The Occurrence and Diversity of Viruses Identified in Monocotyledonous Weeds
Abstract
:1. Introduction
2. Plant Viral Infections of Monocotyledonous Weeds
2.1. Viruses Which Have Been Found to Infect Echinocloa crus-galli
2.2. Cynodon dactylon Hosted Viruses
2.3. Plant Viral Disease Incidence in Setaria viridis
2.4. Viruses Infecting Sorghum halepense
2.5. Viruses Hosted by Different Millet Species
3. Ways of Viral Transfer Between Crops and Weeds: The Role of Vectors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suzuki, N.; Sasaya, T.; Choi, I.R. Viruses Threatening Stable Production of Cereal Crops. Front. Microbiol. 2015, 6, 470. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, A.J.; Ohshima, K.; Phillips, M.J.; Gibbs, M.J. The Prehistory of Potyviruses: Their Initial Radiation Was during the Dawn of Agriculture. PLoS ONE 2008, 3, e2523. [Google Scholar] [CrossRef] [PubMed]
- Power, A.G.; Mitchell, C.E. Pathogen Spillover in Disease Epidemics. Am. Nat. 2004, 164, S79–S89. [Google Scholar] [CrossRef] [PubMed]
- Stobbe, A.; Roossinck, M.J. Plant Virus Diversity and Evolution. In Current Research Topics in Plant Virology; Wang, A., Zhou, X., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 197–215. [Google Scholar] [CrossRef]
- Pinel-Galzi, A.; Dubreuil-Tranchant, C.; Hébrard, E.; Mariac, C.; Ghesquière, A.; Albar, L. Mutations in rice yellow mottle virus polyprotein P2a involved in RYMV2 gene resistance breakdown. Front. Plant Sci. 2016, 7, 1779. [Google Scholar] [CrossRef]
- Hsu, C.L.; Hoepting, C.A.; Fuchs, M.; Smith, E.A.; Nault, B.A. Sources of Iris Yellow Spot Virus in New York. Plant Dis. 2011, 95, 735–743. [Google Scholar] [CrossRef]
- Elena, S.F.; Fraile, A.; García-Arenal, F. Evolution and Emergence of Plant Viruses. Adv. Virus Res. 2014, 88, 161–191. [Google Scholar]
- Prajapat, R.; Marwal, A.; Gaur, R.K. Begomovirus Associated with Alternative Host Weeds: A Critical Appraisal. Arch. Phytopathol. Plant Prot. 2014, 47, 157–170. [Google Scholar] [CrossRef]
- Pallett, D.W.; Ho, T.; Cooper, I.; Wang, H. Detection of Cereal Yellow Dwarf Virus Using Small Interfering RNAs and Enhanced Infection Rate with Cocksfoot Streak Virus in Wild Cocksfoot Grass (Dactylis glomerata). J. Virol. Methods 2010, 168, 223–227. [Google Scholar] [CrossRef]
- Bisnieks, M.; Kvarnheden, A.; Turka, I.; Sigvald, R. Occurrence of Barley Yellow Dwarf Virus and Cereal Yellow Dwarf Virus in Pasture Grasses and Spring Cereals in Latvia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2006, 56, 171–178. [Google Scholar] [CrossRef]
- Lacroix, C.; Renner, K.; Cole, E.; Seabloom, E.W.; Borer, E.T.; Malmstrom, C.M. Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species. Appl. Environ. Microbiol. 2016, 82, 1966–1975. [Google Scholar] [CrossRef]
- Boonham, N.; Kreuze, J.; Winter, S.; van der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; Mumford, R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 2014, 186, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Rodenburg, J.; Meinke, H.; Johnson, D.E. Challenges for weed management in African rice systems in a changing climate. J. Agric. Sci. 2011, 149, 427–435. [Google Scholar] [CrossRef]
- Kil, E.J.; Byun, H.S.; Hwang, H.; Lee, K.Y.; Choi, H.S.; Kim, C.S.; Lee, S. Tomato yellow leaf curl virus infection in a monocotyledonous weed (Eleusine indica). Plant Pathol. J. 2021, 37, 641. [Google Scholar] [CrossRef]
- Khan, M.A.; Hibino, H.; Aguiero, V.M.; Daquioag, R.D.; Opina, O.S. Rice and weed hosts of rice tungro-associated viruses and leafhopper vectors. Plant Dis. 1991, 75, 926–930. [Google Scholar] [CrossRef]
- Rosida, N.; Senoaji, W.; Ibrahim, E.; Kuswinanti, T. Molecular detection of rice tungro bacilliform virus (RTBV) on weed host in South Sulawesi. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1160, p. 012054. [Google Scholar] [CrossRef]
