Agronomic Behavior of Peanut (Arachis hypogaea L.) Cultivars under Three Planting Densities in the Northeast of Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Research
2.2. Preparation of Genetic Material
2.3. Soil Physicochemical Characteristics
2.4. Installation of the Crop
2.5. Cultivation Work
2.6. Variables Evaluated
2.7. Description of Treatments
2.8. Experimental Design
2.9. Data Analysis
3. Results
3.1. Height of Plant and Phenological Calendar
3.2. Yield Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Archer, P. Chapter 9—Overview of the Peanut Industry Supply Chain. In Peanuts, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 253–266. [Google Scholar] [CrossRef]
- Bonku, R.; Yu, J. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness 2020, 9, 21–30. [Google Scholar] [CrossRef]
- Lovejoy, J.C. The impact of nuts on diabetes and diabetes risk. Curr. Diab. Rep. 2005, 5, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.N.; Blot, W.J.; Xiang, Y.-B.; Cai, H.; Hargreaves, M.K.; Li, H.; Yang, G.; Signorello, L.; Gao, Y.-T.; Zheng, W.; et al. Prospective Evaluation of the Association of Nut/Peanut Consumption With Total and Cause-Specific Mortality. JAMA Intern. Med. 2015, 175, 755. [Google Scholar] [CrossRef]
- Kirkmeyer, S.; Mattes, R. Effects of food attributes on hunger and food intake. Int. J. Obes. 2000, 24, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Mattes, R.D. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: A randomized, controlled trial. Eur. J. Clin. Nutr. 2013, 67, 1205–1214. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 April 2024).
- MIDAGRI (Ministerio de Desarrollo Agrario y Riego). Exportaciones Totales. Available online: https://app.powerbi.com/view?r=eyJrIjoiZThmNGM3NmEtNTFmYy00MDQyLWIwNWQtMjBlYjFiNzdkNjk2IiwidCI6IjdmMDg0NjI3LTdmNDAtNDg3OS04OTE3LTk0Yjg2ZmQzNWYzZiJ9 (accessed on 25 April 2024).
- Sagvekar, V.V.; Waghmode, B.D.; Kamble, A.S.; Mahadkar, U.V. Optimization of Groundnut (Arachis hopogaea L.) Production Technologies under Various Resource Constraints in Konkan Region. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1498–1503. [Google Scholar] [CrossRef]
- Kishlyan, N.V.; Bemova, V.D.; Matveeva, T.V.; Gavrilova, V.A. Biological peculiarities and cultivation of groundnut (a review). Proc. Appl. Bot. Genet. Breed. 2020, 181, 119–127. [Google Scholar] [CrossRef]
- Sadras, V.O.; Villalobos, F.J.; Fereres, E. Limitations to Crop Productivity. In Principles of Agronomy for Sustainable Agriculture; Villalobos, F.J., Fereres, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 205–213. [Google Scholar] [CrossRef]
- Asik, B.B.; Uzun, A.; Acikgöz, E. Seeding rate and cultivar impacts on nutrient uptake of field pea under fertile soil condition. Chil. J. Agric. Res. 2020, 80, 11–20. [Google Scholar] [CrossRef]
- Siqueira, P.L.D.O.F.; Silva, P.S.L.E.; Silva, K.E.F.; Oliveira, V.R.D.; Dantas, I.M.; Oliveira, F.H.T.D. Soil fertility beneath the crown of tree species submitted to planting densities. Rev. Bras. Eng. Agríc. E Ambient. 2014, 18, 914–919. [Google Scholar] [CrossRef]
