Crop Productivity, Phytochemicals, and Bioactivities of Wild and Grown in Controlled Environment Slender Amaranth (Amaranthus viridis L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvents and Reagents
2.2. Samples and Growth Conditions
2.3. Extraction and Quantification of Vitamin C
2.4. Extraction of Phenolic Compounds
2.5. Determination of Total Phenolic and Total Flavonoid Content
2.6. Determination of the Antioxidant Activity
2.7. Characterization of Phenolic Compounds by HPLC-DAD
2.8. Characterization of Phenolic Compounds by LC-MS
2.9. Antitumor Assays
2.10. Statistical Analysis
3. Results
3.1. Effect of Salinity and Light on Growth Parameters in GCE A. viridis
3.1.1. Monitoring Fertigation Parameters
3.1.2. Fertigation Uptake and Growth Parameters
3.2. Moisture
3.3. Vitamin C
3.4. Antioxidant Activity
3.5. Total Phenols and Flavonoids
3.6. Phenolic Compound Profiles
3.7. Antiproliferative Activity of A. viridis Extracts
3.8. Correlation Studies
4. Discussion
4.1. Effect of Salinity and Light on Growth Parameters in GCE A. viridis
4.1.1. Monitoring Parameters of Fertigation
4.1.2. Fertigation Uptake and Growth Parameters
4.2. Vitamin C
4.3. Antioxidant Activity
4.4. Phenolic Compound Content
4.5. Phenolic Compounds Profiles
4.6. Antiproliferative Activity of A. viridis Extracts against HT-29 Cells
4.7. Correlations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Motti, R. Wild plants used as herbs and spices in Italy: An ethnobotanical review. Plants 2021, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Tardío, J.; Sánchez-Mata, M.D.C.; Morales, R.; Molina, M.; García-Herrera, P.; Morales, P.; Díez-Marquéz, C.; Fernández-Ruiz, V.; Cámara, M.; Pardo-Santayana, M.; et al. Ethnobotanical and food composition monographs of selected Mediterranean wild edible plants. In Mediterranean Wild Edible Plants; Sánchez-Mata, M., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 273–470. [Google Scholar] [CrossRef]
- Brenan, J.P.M. The genus Amaranthus in Southern Africa. J. S. Afr. Bot. 1981, 47, 451–492. [Google Scholar]
- Jansen, P.C.M. Amaranthus viridis L. PROTA4U; Consultado 13 de Septiembre de 2019; Grubben, G.J.H., Denton, O.A., Eds.; PROTA (Plant Resources of Tropical Africa): Wageningen, The Netherlands, 2004; Available online: http://www.prota4u.org (accessed on 12 February 2024).
- Reyad-ul-Ferdous, M.D. Present Biological Status of Potential Medicinal Plant of Amaranthus viridis: A Comprehensive Review. Am. J. Clin. Med. 2015, 3, 12–17. [Google Scholar] [CrossRef]
- Guil Guerrero, J.L.; Giménez-Martinez, J.J.; Torija-Isasa, M.E. Mineral Nutrient Composition of Edible Wild Plants. J. Food Compos. Anal. 1998, 11, 322–328. [Google Scholar] [CrossRef]
- Guil, J.L.; Rodríguez-García, I.; Torija, E. Nutritional and toxic factors in selected wild edible plants. Plant Food Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rodríguez-García, I. Lipids classes, fatty acids and carotenes of the leaves of six edible wild plants. Eur. Food Res. Technol. 1999, 209, 313–316. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez-García, I.; Giménez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep. 2019, 9, 20413. [Google Scholar] [CrossRef]
