Comparison of Agronomic and Physiological Characteristics for Rice Varieties Differing in Water Use Efficiency under Alternate Wetting and Drying Irrigation
Abstract
:1. Introduction
2. Methods and Materials
2.1. Description of the Plant Materials and Experimental Site
2.2. Treatment
2.3. Sampling and Measurements
2.4. Harvest
2.5. Statistical Analysis
3. Results
3.1. Yield and Its Components
3.2. Water Use Efficiency (WUE) and Harvest Index (HI)
3.3. Category for Defining Rice Varieties with Different Water Use Efficiencies
3.4. Number of Tillers and Leaf Area Index (LAI)
3.5. NSC Translocation in Sheaths and Stems
3.6. Leaf Net Photosynthetic and Transpiration Rate
3.7. Catalase (CAT), Peroxidase (POD), and Superoxide Dismutase (SOD) Activities in Leaves
3.8. Root, Shoot Biomass, and Root–Shoot Ratio
3.9. Root Absorbing Surface Area and Root Oxidation Activity (ROA)
3.10. Z + ZR in Root Bleeding
3.11. Relationship between Aboveground Agronomic Traits, Photosynthetic System, Antioxidant System, and Root System with WUE and Yield
4. Discussion
4.1. Variations in Yield and WUE among Varieties
4.2. Response of Yield and WUE to Different Irrigation Methods
4.3. The Response of Physiological and Agronomic Traits to AWD across Different Varieties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muthayy, S.; Sugimoto, J.D.; Montgomery, S.; Marberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Olalekan Suleiman, S.; Gajere Habila, D.; Mamadou, F.; Mutiu Abolanle, B.; Nurudeen Olatunbosun, A. Grain Yield and leaf gas exchange in upland nerica rice under repeated cycles of water deficit at reproductive growth stage. Agric. Water Manag. 2022, 264, 107507. [Google Scholar] [CrossRef]
- Peng, S.; Huang, J.; Cassman, K.G.; Laza, R.C.; Visperas, R.M.; Khush, G.S. The importance of maintenance breeding: A case study of the first miracle rice variety-IR8. Field Crops Res. 2010, 119, 342–347. [Google Scholar] [CrossRef]
- Peng, S.; Khush, G.S.; Virk, P.; Tang, Q.; Zou, Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Xiong, Q.; Tang, G.; Zhong, L.; He, H.; Chen, X. Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Front. Plant Sci. 2018, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 2007, 104, 16402–16409. [Google Scholar] [CrossRef]
- Dingkuhn, M.; Laza, M.R.C.; Kumar, U.; Mendez, K.S.; Collard, B.; Jagadish, K.; Singh, R.K.; Padolina, T.; Malabayabas, M.; Torres, E.; et al. Improving yield potential of tropical rice: Achieved levels and perspectives through improved ideotypes. Field Crops Res. 2015, 182, 43–59. [Google Scholar] [CrossRef]
- Fu, F.; Li, F.; Kang, S. Alternate partial root-zone drip irrigation improves water– and nitrogen– use efficiencies of sweet-waxy maize with nitrogen fertigation. Sci. Rep. 2017, 7, 17256. [Google Scholar] [CrossRef]
- Gowda, V.R.P.; Henry, A.; Yamauchi, A.; Shashidhar, H.E.; Serraj, R. Root biology and genetic improvement for drought avoidance in rice. Field Crops Res. 2011, 122, 1–13. [Google Scholar] [CrossRef]
- Bouman, B.A.M. A Conceptual framework for the improvement of crop water productivity at different spatial scales. Agric. Syst. 2007, 93, 43–60. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Peng, S.; Bouman, B.; Visperas, R.M.; Castañeda, A.; Nie, L.; Park, H.-K. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight-season experiment. Field Crops Res. 2006, 96, 252–259. [Google Scholar] [CrossRef]