- Duan, A.; Lei, J.; Hu, X.; Zhang, J.; Du, H.; Zhang, X.; Guo, W.; Sun, J. Effects of Planting Density on Soil Bulk Density, pH and Nutrients of Unthinned Chinese Fir Mature Stands in South Subtropical Region of China. Forests 2019, 10, 351. [Google Scholar] [CrossRef]
- Nautiyal, P.C.; Ravindra, V.; Rathnakumar, A.L.; Ajay, B.C.; Zala, P.V. Genetic variations in photosynthetic rate, pod yield and yield components in Spanish groundnut cultivars during three cropping seasons. Field Crops Res. 2012, 125, 83–91. [Google Scholar] [CrossRef]
- Haro, R.J.; Baldessari, J.; Otegui, M.E. Genetic improvement of peanut in Argentina between 1948 and 2004: Seed yield and its components. Field Crops Res. 2013, 149, 76–83. [Google Scholar] [CrossRef]
- Caliskan, S.; Caliskan, M.E.; Arslan, M.; Arioglu, H. Effects of sowing date and growth duration on growth and yield of groundnut in a Mediterranean-type environment in Turkey. Field Crops Res. 2008, 105, 131–140. [Google Scholar] [CrossRef]
- Ketring, D.L.; Wheless, T.G. Thermal Time Requirements for Phenological Development of Peanut. Agron. J. 1989, 81, 910–917. [Google Scholar] [CrossRef]
- Williams, J.H. The implications and applications of resource capture concepts to crop improvement by plant breeding. Agric. For. Meteorol. 2000, 104, 49–58. [Google Scholar] [CrossRef]
- Egli, D.B. Seed- Fill Duration and Yield of Grain Crops. Adv. Agron. 2004, 83, 243–279. [Google Scholar] [CrossRef]
- Helios, W.; Jama-Rodzeńska, A.; Serafin-Andrzejewska, M.; Kotecki, A.; Kozak, M.; Zarzycki, P.; Kuchar, L. Depth and Sowing Rate as Factors Affecting the Development, Plant Density, Height and Yielding for Two Faba Bean (Vicia faba L. Var. Minor) Cultivars. Agriculture 2021, 11, 820. [Google Scholar] [CrossRef]
- Dapaah, H. Growth and Yield Performance of Groundnuts (Arachis hypogaea L.) in Response to Plant Density. Int. J. Plant Soil Sci. 2014, 3, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Ajeigbe, H.A.; Kamara, A.Y.; Kunihya, A.; Inuwa, A.H.; Adinoyi, A. Response of Groundnut to Plant Density and Phosphorous Application in the Sudan Savanna Zone of Nigeria. Int. J. Biosci. 2016, 16, 291–302. [Google Scholar]
- Krapovičkas, A.; Vanni, R.O.; Pietrarelli, J.R.; Simpson, C.E. Las razas de maní de Perú. Bonplandia 2013, 22, 19–90. [Google Scholar] [CrossRef]
- Mendoza Reynanldo, E.A. Guía Técnica para Muestreo de Suelos. Available online: https://repositorio.una.edu.ni/3613/1/P33M539.pdf (accessed on 20 May 2024).
- Bazán Tapia, R. Manual de Procedimientos de los Análisis de Suelos y Agua con Fines de Riego. Available online: https://repositorio.inia.gob.pe/bitstream/20.500.12955/504/1/Bazan-Manual_de_procedimientos_de_los.pdf (accessed on 20 May 2024).
- INACAL. Norma Técnica Peruana NTP-ISO/IEC 17025:2017. Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración. Available online: https://transparencia.produce.gob.pe/images/stories/Repositorio/transparencia/proyectos-de-inversion/niveles-de-servicio/2021/ITP/NC/NTP_ISO_IEC_17025_2017.pdf (accessed on 20 May 2024).