- Silva, A.D.; Ávila, S.; Küster, R.T.; Santos, M.P.; Grassi, M.T.; Pinto, C.Q.P.; Miguel, O.G.; Ferreira, S.M.R. In vitro bioaccessibility of proteins, phenolics, flavonoids and antioxidant activity of Amaranthus viridis. Plant Food Hum. Nutr. 2021, 76, 478–486. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S.; Ullah, R.; Bari, A.; Ercisli, S.; Skrovankova, S.; Adamkova, A.; Zvonkova, M.; Mlcek, J. Nutritional and bioactive properties and antioxidant potential of Amaranthus tricolor, A. lividus, A viridis, and A. spinosus leafy vegetables. Heliyon 2024, 10, e30453. [Google Scholar] [CrossRef]
- Lima, A.R.; Gama, F.; Castañeda-Loaiza, V.; Costa, C.; Schüler, L.M.; Santos, T.; Salazar, M.; Nunes, C.; Cruz, R.M.S.; Varela, J.; et al. Nutritional and functional evaluation of Inula crithmoides and Mesembryanthemum nodiflorum grown in different salinities for human consumption. Molecules 2021, 26, 4543. [Google Scholar] [CrossRef] [PubMed]
- Nájera, C.; Urrestarazu, M. Effect of the intensity and spectral quality of LED light on yield and nitrate accumulation in vegetables. HortScience 2019, 54, 1745–1750. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.M.; Kim, H.M.; Lee, H.R.; Jeong, B.R.; Lee, H.J.; Kim, H.J.; Hwang, S.J. Growth and phytochemicals of ice plant (Mesembryanthemum crystallinum L.) as affected by various combined ratios of red and blue LEDs in a closed-type plant production system. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100267. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.A.; Cunha-Chiamolera, T.P.L.; Chileh-Chelh, T.; Carmona-Fernández, M.; Urrestarazu, M.; Guil-Guerrero, J.L. Growth parameters, phytochemicals, and antitumor activity of wild and GCE ice plants (Mesembryanthemum crystallinum L.). Food Sci. Nutr. 2024, 1–15. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, T.; Oba, S. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS ONE 2018, 13, e0206388. [Google Scholar] [CrossRef]
- Selmar, D.; Kleinwächter, M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind. Crop. Prod. 2013, 42, 558–566. [Google Scholar] [CrossRef]
- Volden, J.; Bengtsson, G.B.; Wicklund, T. Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and color in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem. 2009, 112, 967–976. [Google Scholar] [CrossRef]
- Lyashenko, S.; Fabrikov, D.; González-Fernández, M.J.; Gómez-Mercado, F.; Ruiz, R.L.; Fedorov, A.; Bélair, G.; Urrestarazu, M.; Rodríguez-García, I.; Álvarez-Corral, M.; et al. Phenolic composition and in vitro antiproliferative activity of Borago spp. Seed extracts on HT-29 cancer cells. Food Biosci. 2021, 42, 101043. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zou, Y.; Lu, Y.; Wei, D. Antioxidant activity of flavonoid-rich extracts of Hypericum perforatum L. in vitro. J. Agric. Food Chem. 2004, 52, 5032–5039. [Google Scholar] [CrossRef]
- Forbes-Hernández, T.; Giampieri, F.; Gasparrini, M.; Afrin, S.; Mazzoni, L.; Cordero, M.; Mezzetti, B.; Quiles, J.; Battino, M. Lipid accumulation in HepG2 cells is attenuated by strawberry extract through AMPK activation. Nutrients 2017, 9, 621. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Skenderidis, P.; Kerasioti, E.; Karkanta, E.; Stagos, D.; Kouretas, D.; Petrotos, K.; Hadjichristodoulou, C.; Tsakalof, A. Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation. Toxicol. Rep. 2018, 5, 251–257. [Google Scholar] [CrossRef]