- Yan, J.; Uyedau, I.; Kimura, I.; Shikata, E.; Chen, C.C.; Chen, M.J. Echinochloa ragged stunt virus belongs to the same genus as rice ragged stunt virus. Jpn. J. Phytopathol. 1994, 60, 613–616. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, M.J.; Chiu, R.J.; Hsu, H.T. Morphological comparisons of Echinochloa ragged stunt and rice ragged stunt viruses by electron microscopy. Phytopathology 1989, 79, 235–241. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lee, S.H.; Ryu, G.H. Studies on the host range of rice black-streaked dwarf virus. Res. Rep. Rural. Dev. Adm. Crop Prot. Korea Repub. 1989, 31, 14–18. [Google Scholar]
- Plumb, R.T. Future virus problems? Ann. Appl. Biol. 1975, 81, 267–271. [Google Scholar] [CrossRef]
- Hortamani, M.; Massah, A.; Talebi, M.; Izadpanah, K. Genetic diversity and phylogenetic analysis of Maize Iranian mosaic virus isolates based on geographical distribution, host and type of symptoms. Iran. J. Plant Pathol. 2018, 54, 39. [Google Scholar]
- Yoon, Y.N.; Lee, B.C.; Jung, J.H.; Kim, J.I.; Hwang, J.B.; Kim, C.S.; Hong, S.J.; Kang, H.W.; Song, S.B.; Hong, Y.G.; et al. New Alternate Host of Rice stripe virus-‘Deulmuksae’. Res. Plant Dis. 2009, 15, 63–67. [Google Scholar] [CrossRef]
- Pokorný, R. Occurrence of viruses of the family Luteoviridae on maize and some annual weed grasses in the Czech Republic. Cereal Res. Commun. 2006, 34, 1087–1092. [Google Scholar] [CrossRef]
- Ilbagı, H.; Cıtır, A.; Kara, A.; Uysal, M. Poaceae weed hosts of Yellow dwarf viruses (YDVs) in the Trakya region of Turkey. Ekin J. Crop Breed. Genet. 2018, 4, 8–19. [Google Scholar]
- Galbács, Z.N.; Agyemang, E.D.; Pásztor, G.; Takács, A.P.; Várallyay, É. Viromes of Monocotyledonous Weeds Growing in Crop Fields Reveal Infection by Several Viruses Suggesting Their Virus Reservoir Role. Plants 2024, 13, 2664. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wang, H.; Jiang, X.L.; Yang, X.; Liu, X.M.; Wang, Y.F.; Liu, Y.Q.; Li, H.L.; Yuan, H.X.; Shi, Y. First Report of Maize Yellow Mosaic Virus on Weed Hosts in China. Plant Dis. 2023, 107, 4036. [Google Scholar] [CrossRef]
- Sill, W.H.; Connin, R.V. Summary of the known host range of the wheat streak-mosaic virus. Trans. Kans. Acad. Sci. 1953, 56, 411–417. [Google Scholar] [CrossRef]
- Chalupniková, J.; Kundu, J.K.; Singh, K.; Bartaková, P.; Beoni, E. Wheat streak mosaic virus: Incidence in field crops, potential reservoir within grass species and uptake in winter wheat cultivars. J. Integr. Agric. 2017, 16, 523–531. [Google Scholar] [CrossRef]
- Chao, S.; Wang, H.; Zhang, S.; Chen, G.; Mao, C.; Hu, Y.; Yu, F.; Wang, S.; Lv, L.; Chen, L.; et al. Novel RNA Viruses Discovered in Weeds in Rice Fields. Viruses 2022, 14, 2489. [Google Scholar] [CrossRef]
- Kegler, H.; Kontzog, H.G.; Richter, J. On the ecology of tobacco rattle virus. Arch. Phytopathol. Pflanzenschutz 1989, 25, 91–93. [Google Scholar] [CrossRef]
- Lacombe, S.; Bangratz, M.; Ta, H.A.; Nguyen, T.D.; Gantet, P.; Brugidou, C. Optimized RNA-silencing strategies for Rice Ragged Stunt Virus resistance in rice. Plants 2021, 10, 2008. [Google Scholar] [CrossRef]
- Izadpanah, K.; Ahmadi, A.; Jafari, S.A.; Parvin, S. Maize rough dwarf in Fars. Iran. J. Plant Pathol. 1983, 19, 25–29. [Google Scholar]
- Izadpanah, K.; Ahmadi, A.A.; Parvin, S.; Jafari, S.A. Transmission, particle size and additional hosts of the rhabdovirus causing maize mosaic in shiraz, Iran 1. J. Phytopathol. 1983, 107, 283–288. [Google Scholar] [CrossRef]