- Kannan, S. Foliar Fertilization for Sustainable Crop Production. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2010; Volume 4, pp. 371–402. [Google Scholar] [CrossRef]
- Santos, D.Y.A.C.; Ferreira, M.J.P.; Matos, T.M.; Sala-Carvalho, W.R.; Anselmo-Moreira, F.; Roma, L.P.; Carvalho, J.C.S.; Peña-Hidalgo, M.; French, K.; Waterman, M.J.; et al. UV-B and Drought Stress Influenced Growth and Cellular Compounds of Two Cultivars of Phaseolus vulgaris L. (Fabaceae). Photochem. Photobiol. 2021, 97, 166–179. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Burow, M.D.; Chen, C.Y.; Pandey, M.K.; Liu, L.; Chagoya, J.C.; Chu, Y.; Ozias-Akins, P. Chapter 4—Recent Advances in Peanut Breeding and Genetics. In Peanuts; Elsevier: Amsterdam, The Netherlands, 2016; pp. 111–145. [Google Scholar] [CrossRef]
- Maas, A.L.; Anderson, W.F.; Quesenberry, K.H. Genetic Variability of Cultivated Rhizoma Peanut. Crop Sci. 2010, 50, 1908–1914. [Google Scholar] [CrossRef]
- Iddrisu, A.; Adjei, E.; Asomaning, S.K.; Santo, K.G.; Isaac, A.P.; Danson-Anokye, A. Effect of Variety and Plant Spacing on Growth and Yield of Groundnuts (Arachis hypogaea L.). Agric. Sci. 2024, 15, 54–70. [Google Scholar] [CrossRef]
- Nwokwu, G.N.; Agbedo Odoh, I.L.; Ngozi, E.P. Growth and Yield Response of Groundnut (Arachis hypogaea L.) Varieties to Plant Density. J. Agric. Stud. 2020, 8, 633. [Google Scholar] [CrossRef]
- Li, X.; Zuo, Q.; Chang, H.; Bai, G.; Kuai, J.; Zhou, G. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res. 2018, 218, 97–105. [Google Scholar] [CrossRef]
- Craufurd, P.Q.; Wheeler, T.R.; Ellis, R.H.; Summerfield, R.J.; Vara Prasad, P.V. Escape and tolerance to high temperature at flowering in groundnut (Arachis hypogaea L.). J. Agric. Sci. 2000, 135, 371–378. [Google Scholar] [CrossRef]
- Bagnall, D.J.; King, R.W. Response of peanut (Arachis hypogaea) to temperature, photoperiod and irradiance 1. Effect on flowering. Field Crops Res. 1991, 26, 263–277. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Sadras, V.O.; Fereres, E. Plant Density and Competition. In Principles of Agronomy for Sustainable Agriculture; Villalobos, F.J., Fereres, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 159–168. [Google Scholar] [CrossRef]
- Mai, W.; Xue, X.; Azeem, A. Plant Density Differentially Influences Seed Weightin Different Portions of the Raceme of Castor. Pol. J. Environ. Stud. 2023, 32, 3247–3254. [Google Scholar] [CrossRef]
- Ortega, R.G.; Gutierrez, M.; Cavero, J. Plant Density Influences Marketable Yield of Directly Seeded ‘Piquillo’ Pimiento Pepper. HortScience 2004, 39, 1584–1587. [Google Scholar] [CrossRef]
- Arioglu, H.; Bakal, H.; Gulluoglu, L.; Onat, B.; Kurt, C. The effect of harvesting dates on some agronomic and quality characteristics of peanut (Arachis hypogaea L.) varieties grown as a main crop in mediterranean region (Turkey). Turk. J. Field Crops 2018, 23, 27–37. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Wu, P.; Gao, Y.; Yang, Q.; Shen, Y. Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Res. 2017, 214, 1–13. [Google Scholar] [CrossRef]
- Wang, C.-S.; Tang, C.; Hein, S.; Guo, J.-J.; Zhao, Z.-G.; Zeng, J. Branch Development of Five-Year-Old Betula Alnoides Plantations in Response to Planting Density. Forests 2018, 9, 42. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Z.; Hein, S.; Zeng, J.; Schuler, J.; Guo, J.; Guo, W.; Zeng, J. Effect of Planting Density on Knot Attributes and Branch Occlusion of Betula Alnoides under Natural Pruning in Southern China. Forests 2015, 6, 1343–1361. [Google Scholar] [CrossRef]
