b | 5501 b | 10,401 b |
M2 | 5230 b | 5628 b | 10,859 b | ||
M3 | 6242 a | 6152 a | 12,395 a | ||
SE | 216 | 110 | 290 | ||
W2 | M1 | 5608 b | 5473 b | 11,082 b | |
M2 | 6853 a | 6129 a | 12,983 a | ||
M3 | 7045 a | 6096 a | 13,141 a | ||
SE | 228 | 128 | 347 | ||
W3 | M1 | 6933 b | 6021 b | 12,954 b | |
M2 | 7333 b | 5980 b | 13,314 b | ||
M3 | 8401 a | 5713 a | 14,114 a | ||
SE | 234 | 62 | 163 | ||
2020 | W1 | M1 | 4795 c | 5220 c | 10,015 c |
M2 | 5929 b | 6262 b | 12,192 b | ||
M3 | 7060 a | 6809 a | 13,869 a | ||
SE | 296 | 204 | 497 | ||
W2 | M1 | 5714 b | 5985 b | 11,700 b | |
M2 | 7282 a | 6979 a | 14,261 a | ||
M3 | 8022 a | 6792 a | 14,815 a | ||
SE | 308 | 154 | 432 | ||
W3 | M1 | 6480 b | 6441 b | 12,921 b | |
M2 | 8022 a | 6246 a | 14,268 a | ||
M3 | 8457 a | 6156 a | 14,614 a | ||
SE | 272 | 43 | 301 | ||
p-value | |||||
Year | 0.014 | 0.055 | 0.118 | ||
Irrigation | 0.013 | 0.008 | 0.023 | ||
Density | 0.005 | 0.009 | 0.006 | ||
Irrigation × Density | 0.008 | 0.017 | 0.004 | ||
Year × Irrigation × Density | 0.055 | 0.045 | 0.998 |
Year | Irrigation | Density | Ym | Vm | tm | t1 | t2 |
---|---|---|---|---|---|---|---|
(mm) | (Plants m−2) | (kg ha−1) | (kg ha−1 d−1) | (d) | (d) | (d) | |
2019 | W1 | M1 | 109.07 b | 2.80 c | 96.16 a | 77.32 a | 116.20 a |
M2 | 113.18 ab | 3.10 b | 93.07 ab | 75.66 a | 112.08 a | ||
M3 | 119.81 a | 3.54 a | 89.32 b | 71.57 b | 105.50 b | ||
SE | 1.74 | 0.09 | 1.05 | 0.83 | 1.51 | ||
W2 | M1 | 113.71 b | 3.11 c | 94.54 a | 76.52 a | 113.11 a | |
M2 | 120.30 b | 3.46 b | 90.35 ab | 73.62 a | 107.66 a | ||
M3 | 128.74 a | 3.92 a | 88.48 b | 69.44 b | 102.34 b | ||
SE | 2.21 | 0.11 | 1.03 | 1.01 | 1.33 | ||
W3 | M1 | 116.84 b | 3.48 b | 91.76 a | 74.66 a | 108.29 a | |
M2 | 134.76 a | 3.81 ab | 88.09 b | 70.63 ab | 105.95 ab | ||
M3 | 140.18 a | 4.16 a | 86.41 b | 67.23 b | 100.70 b | ||
SE | 3.07 | 0.12 | 0.76 | 1.11 | 1.35 | ||
2020 | W1 | M1 | 108.69 b | 3.05 b | 94.77 a | 78.28 a | 113.50 a |
M2 | 114.95 a | 3.36 ab | 92.66 ab | 75.66 b | 110.16 ab | ||
M3 | 120.76 a | 3.67 a | 90.90 b | 73.11 c | 106.76 b | ||
SE | 2.02 | 0.1 | 0.68 | 0.59 | 1.29 | ||
W2 | M1 | 111.79 b | 3.23 b | 93.05 a | 75.08 a | 109.62 a | |
M2 | 121.79 ab | 3.67 a | 90.18 ab | 72.21 ab | 104.05 ab | ||
M3 | 130.29 a | 3.91 a | 87.90 b | 70.26 b | 102.14 b | ||
SE | 2.82 | 0.11 | 0.67 | 0.86 | 1.36 | ||
W3 | M1 | 122.42 b | 3.42 b | 90.62 a | 74.31 a | 110.02 a | |
M2 | 128.62 b | 3.79 ab | 87.75 ab | 70.14 b | 104.46 ab | ||
M3 | 138.26 a | 4.17 a | 85.59 b | 67.33 b | 100.65 b | ||
SE | 2.23 | 0.12 | 0.64 | 1.04 | 1.45 | ||
p-value | |||||||
Year | 0.206 | 0.023 | 0.097 | 0.142 | 0.035 | ||
Irrigation | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Density | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Irrigation × Density | 0.038 | 0.967 | 0.941 | 0.023 | 0.729 | ||
Year × Irrigation × Density | 0.546 | 0.819 | 0.628 | 0.130 | 0.337 |
Year | Irrigation | Density | Bud Stage | Flower and Boll Stage | Open Boll Stage | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DVO | DRO | NEC | DVO | DRO | NEC | DVO | DRO | NEC | |||
(mm) | (Plants m−2) | kg ha−1 | kg ha−1 | kg ha−1 | kg ha−1 | kg ha−1 | kg ha−1 | ||||
2019 | W1 | M1 | 26.2 c | 1.9 b | 0.067 b | 93.1 c | 74.4 b | 0.442 a | 85.1 c | 96.7 c | 0.532 a |
M2 | 33.8 b | 3.3 b | 0.089 b | 107.4 b | 82.6 a | 0.435 ab | 97.8 b | 104.b | 0.517 ab | ||
M3 | 41.8 a | 5.6 a | 0.116 a | 124.4 a | 87.6 a | 0.413 b | 112.9 a | 117.4 a | 0.509 b | ||