- Gu, H.Z.; Wang, X.; Zhang, M.H.; Jing, W.J.; Wu, H.; Xiao, Z.L.; Zhang, W.Y.; Gu, J.F.; Liu, L.J.; Wang, Z.Q.; et al. The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice. J. Integr. Agric. 2024, 23, 1879–1896. [Google Scholar] [CrossRef]
- Borrell, A.; Garside, A.; Fukai, S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Res. 1997, 52, 231–248. [Google Scholar] [CrossRef]
- Li, S.; Zuo, Q.; Jin, X.; Ma, W.; Shi, J.; Ben-Gal, A. The physiological processes and mechanisms for superior water productivity of a popular ground cover rice production system. Agric. Water Manag. 2018, 201, 11–20. [Google Scholar] [CrossRef]
- Lou, D.; Chen, Z.; Yu, D.; Yang, X. SAPK2 contributes to rice yield by modulating nitrogen metabolic processes under reproductive stage drought stress. Rice 2020, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Yang, J. Improving nitrogen use efficiency of rice crop through an optimized root system and agronomic practices. Crop Environ. 2023, 2, 192–201. [Google Scholar] [CrossRef]
- Belder, P.; Bouman, B.A.M.; Cabangon, R.; Guoan, L.; Quilang, E.J.P.; Yuanhua, L.; Spiertz, J.H.J.; Tuong, T.P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manag. 2004, 65, 193–210. [Google Scholar] [CrossRef]
- Ishfaq, M.; Farooq, M.; Zulfiqar, U.; Hussain, S.; Akbar, N.; Nawaz, A.; Anjum, S.A. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 2020, 241, 106363. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wan, Y.; Wang, B.; Waqas, M.A.; Cai, W.; Guo, C.; Zhou, S.; Su, R.; Qin, X.; et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma 2018, 315, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, C.; Kong, X.; Hou, D.; Gu, J.; Liu, L.; Wang, Z.; Yang, J. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Res. 2018, 215, 1–11. [Google Scholar] [CrossRef]
- Mäkinena, H.; Kasevab, J.; Trnkac, D.M.; Kersebaume, K.C.; Nendele, C.; Gobinf, A.; Oleseng, J.E.; Bindih, M.; Ferriseh, R.; Moriondoi, M.; et al. Sensitivity of european wheat to extreme weather. Field Crops Res. 2018, 222, 209–217. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Xi, N.N.; Xiao, D.G.; Ru, H.J.; Meng, H.Y.; Xiao, L.Y.; Yong, W.F.; Kadambot, H.M.; Siddique, G. Effect of natural factors and management practices on agricultural water use efficiency under drought: A meta-analysis of global drylands. J Hydrol. 2021, 594, 125977. [Google Scholar] [CrossRef]
- Yu, S.; Ali, J.; Zhou, S.; Ren, G.; Xie, H.; Xu, J.; Yu, X.; Zhou, F.; Peng, S.; Ma, L.; et al. From green super rice to green agriculture: Reaping the promise of functional genomics research. Mol. Plant 2022, 15, 9–26. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Peng, S.; Xiong, D. Leaf rolling precedes stomatal closure in rice (Oryza sativa L.) under drought conditions. J. Exp. Bot. 2023, 74, 6650–6661. [Google Scholar] [CrossRef]
- Belder, P.; Spiertz, J.H.J.; Bouman, B.A.M.; Lu, G.; Tuong, T.P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Res. 2005, 93, 169–185. [Google Scholar] [CrossRef]