- Cunha-Chiamolera, T.P.L.; Urrestarazu, M.; Cecilio Filho, A.B.; Morales, I. Agronomic and economic feasibility of tomato and lettuce intercropping in a soilless system as a function of the electrical conductivity of the nutrient solution. HortScience 2017, 52, 1195–1200. [Google Scholar] [CrossRef]
- Urrestarazu, M.; Carrasco, G. Soilless Culture and Hydroponics; Mundi-Prensa: Madrid, Spain, 2023; ISBN 13. [Google Scholar]
- Gallegos-Cedillo, V.M.; Urrestarazu, M.; Álvaro, J.E. Influence of salinity on transport of nitrates and potassium by means of the xylem sap content between roots and shoots in young tomato plants. J. Soil Sci. Plant Nutr. 2016, 16, 991–998. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance-Current Assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Peçanha, D.A.; Peña, J.A.M.; Freitas, M.S.M.; Chourak, Y.; Urrestarazu, M. Effect of light spectra on stem cutting rooting and lavender growth. Acta Sci. Agron. 2023, 45, e58864. [Google Scholar] [CrossRef]
- Gorbe, E.; Calatayud, A. Optimization of nutrition in soilless systems: A review. Adv. Bot. Res. 2010, 53, 193–245. [Google Scholar] [CrossRef]
- Rodríguez, D.; Reca, J.; Martínez, J.; Lao, M.T.; Urrestarazu, M. Effect of controlling the leaching fraction on the fertigation and production of a tomato crop under soilless culture. Sci. Hortic. 2014, 179, 153–157. [Google Scholar] [CrossRef]
- Moya, C.; Oyanedel, E.; Verdugo, G.; Flores, M.F.; Urrestarazu, M.; Álvaro, J.E. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortScience 2017, 52, 868–872. [Google Scholar] [CrossRef]
- Adams, P. Nutrition of greenhouse vegetables in NFT and hydroponic systems. Acta Hortic. 1994, 361, 245–257. [Google Scholar] [CrossRef]
- Chourak, Y.; Belarbi, E.H.; Cunha-Chiamolera, T.P.L.; Guil-Guerrero, J.L.; Carrasco, G.; Urrestarazu, M. Effect of macronutrient conditions and electrical conductivity on the quality of saffron grown in soilless culture systems. J. Soil Sci. Plant Nutr. 2022, 22, 4449–4457. [Google Scholar] [CrossRef]
- Arnon, D.I.; Johnson, C.M. Influence of hydrogen ion concentration on the growth of higher plants under controlled conditions. Plant Physiol. 1942, 17, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Truog, E. Lime in relation to availability of plant nutrients. Soil Sci. 1948, 65, 1–8. [Google Scholar] [CrossRef]
- Álvarez-García, M.; Urrestarazu, M.; Guil-Guerrero, J.L.; Jiménez-Becker, S. Effect of fertigation using fish production wastewater on Pelargonium x zonale growth and nutrient content. Agric. Water Manag. 2019, 223, 105726. [Google Scholar] [CrossRef]
- Ferrón-Carrillo, F.; Guil-Guerrero, J.L.; González-Fernández, M.J.; Lyashenko, S.; Battafarano, F.; Cunha-Chiamolera, T.P.L.; Urrestarazu, M. LED enhances plant performance and both carotenoids and nitrates profiles in lettuce. Plant Food Hum. Nutr. 2021, 76, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Ferrón-Carrillo, F.; Cunha-Chiamolera, T.P.L.; Urrestarazu, M. Effect of ammonium nitrogen on pepper grown under soilless culture. J. Plant Nutr. 2022, 45, 113–122. [Google Scholar] [CrossRef]