- Dapaah, H.K.; Mohammed, I.; Awuah, R.T. Phenological Development and Yield of Three Groundnut Varieties as Influenced by Plant Density in a Forest-Savanna Transition Zone. Int. J. Agric. Res. 2014, 9, 87–98. [Google Scholar] [CrossRef]
- Khan, N.; Han, Y.; Xing, F.; Feng, L.; Wang, Z.; Wang, G.; Yang, B.; Fan, Z.; Lei, Y.; Xiong, S.; et al. Plant Density Influences Reproductive Growth, Lint Yield and Boll Spatial Distribution of Cotton. Agronomy 2019, 10, 14. [Google Scholar] [CrossRef]
- Xu, C.; Li, R.; Song, W.; Wu, T.; Sun, S.; Hu, S.; Han, T.; Wu, C. Responses of Branch Number and Yield Component of Soybean Cultivars Tested in Different Planting Densities. Agriculture 2021, 11, 69. [Google Scholar] [CrossRef]
- Yilmaz, M.; Jordan, D.L. Effect of plant density on yield and quality of peanut (Arachis hypogaea L.) cultivars. Turk. J. Field Crops 2022, 27, 217–223. [Google Scholar] [CrossRef]
- Yousif, D.P.; Hussain, A. Effect of genotype and plant density on growth characteristics, and yield of Peanut (Arachis hypogaea L.) in Central Region of Iraq. Agric. Res. Technol. Open Access J. 2019, 19, 1–6. [Google Scholar]
- Chen, T.; Zhang, J.; Wang, X.; Zeng, R.; Chen, Y.; Zhang, H.; Wan, S.; Zhang, L. Monoseeding Increases Peanut (Arachis hypogaea L.) Yield by Regulating Shade-Avoidance Responses and Population Density. Plants 2021, 10, 2405. [Google Scholar] [CrossRef] [PubMed]
- Abd Al-Shammari, A.M.; Jaburi, S.B. Effect of Foliar Fertilization with Zinc and Plant Density on Some Characteristics of Vegetative Growth and Yield of Two Cultivars of Faba Bean Vicia faba L. IOP Conf. Ser. Earth Environ. Sci. 2022, 1060, 012053. [Google Scholar] [CrossRef]
- Desmae, H.; Sako, D.; Konate, D. Optimum Plant Density for Increased Groundnut Pod Yield and Economic Benefits in the Semi-Arid Tropics of West Africa. Agronomy 2022, 12, 1474. [Google Scholar] [CrossRef]
- Alam, A.M.; Sarker, M.A.R.; Hossain, M.A.; Islam, M.M.; Haque, M.S.; Hussain, M. Yield and Quality of Groundnut (Arachis hypogaea L.) as Affected by Hill Density and Number of Plants per Hill. J. Agron. 2002, 1, 74–76. [Google Scholar] [CrossRef]
- Wright, G.; Bell, M. Plant population studies on peanut (Arachis hypogaea L.) in subtropical Australia. 3. Growth and water use during a terminal drought stress. Aust. J. Exp. Agric. 1992, 32, 197. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Zhao, J.; Nie, J.; Jiang, Y.; Shang, M.; Zang, H.; Yang, Y.; Brown, R.W.; Zeng, Z. Optimizing sowing date and plant density improve peanut yield by mitigating heat and chilling stress. Agron. J. 2023, 115, 2521–2532. [Google Scholar] [CrossRef]
- Minh, T.X.; Thanh, N.C.; Thin, T.H.; Tieng, N.T.; Giang, N.T.H. Effects of Plant Density and Row Spacing on Yield and Yield Components of Peanut (Arachis hypogaea L.) on the Coastal Sandy Land Area in Nghe an Province, Vietnam. Indian J. Agric. Res. 2021, 55, 468–472. [Google Scholar] [CrossRef]
- Mohammad, Y.; Zaineh, R.; Zalikha, M. Effect of Plant Densities on some Productivity Characteristics ofTwo Varieties of Arachis hypogaea L. (Sory1 and Sory2) in Syrian Coast. Ishreen Univ. J. Res. Sci. Stud.-Biol. Sci. Ser. 2023, 42, 35–48. [Google Scholar]
- Herreros Llamccaya, S.A. Evaluación y Adaptación de Cinco Cultivares de Maní (Arachis hypogaea) en el Valle de Cañete. Universidad Nacional José Faustino Sánchez Carrión. Perú. Available online: https://repositorio.unjfsc.edu.pe/bitstream/handle/20.500.14067/8109/Tesis%20de%20Mani%202022%20-%20SARA%20HERREROS.pdf?sequence=1&isAllowed=y (accessed on 19 July 2024).