- AMushtaq, S.; Dawe, D.; Lin, H.; Moya, P. An assessment of the role of ponds in the adoption of water-saving irrigation practices in the zhanghe irrigation system, China. Agric. Water Manag. 2006, 83, 100–110. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crop Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Zhang, G.; Mo, F.; Shah, F.; Meng, W.; Liao, Y.; Han, J. Ridge-furrow configuration substantially improves soil water availability, crop water use efficiency, and grain yield in dryland agroeco systems of the loess plateau. Agric. Water Manag. 2021, 245, 106657. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.; Liu, L.; Wang, Z.; Yang, J.; Zhang, J. Performance in grain yield and physiological traits of rice in the yangtze river basin of china throughout the last 60 years. J. Integr. Agric. 2013, 12, 57–66. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Bio. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Liu, D. Root developmental responses to phosphorus nutrition. J. Integr. Plant Biol. 2021, 63, 1065–1090. [Google Scholar] [CrossRef] [PubMed]
- Prince, S.J.; Murphy, M.; Mutava, R.N.; Durnell, L.A.; Valliyodan, B.; Shannon, J.G.; Nguyen, H.T. Root xylem plasticity to improve water use and yield in water-stressed soybean. J. Exp. Bot. 2017, 68, 2027–2036. [Google Scholar] [CrossRef]
- Kudoyarova, G.R.; Korobova, A.V.; Akhiyarova, G.R.; Arkhipova, T.N.; Zaytsev, D.Y.; Prinsen, E.; Egutkin, N.L.; Medvedev, S.S.; Veselov, S.Y. Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). J. Exp. Bot. 2014, 65, 2287–2294. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Doerge, D.R.; Divi, R.L.; Churchwell, M.I. Identification of the colored guaiacol oxidation product produced by peroxidases. Anal. Biochem. 1997, 250, 10–17. [Google Scholar] [CrossRef]
- Chandlee, J.M.; Scandalios, J.G. Analysis of variants affecting the catalase developmental program in maize scutellum. Theor. Appl. Genet. 1984, 69, 71–77. [Google Scholar] [CrossRef]
- Ramasamy, S.; Berge, H.F.M.; Purushothaman, S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res. 1997, 51, 65–82. [Google Scholar] [CrossRef]
- Pan, X.; Welti, R.; Wang, X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nat. Protoc. 2010, 5, 986–992. [Google Scholar] [CrossRef]
Indexes Measured | Assay Methods (1) |
---|---|
Tiller dynamics | [1] |
Shoot biomass and root biomass | [2] |
Leaf area index (LAI) | [3] |
Flag leaf net photosynthetic and transpiration rates | [4] |
Super oxide dismutase activity (SOD) | [5] |
Peroxidase activity (POD) | [6] |
Catalase activity (CAT) | [7] |
Root oxidation activity (ROA) | [8] |
Zeatin (Z) and zeatin riboside (ZR) in the root bleeding sap | [9] |
Treatment (1) | Variety | Number of Panicles (×104 ha−1) | Spikelets per Panicle | Total Spikelets (×106 ha−1) | Filled Grain Rate (%) | 1000-Grain Weight (g) | Grain Yield (t ha−1) |
---|---|---|---|---|---|---|---|
CI | Jinnanfeng | 279.44 a (2) | 121.75 i | 340.22 i | 70.33 f | 24.10 f | 5.77 h |
Xudao 2 | 269.22 b | 130.84 h | 352.25 h | 84.06 b | 24.15 f | 7.15 f | |
Huaidao 5 | 257.79 c | 175.42 cde | 452.22 c | 82.14 c | 24.26 f | 9.01 d | |
Nanjing 9108 | 249.31 d | 171.11 e | 426.59 e | 81.23 c | 24.78 e | 8.59 e | |
Wuyunjing 24 | 246.71 def | 178.73 c | 440.94 d | 81.87 c | 25.60 cd | 9.24 cd | |
Yongyou 2640 | 247.74 de | 172.35 de | 426.98 e | 84.67 ab | 25.74 bc | 9.31 cd | |