- Brendel, O. The relationship between plant growth and water consumption: A history from the classical four elements to modern stable isotopes. Ann. For. Sci. 2021, 78, 47. [Google Scholar] [CrossRef]
- Pennisi, G.; Blasioli, S.; Cellini, A.; Maia, L.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Unraveling the role of red:blue led lights on resource use efficiency and nutritional properties of indoor grown sweet Basil. Front. Plant Sci. 2019, 10, 305. [Google Scholar] [CrossRef]
- Spalholz, H.; Perkins-Veazie, P.; Hernández, R. Impact of sun-simulated white light and varied blue:red spectrums on the growth, morphology, development, and phytochemical content of green- and red-leaf lettuce at different growth stages. Sci. Hortic. 2020, 264, 109195. [Google Scholar] [CrossRef]
- Haddaji, H.E.; Akodad, M.; Skalli, A.; Moumen, A.; Bellahcen, S.; Elhani, S.; Urrestarazu, M.; Kolar, M.; Imperl, J.; Petrova, P.; et al. Effects of light-emitting diodes (LEDs) on growth, nitrates and osmoprotectant content in microgreens of aromatic and medicinal plants. Horticulturae 2023, 9, 494. [Google Scholar] [CrossRef]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; Pinto, M.C. Vitamin C in plants: From functions to biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J. Food Compos. Anal. 2017, 58, 33–39. [Google Scholar] [CrossRef]
- Calvo, M.M.; Martín-Diana, A.B.; Rico, D.; López-Caballero, M.E.; Martínez-Álvarez, O. Antioxidant, antihypertensive, hypoglycaemic and nootropic activity of a polyphenolic extract from the halophyte ice plant (Mesembryanthemum crystallinum). Foods 2022, 11, 1581. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Hasanuzzaman, M.; Lao, M.T. Oxidative stress and antioxidant defense in plants under salinity. In Reactive Oxygen, Nitrogen and Sulfur Species in Plants, 1st ed.; Hasanuzzaman, M., Fotopoulos, V., Nahar, K., Fujita, M., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 291–309. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J. Sci. Food Agric. 2019, 99, 2275–2284. [Google Scholar] [CrossRef]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 2023, 3, 570–885. [Google Scholar] [CrossRef]
- Cioć, M.; Szewczyk, A.; Żupnik, M.; Kalisz, A.; Pawłowska, B. LED lighting affects plant growth, morphogenesis and phytochemical contents of Myrtus communis L. in vitro. Plant Cell Tiss. Org. 2018, 132, 433–447. [Google Scholar] [CrossRef]
- House, N.C.; Puthenparampil, D.; Malayil, D.; Narayanankutty, A. Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. S. Afr. J. Bot. 2020, 135, 408–412. [Google Scholar] [CrossRef]
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant activity and phenolic composition of Amaranth (Amaranthus caudatus) during plant growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compos. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, R. p-Coumaric acid: A naturally occurring chemical with potential therapeutic applications. Curr. Org. Chem. 2022, 26, 1333–1349. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.Y.; Lee, S.; Kang, K.S. In vitro studies to assess the α-glucosidase inhibitory activity and insulin secretion effect of isorhamnetin 3-o-glucoside and quercetin 3-o-glucoside isolated from Salicornia herbacea. Processes 2021, 9, 483. [Google Scholar] [CrossRef]