Cultivars | Name in the Catalog | Growth Characteristics | Pod Characteristics |
---|---|---|---|
Chivita | Criollo Blanco de Casma | Semirastrera | 2–3 pale grains. |
Rojo Tarapoto | Colorado Tarapoto | Semirastrera | Pods up to 4.30 cm, 3 grains, colored integument. |
Huayabamba | Morado Huayabamba | Large Erecta | Pods large, up to 5 cm, 3 grains, dark purplish, almost black. |
Rojo Bola | Rojo gigante | Erecta compact | Boxes rounded, without beak, 2 grains, colored tegument. |
Treatments | Peanut Cultivars (Arachis hypogaea L.) | Density |
---|---|---|
T1 | Huayabamba | 10 × 50 cm |
T2 | Huayabamba | 20 × 50 cm |
T3 | Huayabamba | 30 × 50 cm |
T4 | Rojo Tarapoto | 10 × 50 cm |
T5 | Rojo Tarapoto | 20 × 50 cm |
T6 | Rojo Tarapoto | 30 × 50 cm |
T7 | Chivita | 10 × 50 cm |
T8 | Chivita | 20 × 50 cm |
T9 | Chivita | 30 × 50 cm |
T10 | Rojo Bola | 10 × 50 cm |
T11 | Rojo Bola | 20 × 50 cm |
T12 | Rojo Bola | 30 × 50 cm |
Factors | Plant Height after 60 Days (cm) 1 | Plant Height after 90 Days (cm) 1 | Days to Flowering 1 | Days to Harvest 2 |
---|---|---|---|---|
Densities | ||||
10 × 50 cm | 15.2 ± 1.5 ns | 19.6 ± 3.5 ns | 77.5 ± 11.4 ns | 159.0 ± 18.5 ns |
20 × 50 cm | 15.4 ± 1.3 ns | 19.1 ± 3.8 ns | 78.1 ± 9.9 ns | 159.8 ± 19.1 ns |
30 × 50 cm | 14.6 ± 2.2 ns | 19.2 ± 4.5 ns | 78.7 ± 10.3 ns | 159.4 ± 19.1 ns |
Cultivars | ||||
Huayabamba | 15.9 ± 1.2 a | 21.7 ± 2.5 a | 91.2 ± 1.3 a | 182.2 ± 1.0 a |
Rojo Tarapoto | 15.5 ± 0.8 a | 19.7 ± 2.3 a | 83.8 ± 2.2 b | 168.7 ± 0.8 b |
Chivita | 13.3 ± 2.0 b | 14.0 ± 2.5 b | 65.4 ± 1.9 d | 133.6 ± 1.1 d |
Rojo Bola | 15.6 ± 1.3 a | 21.7 ± 1.9 a | 72.1 ± 1.5 c | 153.1 ± 1.1 c |
Treatments | ||||
T1 | 15.9 ± 0.4 a | 21.5 ± 1.7 a | 92.3 ± 0.5 a | 181.0 ± 0.0 b |
T2 | 16.1 ± 0.6 a | 21.1 ± 3.1 a | 90.3 ± 0.5 a | 183.0 ± 1.0 a |
T3 | 15.8 ± 2.2 a | 22.7 ± 3.3 a | 91.0 ± 2.0 a | 182.6 ± 0.5 ab |
T4 | 15.6 ± 0.7 a | 20.2 ± 0.5 a | 83.0 ± 1.7 b | 168.6 ± 1.1 c |
T5 | 15.1 ± 0.4 a | 20.1 ± 2.9 a | 83.6 ± 3.0 b | 169.0 ± 1.0 c |