AWD | Jinnanfeng | 268.46 b | 136.59 g | 366.69 g | 72.14 e | 24.23 f | 6.41 g |
Xudao 2 | 266.19 b | 147.22 f | 391.88 f | 79.47 d | 24.19 f | 7.53 f | |
Huaidao 5 | 241.68 f | 178.61 c | 431.66 e | 84.85 ab | 25.38 d | 9.30 cd | |
Nanjing 9108 | 244.31 def | 176.35 cd | 430.84 e | 85.49 a | 25.68 bcd | 9.46 c | |
Wuyunjing 24 | 242.97 ef | 189.65 b | 460.79 b | 85.83 a | 26.27 a | 10.39 b | |
Yongyou 2640 | 234.69 g | 217.44 a | 510.31 a | 85.95 a | 25.95 b | 11.38 a | |
Analysis of variance (3) | |||||||
Treatment (T) | ** | ** | ** | NS | ** | * | |
Variety (V) | ** | ** | ** | * | ** | ** | |
T × V | ** | * | ** | ** | ** | ** |
Treatment (1) | Variety | Yield-Level Water Use Efficiency (kg m−3) | Leaf-Level Water Use Efficiency (μmol mmol−1) | Harvest Index | ||
---|---|---|---|---|---|---|
PI | HD | MF | ||||
CI | Jinnanfeng | 0.78 i (2) | 2.50 cd | 2.29 d | 2.33 d | 0.34 g |
Xudao 2 | 0.96 h | 2.15 e | 2.28 d | 2.35 d | 0.39 f | |
Huaidao 5 | 1.27 f | 2.08 e | 2.28 d | 2.45 bcd | 0.47 e | |
Nanjing 9108 | 1.60 d | 2.63 bcd | 2.18 d | 2.36 d | 0.49 de | |
Wuyunjing 24 | 1.46 e | 2.52 cd | 2.68 bc | 2.60 abcd | 0.51 cd | |
Yongyou 2640 | 1.85 c | 2.49 d | 2.67 c | 2.44 cd | 0.53 bc | |
AWD | Jinnanfeng | 1.04 g | 2.72 abcd | 2.73 bc | 2.54 abcd | 0.31 h |
Xudao 2 | 1.47 e | 2.46 d | 2.74 bc | 2.76 abc | 0.39 f | |
Huaidao 5 | 1.87 c | 2.84 abc | 2.88 ab | 2.75 abcd | 0.49 d | |
Nanjing 9108 | 1.86 c | 2.80 abcd | 2.87 bc | 2.85 ab | 0.49 de | |
Wuyunjing 24 | 2.14 b | 3.04 a | 2.97 a | 2.95 a | 0.54 b | |
Yongyou 2640 | 2.25 a | 2.95 ab | 2.99 bc | 2.93 abc | 0.56 a | |
Analysis of variance (3) | ||||||
Treatment (T) | ** | ** | * | NS | NS | |
Variety (V) | ** | NS | NS | NS | ** | |
T × V | ** | NS | NS | NS | NS |
Type (1) | Variety | Yield (t ha−1) | Yield-Level Water Use Efficiency (kg m−3) | Leaf-Level Water Use Efficiency (μmol mmol−1) |
---|---|---|---|---|
LWVs | Jinnanfeng | <8.0 | <1.6 | <2.8 |
Xudao 2 | <8.0 | <1.6 | <2.8 | |
MWVs | Huaidao 5 | 8.0~10.0 | 1.6~2.0 | 2.8~2.9 |
Nanjing 9108 | 8.0~10.0 | 1.6~2.0 | 2.8~2.9 | |
HWVs | Wuyunjing 24 | >10.0 | >2.0 | >2.9 |
Yongyou 2640 | >10.0 | >2.0 | >2.9 |
Treatment (1) | Type (2) | Variety | Number of Tillers (× 104 ha−1) | Percentage of Productive Tillers (%) | |||
---|---|---|---|---|---|---|---|
MT | PI | HD | MA | ||||
CI | LWVs | Jinnanfeng | 183.3 d (3) | 414.7 a | 342.5 b | 279.4 b | 67.4 j |
Xudao 2 | 229.3 a | 412.1 a | 354.7 a | 259.227 d | 62.9 k | ||
Mean | 206.3 | 413.4 | 348.6 | 269.3 | 64.1 | ||
MWVs | Huaidao 5 | 163.7 i | 323.6 d | 278.1 f | 247.8 e | 76.6 h | |
Nanjing 9108 | 178.1 e | 347.8 c | 298.9 d | 289.3 a | 83.2 f | ||
Mean | 170.9 | 335.7 | 288.5 | 368.6 | 79.9 | ||
HWVs | Wuyunjing 24 | 190.1 c | 327.3 d | 263.7 g | 266.7 c | 81.5 g | |
Yongyou 2640 | 120.1 k | 258.9 f | 226.4 j | 217.7 g | 84.1 e | ||
Mean | 155.1 | 293.1 | 245.1 | 242.2 | 82.8 | ||
AWD | LWVs | Jinnanfeng | 177.1 f | 327.5 d | 321.9 c | 231.5 f | 70.7 i |
Xudao 2 | 218.0 b | 404.9 b | 342.6 b | 275.2 b | 68.0 j | ||
Mean | 197.5 | 366.2 | 332.3 | 253.3 | 69.3 | ||
MWVs | Huaidao 5 | 151.4 j | 257.9 f | 252.7 i | 219.7 g | 85.2 d | |
Nanjing 9108 | 165.3 h | 265.2 f | 290.5 e | 234.3 f | 88.4 b | ||