- Zhou, P.; Ma, Y.Y.; Peng, J.Z.; Hua, F. Kaempferol-3-O-Rutinoside: A natural flavonoid glycoside with multifaceted therapeutic potential. Neurochem. J. 2023, 17, 247–252. [Google Scholar] [CrossRef]
- Malicdem, A.C.M.; Aducal, M.L.O.; Cuasay, J.C.; Dalisay, D.A.A.; Mendoza, A.I.; Napiza, G.M.E.; Magbojos, C.R.; Dumaoal, O.S.R. In-vitro anti-proliferative effect of flavonoid extract of Amaranthus viridis (Kolitis) leaves against MCF-7 breast adenocarcinoma cell line. Europ. J. Mol. Clin. Med. 2020, 7, 4129–4140. [Google Scholar]
- Deepak, S. Antioxidant, Anti-inflammatory and Anti-proliferative potential of Amaranthus viridis and Swertia chirata. Int. J. Plant Biotechnol. 2021, 7, 16–25. [Google Scholar]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure-activity relationship for drug design, a review. Phyt. Res. 2022, 36, 778–807. [Google Scholar] [CrossRef]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. Betalains: Natural plant pigments with potential application in functional foods. LWT-Food Sci. Technol. 2015, 64, 645–649. [Google Scholar] [CrossRef]
- Vichitsakul, K.; Laowichuwakonnukul, K.; Soontornworajit, B.; Poomipark, N.; Itharat, A.; Rotkrua, P. Anti-proliferation and induction of mitochondria-mediated apoptosis by Garcinia hanburyi resin in colorectal cancer cells. Heliyon 2023, 22, e16411. [Google Scholar] [CrossRef]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef]
- Minh, L.T.; Khang, D.T.; Ha, P.T.T.; Tuyen, P.T.; Minh, T.N.; Quan, N.V.; Xuan, T.D. Effects of salinity stress on growth and phenolics of rice (Oryza sativa L.). Int. Lett. Nat. Sci. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Ramos-Bueno, R.P.; González-Fernández, M.J.; Guil-Guerrero, J.L. Various acylglycerols from common oils exert different antitumor activities on colorectal cancer cells. Nutr. Cancer 2016, 68, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, C.; Straver, N.B. Nutrient solution for vegetables and flowers grown in water or substrates. Voedingspoloss. Glas. 1994, 8, 33. [Google Scholar]
- Rawat, P.; Singh, Y.; Tiwari, S.; Mishra, D.K.; Kanojiya, S. The characterization and quantification of structures of Cajanus scarabaeoides phytochemicals and their seasonal variation analysis using ultra-performance liquid chromatography-tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2023, 37, e9440. [Google Scholar] [CrossRef]
- Marcum, C.L.; Jarrell, T.M.; Zhu, H.; Owen, B.C.; Haupert, L.J.; Easton, M.; Hosseinaei, O.; Bozell, J.; Nash, J.J.; Kenttämaa, H.I. A fundamental tandem mass spectrometry study of the collision activated dissociation of small, deprotonated molecules related to lignin. ChemSusChem 2016, 9, 3513–3526. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
Sample Code | Status | Location | Electrical Conductivity of the Nutrient Solution/Soil of Collection (dS m−1) | Lamp Type |
---|---|---|---|---|
WC | Wild | Calaburras, Málaga (36.507777, −4.635555) | 7.0 | - |
WT | Wild | El Toyo, Almería (36.837729, −2.327154) | 4.0 | - |
WU | Wild | Almería University (36.831494, −2.401189) | 2.1 | - |
CT1 | GCE a | Growth chamber, University of Almería | 1.5 | L18 T8 Roblan® |
CT2 | GCE | Growth chamber, University of Almería | 2.5 | L18 T8 Roblan® |
CT3 | GCE | Growth chamber, University of Almería | 3.5 | L18 T8 Roblan® |