T6 | 15.9 ± 1.3 a | 18.9 ± 3.2 ab | 85.0 ± 2.0 b | 168.6 ± 0.5 c |
T7 | 13.8 ± 1.7 ab | 14.4 ± 2.3 bc | 64.0 ± 1.0 d | 133.6 ± 0.5 e |
T8 | 14.2 ± 2.2 ab | 14.6 ± 3.8 bc | 66.3 ± 2.8 d | 133.6 ± 1.5 e |
T9 | 11.9 ± 2.1 b | 13.2 ± 1.9 c | 66.0 ± 1.0 d | 133.6 ± 1.5 e |
T10 | 15.7 ± 2.1 a | 22.3 ± 2.0 a | 71.0 ± 1.0 c | 153.0 ± 1.0 d |
T11 | 16.3 ± 0.4 a | 20.8 ± 2.5 a | 72.3 ± 1.1 c | 153.6 ± 1.5 d |
T12 | 14.8 ± 0.4 a | 22.1 ± 1.5 a | 73.0 ± 2.0 c | 152.6 ± 1.1 d |
Factors | Number of Branches 2 | Number of Pods 1 | Number of Seeds/Pod 1 | Empty Pods 2 | Weight 100 Seeds (g) 2 |
---|---|---|---|---|---|
Densities | |||||
10 × 50 cm | 4.7 ± 0.5 ns | 5.1 ± 1.8 c | 4.1 ± 1.1 ns | 0.7 ± 0.2 ns | 100.0 ± 22.9 ns |
20 × 50 cm | 5.0 ± 0.8 ns | 8.6 ± 1.7 b | 4.2 ± 1.2 ns | 0.5 ± 0.3 ns | 99.0 ± 21.3 ns |
30 × 50 cm | 4.7 ± 0.8 ns | 12.6 ± 2.5 a | 4.1 ± 1.1 ns | 0.5 ± 0.3 ns | 98.4 ± 22.3 ns |
Cultivars | |||||
Huayabamba | 5.1 ± 0.3 a | 11.5 ± 3.8 a | 5.3 ± 0.7 a | 0.7 ± 0.3 ns | 101.1 ± 1.4 c |
Rojo Tarapoto | 4.5 ± 0.4 b | 9.3 ± 3.2 b | 4.6 ± 0.3 b | 0.7 ± 0.2 ns | 119.2 ± 0.7 a |
Chivita | 5.4 ± 0.8 a | 6.5 ± 2.9 d | 2.7 ± 0.6 d | 0.5 ± 0.2 ns | 64.2 ± 1.7 d |
Rojo Bola | 4.1 ± 0.3 c | 8.0 ± 3.2 c | 3.9 ± 0.7 c | 0.4 ± 0.3 ns | 112.1 ± 3.2 b |
Treatments | |||||
T1 | 5.1 ± 0.1 abc | 7.4 ± 0.1 e | 5.4 ± 0.1 a | 0.7 ± 0.0 ns | 102.6 ± 0.6 ef |
T2 | 4.9 ± 0.2 abcd | 11.0 ± 0.7 c | 5.2 ± 0.8 ab | 0.7 ± 0.4 ns | 100.3 ± 1.4 f |
T3 | 5.4 ± 0.3 ab | 16.0 ± 0.4 a | 5.2 ± 1.0 ab | 0.6 ± 0.5 ns | 100.3 ± 0.4 f |
T4 | 4.5 ± 0.2 cde | 5.8 ± 0.8 f | 4.6 ± 0.1 abc | 1.0 ± 0.0 ns | 119.8 ± 0.3 a |
T5 | 4.8 ± 0.5 bcd | 8.8 ± 0.6 d | 4.9 ± 0.3 abc | 0.5 ± 0.2 ns | 119.2 ± 0.5 ab |
T6 | 4.3 ± 0.0 de | 13.1 ± 0.4 b | 4.3 ± 0.2 abc | 0.6 ± 0.1 ns | 118.6 ± 0.6 bc |
T7 | 5.0 ± 0.6 abcd | 2.9 ± 0.6 h | 2.6 ± 0.2 e | 0.6 ± 0.1 ns | 63.7 ± 1.1 g |
T8 | 6.1 ± 0.2 a | 7.1 ± 0.4 e | 2.8 ± 0.7 de | 0.5 ± 0.2 ns | 65.6 ± 2.1 g |
T9 | 5.2 ± 1.0 abcd | 9.6 ± 0.2 d | 2.7 ± 0.8 de | 0.5 ± 0.2 ns | 63.2 ± 1.1 g |