SE | 1.89 | 0.51 | 0.01 | 3.47 | 1.75 | 0.01 | 3.32 | 2.66 | 0.003 | ||
W2 | M1 | 27.2 c | 1.9 b | 0.067 a | 118.8 c | 78.2 b | 0.396 a | 125.0 b | 99.7 b | 0.443 a | |
M2 | 34.2 b | 3.4 ab | 0.085 a | 151.4 b | 89.2 a | 0.370 b | 162.4 a | 118.a | 0.422 ab | ||
M3 | 43.5 a | 5.6 a | 0.113 a | 180.9 a | 85.6 a | 0.321 c | 173.0 a | 110.3 a | 0.389 b | ||
SE | 1.92 | 0.56 | 0.01 | 6.80 | 1.45 | 0.01 | 6.22 | 3.21 | 0.008 | ||
W3 | M1 | 27.1 c | 1.9 c | 0.067 a | 140.4 c | 84.4 a | 0.376 a | 138.3 c | 112.8 c | 0.448 a | |
M2 | 33.8 b | 3.7 b | 0.101 a | 169.7 b | 80.8 b | 0.322 b | 173.5 b | 101.7 b | 0.369 b | ||
M3 | 42.6 a | 5.8 a | 0.119 a | 193.0 a | 77.0 c | 0.285 c | 198.3 a | 92.5 a | 0.318 c | ||
SE | 1.90 | 0.51 | 0.01 | 6.09 | 0.99 | 0.01 | 6.78 | 3.9 | 0.016 | ||
2020 | W1 | M1 | 16.1 c | 1.2 c | 0.067 c | 96.6 c | 77.4 c | 0.444 a | 86.1 c | 97.1 c | 0.530 a |
M2 | 25.3 b | 2.6 b | 0.093 b | 120.8 b | 87.6 b | 0.420 b | 111.1 b | 119.6 a | 0.518 ab | ||
M3 | 36.6 a | 4.5 a | 0.110 a | 138.3 a | 93.3 a | 0.403 b | 122.2 a | 117.3 a | 0.494 b | ||
SE | 2.31 | 0.38 | 0.01 | 4.71 | 1.93 | 0.01 | 4.2 | 4.96 | 0.005 | ||
W2 | M1 | 16.5 c | 1.3 c | 0.074 b | 114.2 c | 78.2 b | 0.406 a | 108.0 c | 98.5 c | 0.501 a | |
M2 | 25.1 b | 2.8 b | 0.106 ab | 150.9 b | 89.2 a | 0.371 b | 150.7 b | 126.5 b | 0.474 a | ||
M3 | 35.3 a | 4.6 a | 0.116 a | 196.3 a | 85.6 a | 0.303 c | 176.3 a | 114.2 a | 0.410 b | ||
SE | 2.35 | 0.41 | 0.01 | 9.03 | 1.45 | 0.01 | 8.34 | 2.10 | 0.012 | ||
W3 | M1 | 15.9 c | 1.1 c | 0.063 b | 141.4 c | 84.4 a | 0.374 a | 154.4 c | 105.2 c | 0.43 a | |
M2 | 24.6 b | 2.9 b | 0.107 a | 186.4 b | 80.8 b | 0.302 b | 174.7 b | 99.5 b | 0.399 b | ||
M3 | 35.8 a | 4.7 a | 0.115 a | 211.0 a | 77.0 c | 0.267 c | 218.8 a | 90.9 a | 0.319 c | ||
SE | 2.27 | 0.44 | 0.01 | 7.87 | 0.99 | 0.01 | 5.09 | 2.74 | 0.011 | ||
p-value | |||||||||||
Year | 0.000 | 0.001 | 0.602 | 0.001 | 0.002 | 0.183 | 0.882 | 0.000 | 0.000 | ||
Irrigation | 0.927 | 0.798 | 0.776 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Density | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Irrigation × Density | 0.995 | 0.986 | 0.916 | 0.020 | 0.029 | 0.044 | 0.015 | 0.032 | 0.013 | ||
Year × Irrigation × Density | 0.976 | 0.998 | 0.926 | 0.851 | 0.915 | 0.564 | 0.999 | 0.197 | 0.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Tang, Q.; Cui, J.; Tian, L.; Guo, R.; Wang, L.; Lin, T. Deficit Irrigation and High Planting Density Improve Nitrogen Uptake and Use Efficiency of Cotton in Drip Irrigation. Agronomy 2024, 14, 1876. https://doi.org/10.3390/agronomy14091876
Wu F, Tang Q, Cui J, Tian L, Guo R, Wang L, Lin T. Deficit Irrigation and High Planting Density Improve Nitrogen Uptake and Use Efficiency of Cotton in Drip Irrigation. Agronomy. 2024; 14(9):1876. https://doi.org/10.3390/agronomy14091876
Chicago/Turabian StyleWu, Fengquan, Qiuxiang Tang, Jianping Cui, Liwen Tian, Rensong Guo, Liang Wang, and Tao Lin. 2024. "Deficit Irrigation and High Planting Density Improve Nitrogen Uptake and Use Efficiency of Cotton in Drip Irrigation" Agronomy 14, no. 9: 1876. https://doi.org/10.3390/agronomy14091876
APA StyleWu, F., Tang, Q., Cui, J., Tian, L., Guo, R., Wang, L., & Lin, T. (2024). Deficit Irrigation and High Planting Density Improve Nitrogen Uptake and Use Efficiency of Cotton in Drip Irrigation. Agronomy, 14(9), 1876. https://doi.org/10.3390/agronomy14091876