CT4 | GCE | Growth chamber, University of Almería | 4.5 | L18 T8 Roblan® |
LT1 | GCE | Growth chamber, University of Almería | 2.5 | L18 T8 Roblan® |
LT2 | GCE | Growth chamber, University of Almería | 2.5 | L18 AP67 Valoya® |
LT3 | GCE | Growth chamber, University of Almería | 2.5 | L18 NS1 Valoya® |
LT4 | GCE | Growth chamber, University of Almería | 2.5 | L18 NS12 Valoya® |
Antioxidant Activity | ||||||
---|---|---|---|---|---|---|
Samples/Codes | Moisture g 100 g−1 | DPPH mmol TE 100 g−1 dw | ABTS mmol TE 100 g−1 dw | Vitamin C mg 100 g−1 fw | TPC mg GAE 100 g−1 fw | TFC mg QE 100 g−1 fw |
Wild plants | ||||||
WC | 85.7 ± 0.7 a | 4.9 ± 0.2 a | 3.9 ± 0.3 c | 83.1 ± 2.9 i | 209.3 ± 10.4 g | 158.2 ± 6.5 e |
WT | 81.0 ± 1.6 c | 2.5 ± 0.1 b | 2.0 ± 0.1 c | 104.9 ± 0.4 gh | 330.0 ± 14.3 a | 212.0 ± 9.3 ab |
WU | 81.9 ± 0.6 bc | 1.8 ± 0.1 c | 3.1 ± 0.2 b | 103.5 ± 3.3 h | 276.4 ± 13.9 bc | 198.5 ± 6.4 bc |
Grown in a controlled environment plants | ||||||
Saline treatments | ||||||
CT1 (1.5 dS m−1) | 80.5 ± 0.1 c | 1.3 ± 0.0 f | 1.5 ± 0.2 c | 200.5 ± 0.7 c | 213.6 ± 5.9 g | 159.4 ± 7.4 de |
CT2 (2.5 dS m−1) | 81.9 ± 0.2 bc | 1.6 ± 0.1 cde | 1.7 ± 0.1 c | 210.4 ± 2.0 b | 248.4 ± 14.7 def | 184.4 ± 5.3 c |
CT3 (3.5 dS m−1) | 84.0 ± 2.4 abc | 1.7 ± 0.2 cd | 2.2 ± 0.6 c | 229.6 ± 2.5 a | 242.3 ± 6.6 f | 186.6 ± 6.1 c |
CT4 (4.5 dS m−1) | 83.5 ± 2.4 abc | 1.9 ± 0.0 c | 2.1 ± 0.3 c | 236.7 ± 8.3 a | 270.4 ± 16.9 cde | 213.1 ± 14.5 ab |
Light treatments | ||||||
LT1 (L18 T8) | 84.8 ± 0.7 ab | 1.6 ± 0.2 cde | 2.0 ± 0.2 c | 112.3 ± 5.2 fg | 272.0 ± 14.8 cd | 178.8 ± 10.1 cd |
LT2 (L18 AP67) | 80.4 ± 2.4 c | 1.4 ± 0.1 de | 1.5 ± 0.2 c | 114.1 ± 1.8 ef | 303.5 ± 11.5 ab | 229.3 ± 15.1 a |
LT3 (L18 NS1) | 82.8 ± 1.7 abc | 1.7 ± 0.4 cde | 1.8 ± 0.6 c | 120.9 ± 4.5 de | 268.8 ± 14.6 cdef | 222.3 ± 2.8 a |
LT4 (L18 NS12) | 83.1 ± 1.9 abc | 1.4 ± 0.1 de | 1.8 ± 0.5 c | 125.3 ± 4.3 d | 243.1 ± 10.6 ef | 197.5 ± 7.5 bc |
α-Tocoferol | - | 17.6 ± 0.6 | 8.8 ± 0.5 | - | - | - |
Ascorbic acid | - | 23.4 ± 1.4 | 10.5 ± 0.2 | - | - | - |
Caffeic acid | - | 22.2 ± 0.4 | 10.4 ± 0.3 | - | - | - |
Species/Codes | Gallocatechin (−) 4 | 3,4- dihydroxybenzoic Acid (Protocatechuic Acid) | 4-hydroxybenzoic Acid | Trans-p-coumaric Acid | Quercetin 3-O-rutinoside (Rutin) | Trans-ferulic Acid | Quercetin-3- O-glucoside (Isoquercetin) |
Wild plants | |||||||
WC | 0.13 ± 0.02 e | 0.67 ± 0.06 b | 1.10 ± 0.05 b | 2.80 ± 0.19 a | 0.11 ± 0.03 c | 0.12 ± 0.01 de | 0.15 ± 0.02 c |
WT | 0.59 ± 0.09 a | 1.20 ± 0.10 a | 0.81 ± 0.04 cd | 2.89 ± 0.22 a | 3.22 ± 0.22 a | 0.21 ± 0.02 bc | 1.23 ± 0.09 a |
WU | 0.31 ± 0.09 bcd | 0.50 ± 0.09 c | 1.39 ± 0.07 a | 2.03 ± 0.21 b | 0.78 ± 0.04 b | 0.25 ± 0.05 ab | 0.46 ± 0.02 b |
Grown in a controlled environment plants | |||||||
Saline treatments | |||||||
CT1 | 0.30 ± 0.02 cd | <LOQ | 0.68 ± 0.08 e | 0.20 ± 0.03 d | <LOQ | 0.17 ± 0.01 cd | <LOQ |
CT2 | 0.34 ± 0.02 bc | <LOQ | 0.70 ± 0.07 de | 0.20 ± 0.04 d | <LOQ | 0.22 ± 0.03 bc | <LOQ |
CT3 | 0.29 ± 0.09 cd | <LOQ | 0.52 ± 0.06 f | 0.10 ± 0.01 d | <LOQ | 0.20 ± 0.03 bc | 0.10 ± 0.01 c |
CT4 | 0.18 ± 0.02 de | <LOQ | 0.33 ± 0.02 g | 0.11 ± 0.02 d | <LOQ | 0.14 ± 0.02 de | 0.11 ± 0.02 c |
Light treatments | |||||||