T10 | 4.3 ± 0.5 de | 4.5 ± 0.2 g | 3.7 ± 0.6 cde | 0.5 ± 0.3 ns | 113.9 ± 5.4 bcd |
T11 | 4.1 ± 0.2 e | 7.7 ± 0.8 e | 3.9 ± 0.7 cd | 0.4 ± 0.3 ns | 110.7 ± 1.1 de |
T12 | 4.0 ± 0.3 e | 11.8 ± 0.4 c | 4.1 ± 0.8 bc | 0.5 ± 0.3 ns | 111.6 ± 1.1 cd |
Factors | Yield (Kg/ha) 2 |
---|---|
Densities | |
10 × 50 cm | 752.8 ± 184.6 c |
20 × 50 cm | 1150.7 ± 123.1 b |
30 × 50 cm | 1583.3 ± 231.7 a |
Cultivars | |
Huayabamba | 1408.0 ± 350.2 ns |
Rojo Tarapoto | 1192.1 ± 455.0 ns |
Chivita | 961.5 ± 284.1 ns |
Rojo Bola | 1087.5 ± 358.0 ns |
Treatments | |
T1 | 1057.0 ± 6.0 gh |
T2 | 1317.0 ± 8.0 cd |
T3 | 1850.0 ± 12.4 a |
T4 | 671.3 ± 3.2 ij |
T5 | 1183.0 ± 7.0 ef |
T6 | 1722.0 ± 6.2 ab |
T7 | 620.0 ± 5.2 k |
T8 | 992.0 ± 5.2 hi |
T9 | 1272.6 ± 35.2 de |
T10 | 663.0 ± 7.0 jk |
T11 | 1111.0 ± 2.6 fg |
T12 | 1488.6 ± 8.1 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva-Cruz, M.; Cabañas-López, J.R.; Altamirano-Tantalean, M.A.; Juarez-Contreras, L.; Vigo, C.N. Agronomic Behavior of Peanut (Arachis hypogaea L.) Cultivars under Three Planting Densities in the Northeast of Peru. Agronomy 2024, 14, 1905. https://doi.org/10.3390/agronomy14091905
Oliva-Cruz M, Cabañas-López JR, Altamirano-Tantalean MA, Juarez-Contreras L, Vigo CN. Agronomic Behavior of Peanut (Arachis hypogaea L.) Cultivars under Three Planting Densities in the Northeast of Peru. Agronomy. 2024; 14(9):1905. https://doi.org/10.3390/agronomy14091905
Chicago/Turabian StyleOliva-Cruz, Manuel, Jorge Ricardo Cabañas-López, Miguel A. Altamirano-Tantalean, Lily Juarez-Contreras, and Carmen N. Vigo. 2024. "Agronomic Behavior of Peanut (Arachis hypogaea L.) Cultivars under Three Planting Densities in the Northeast of Peru" Agronomy 14, no. 9: 1905. https://doi.org/10.3390/agronomy14091905
APA StyleOliva-Cruz, M., Cabañas-López, J. R., Altamirano-Tantalean, M. A., Juarez-Contreras, L., & Vigo, C. N. (2024). Agronomic Behavior of Peanut (Arachis hypogaea L.) Cultivars under Three Planting Densities in the Northeast of Peru. Agronomy, 14(9), 1905. https://doi.org/10.3390/agronomy14091905