Mean | 158.3 | 261.5 | 271.6 | 227.0 | 86.8 | ||
HWVs | Wuyunjing 24 | 173.6 g | 286.5 e | 256.7 h | 249.0 e | 86.9 c | |
Yongyou 2640 | 112.0 | 206.9 g | 205.7 k | 184.7 h | 89.2 a | ||
Mean | 142.8 | 246.7 | 231.3 | 216.8 | 88.1 | ||
Analysis of variance (4) | |||||||
Treatment (T) | ** | ** | ** | ** | ** | ||
Variety (V) | ** | ** | ** | ** | ** | ||
T × V | NS | ** | * | NS | ** |
Treatment (1) | Type (2) | Variety | NSC Content in Stems and Sheaths (g m−2) | NSC Translocation Amount (g m−2) | NSC Remobilization (%) | NSC Contribution to Grain (%) | |
---|---|---|---|---|---|---|---|
HD | MA | ||||||
CI | LWVs | Jinnanfeng | 248.8 h (3) | 175.3 f | 73.5 g | 29.5 h | 11.0 cd |
Xudao 2 | 256.7 g | 182.7 e | 73.9 g | 28.8 h | 10.4 f | ||
Mean | 252.7 | 179.0 | 73.7 | 29.2 | 10.7 | ||
MWVs | Huaidao 5 | 312.7 e | 197.9 d | 114.9 e | 36.7 e | 11.3 de | |
Nanjing 9108 | 325.2 d | 211.2 c | 114.0 e | 35.0 fg | 11.7 f | ||
Mean | 319.0 | 204.6 | 114.4 | 35.9 | 11.5 | ||
HWVs | Wuyunjing 24 | 366.1 a | 218.1 b | 147.9 c | 40.4 d | 11.9 b | |
Yongyou 2640 | 352.2 b | 222.2 a | 129.9 d | 36.9 e | 11.5 g | ||
Mean | 359.1 | 220.2 | 138.9 | 38.7 | 11.7 | ||
AWD | LWVs | Jinnanfeng | 215.4 j | 140.5 l | 74.9 g | 34.8 g | 11.6 bc |
Xudao 2 | 225.8 i | 144.3 k | 81.5 f | 36.1 ef | 11.5 f | ||
Mean | 220.6 | 142.4 | 78.2 | 35.4 | 11.5 | ||
MWVs | Huaidao 5 | 273.0 f | 155.9 j | 137.2 e | 42.9 c | 12.8 e | |
Nanjing 9108 | 325.6 d | 161.8 i | 143.8 a | 50.3 a | 12.6 a | ||
Mean | 299.3 | 158.8 | 140.5 | 46.6 | 12.7 | ||
HWVs | Wuyunjing 24 | 322.3 d | 167.3 h | 155.0 b | 48.1 b | 13.3 b | |
Yongyou 2640 | 334.7 c | 169.9 g | 164.8 a | 49.2 ab | 13.1 b | ||
Mean | 328.5 | 168.6 | 159.9 | 48.7 | 13.5 | ||
Analysis of variance (4) | |||||||
Treatment (T) | ** | ** | ** | ** | ** | ||
Variety (V) | ** | ** | ** | ** | ** | ||
T × V | * | NS | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Fa, X.; Meng, Q.; Zhang, Y.; Wang, W.; Zhu, K.; Zhang, W.; Gu, J.; Liu, L.; Zhang, J.; et al. Comparison of Agronomic and Physiological Characteristics for Rice Varieties Differing in Water Use Efficiency under Alternate Wetting and Drying Irrigation. Agronomy 2024, 14, 1986. https://doi.org/10.3390/agronomy14091986
Wang C, Fa X, Meng Q, Zhang Y, Wang W, Zhu K, Zhang W, Gu J, Liu L, Zhang J, et al. Comparison of Agronomic and Physiological Characteristics for Rice Varieties Differing in Water Use Efficiency under Alternate Wetting and Drying Irrigation. Agronomy. 2024; 14(9):1986. https://doi.org/10.3390/agronomy14091986
Chicago/Turabian StyleWang, Chen, Xiaotong Fa, Qinghao Meng, Ying Zhang, Weilu Wang, Kuanyu Zhu, Weiyang Zhang, Junfei Gu, Lijun Liu, Jianhua Zhang, and et al. 2024. "Comparison of Agronomic and Physiological Characteristics for Rice Varieties Differing in Water Use Efficiency under Alternate Wetting and Drying Irrigation" Agronomy 14, no. 9: 1986. https://doi.org/10.3390/agronomy14091986
APA StyleWang, C., Fa, X., Meng, Q., Zhang, Y., Wang, W., Zhu, K., Zhang, W., Gu, J., Liu, L., Zhang, J., & Zhang, H. (2024). Comparison of Agronomic and Physiological Characteristics for Rice Varieties Differing in Water Use Efficiency under Alternate Wetting and Drying Irrigation. Agronomy, 14(9), 1986. https://doi.org/10.3390/agronomy14091986