LT1 | 0.30 ± 0.02 cd | <LOQ | 0.10 ± 0.02 h | 0.78 ± 0.06 c | <LOQ | 0.11 ± 0.02 e | 0.11 ± 0.0 c |
LT2 | 0.44 ± 0.08 b | <LOQ | 1.05 ± 0.06 b | 0.20 ± 0.02 d | 0.14 ± 0.01 c | 0.10 ± 0.02 e | 0.12 ± 0.01 c |
LT3 | 0.32 ± 0.08 bc | <LOQ | 0.88 ± 0.07 c | 0.10 ± 0.00 d | <LOQ | 0.28 ± 0.03 a | 0.10 ± 0.01 c |
LT4 | 0.30 ± 0.04 cd | <LOQ | 0.72 ± 0.05 de | 0.10 ± 0.01 d | <LOQ | 0.20 ± 0.03 bc | 0.10 ± 0.01 c |
Species/Codes | Apigenin-7-O- glucoside (Apigetrin) | Apigenin-7-O- Glucuronide 5 (Scutellarin A) | Isorhamnetin-3-O-glucoside 5 | Kaempferol-3-O- rutinoside 5 (Nicotiflorin) | Total Identified Phenolics | ||
Wild | |||||||
WC | 0.40 ± 0.05 c | 0.41 ± 0.05 bc | 3.33 ± 0.25 b | 5.17 ± 0.22 b | 14.38 ± 0.40 c | ||
WT | 0.84 ± 0.09 a | 0.96 ± 0.02 a | 5.84 ± 0.30 a | 4.52 ± 0.15 c | 22.31 ± 0.50 a | ||
WU | 0.65 ± 0.08 b | 0.48 ± 0.03 b | 3.11 ± 0.24 b | 8.58 ± 0.25 a | 18.54 ± 0.45 b | ||
Grown in a controlled environment plants | |||||||
Saline treatments | |||||||
CT1 | 0.36 ± 0.08 cd | 0.24 ± 0.01 def | 0.17 ± 0.01 c | 1.18 ± 0.18 fg | 3.32 ± 0.23 f | ||
CT2 | 0.35 ± 0.09 cd | 0.19 ± 0.01 efg | 0.18 ± 0.01 c | 0.66 ± 0.09 hi | 3.84 ± 0.18 e | ||
CT3 | 0.26 ± 0.09 cde | 0.25 ± 0.07 de | 0.35 ± 0.06 c | 1.55 ± 0.10 e | 3.58 ± 0.22 ef | ||
CT4 | 0.21 ± 0.08 de | 0.15 ± 0.05 g | 0.37 ± 0.05 c | 0.53 ± 0.02 i | 2.08 ± 0.15 g | ||
Light treatments | |||||||
LT1 | 0.14 ± 0.01 e | 0.27 ± 0.01 d | 0.14 ± 0.01 c | 0.51 ± 0.02 i | 3.47 ± 0.14 ef | ||
LT2 | 0.37 ± 0.09 cd | 0.36 ± 0.04 c | 0.42 ± 0.06c | 2.02 ± 0.15 d | 5.31 ± 0.22 d | ||
LT3 | 0.25 ± 0.04 cde | 0.17 ± 0.01 fg | 0.21 ± 0.03c | 1.30 ± 0.14 ef | 3.61 ± 0.19 ef | ||
LT4 | 0.34 ± 0.06 cd | 0.17 ± 0.01 fg | 0.32 ± 0.03c | 0.92 ± 0.09 gh | 3.16 ± 0.19 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha-Chiamolera, T.P.L.d.; Chileh-Chelh, T.; Urrestarazu, M.; Ezzaitouni, M.; López-Ruiz, R.; Gallón-Bedoya, M.; Rincón-Cervera, M.Á.; Guil-Guerrero, J.L. Crop Productivity, Phytochemicals, and Bioactivities of Wild and Grown in Controlled Environment Slender Amaranth (Amaranthus viridis L.). Agronomy 2024, 14, 2038. https://doi.org/10.3390/agronomy14092038
Cunha-Chiamolera TPLd, Chileh-Chelh T, Urrestarazu M, Ezzaitouni M, López-Ruiz R, Gallón-Bedoya M, Rincón-Cervera MÁ, Guil-Guerrero JL. Crop Productivity, Phytochemicals, and Bioactivities of Wild and Grown in Controlled Environment Slender Amaranth (Amaranthus viridis L.). Agronomy. 2024; 14(9):2038. https://doi.org/10.3390/agronomy14092038
Chicago/Turabian StyleCunha-Chiamolera, Tatiana Pagan Loeiro da, Tarik Chileh-Chelh, Miguel Urrestarazu, Mohamed Ezzaitouni, Rosalía López-Ruiz, Manuela Gallón-Bedoya, Miguel Á. Rincón-Cervera, and José L. Guil-Guerrero. 2024. "Crop Productivity, Phytochemicals, and Bioactivities of Wild and Grown in Controlled Environment Slender Amaranth (Amaranthus viridis L.)" Agronomy 14, no. 9: 2038. https://doi.org/10.3390/agronomy14092038
APA StyleCunha-Chiamolera, T. P. L. d., Chileh-Chelh, T., Urrestarazu, M., Ezzaitouni, M., López-Ruiz, R., Gallón-Bedoya, M., Rincón-Cervera, M. Á., & Guil-Guerrero, J. L. (2024). Crop Productivity, Phytochemicals, and Bioactivities of Wild and Grown in Controlled Environment Slender Amaranth (Amaranthus viridis L.). Agronomy, 14(9), 2038. https://doi.org/10.3390/agronomy14092038