- Massah, A.; Izadpanah, K.; Afsharifar, A.R.; Winter, S. Analysis of nucleotide sequence of Iranian maize mosaic virus confirms its identity as a distinct nucleorhabdovirus. Arch. Virol. 2008, 153, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Izadpanah, K.; Dietzgen, R.G. Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus. Arch. Virol. 2018, 163, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Walia, J.J.; Willemsen, A.; Elci, E.; Caglayan, K.; Falk, B.W.; Rubio, L. Genetic variation and possible mechanisms driving the evolution of worldwide Fig mosaic virus isolates. Phytopathology 2014, 104, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.Q.; Li, L.; Liu, L.; Wang, X.F.; Zhou, G. Evaluation of aphid transmission abilities and vector transmission phenotypes of barley yellow dwarf viruses in China. J. Plant Pathol. 2007, 89, 251–259. [Google Scholar]
- Pike, K.S. A Review of Barley Yellow Dwarf Virus Grain Yield Losses. In World Perspectives on Barley Yellow Dwarf; Burnett, P.A., Ed.; CIMMYT: Texcoco, Mexico, 1990; pp. 356–361. [Google Scholar]
- Perry, K.L.; Kolb, F.L.; Sammons, B.; Lawson, C.; Cisar, G.; Ohm, H. Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology 2000, 90, 1043–1048. [Google Scholar] [CrossRef]
- McKirdy, S.J.; Jones, R.A.C.; Nutter, F.W., Jr. Quantification of yield losses caused by Barley yellow dwarf virus in wheat and oats. Plant Dis. 2002, 86, 769–773. [Google Scholar] [CrossRef]
- Rabenstein, F.; Stenger, D.C.; French, R. Genus tritimovirus. In Viruses and Virus Diseases of Poaceae (Gramineae); Lapierre, H., Signoret, P.A., Eds.; INRA: Paris, France, 2004; pp. 398–402. [Google Scholar]
- Rochon, D.; Rubino, L.; Russo, M.; Martelli, G.P.; Lommel, S. Tombusviridae. In Virus Taxonomy-Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Academic Press: London, UK, 2012; pp. 1111–1138. [Google Scholar]
- Hillman, B.I.; Cai, G. The family Narnaviridae: Simplest of RNA viruses. Adv. Virus Res. 2013, 86, 149–176. [Google Scholar]
- Oudhia, P. Traditional Medicinal Knowledge About Herb Doobi (Cynodon dactylon) in Chhatisgarh, India. 2003. Available online: http://paramparik.blogspot.com/2017/04/traditional-medicinal-knowledge-about_59.html (accessed on 14 December 2023).
- Holm, L.; Pancho, J.V.; Herberger, J.E.; Plucknett, D.L. A Geographical Atlas of World Weeds; Wiley-lnterscience Publications: New York, NY, USA, 1979. [Google Scholar]
- Horowitz, M. Bermudagrass (Cynodon dactylon): A history of the weed and its control in Israel. Phytoparasitica 1996, 24, 305–320. [Google Scholar] [CrossRef]
- Linder, H.P.; Lehmann, C.E.; Archibald, S.; Osborne, C.P.; Richardson, D.M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. 2018, 93, 1125–1144. [Google Scholar] [CrossRef]
- Claverie, S.; Hoareau, M.; Chéhida, S.B.; Filloux, D.; Varsani, A.; Roumagnac, P.; Martin, D.P.; Lett, J.M.; Lefeuvre, P. Metagenomics reveals the structure of Mastrevirus–host interaction network within an agro-ecosystem. Virus Evol. 2023, 9, vead043. [Google Scholar] [CrossRef] [PubMed]
- Parizipour, M.H.G.; Schubert, J.; Behjatnia, S.A.A.; Afsharifar, A.; Habekuß, A.; Wu, B. Phylogenetic analysis of Wheat dwarf virus isolates from Iran. Virus Genes 2017, 53, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.D.V.J.P.; John, V.T. Alternate host of rice tungro virus and its vector. Plant Dis. Rep. 1974, 58, 856–860. [Google Scholar]
- Lockhart, B.E.L.; Khaless, N.; Maataoui, M.E.; Lastra, R. Cynodon chlorotic streak virus, a previously undescribed plant rhabdovirus infecting Bermuda grass and maize in the Mediterranean area. Phytopathology 1985, 75, 1094–1098. [Google Scholar] [CrossRef]
- Lamprecht, R.L.; Pietersen, G.; Kasdorf, G.G.F.; Nel, L.H. Characterisation of a proposed Nucleorhabdovirus new to South Africa. Eur. J. Plant Pathol. 2009, 123, 105–110. [Google Scholar] [CrossRef]
- Izadpanah, K.; Zaki-Aghl, M.; Zhang, Y.P.; Daubert, S.D.; Rowhani, A. Bermuda grass as a potential reservoir host for Grapevine fanleaf virus. Plant Dis. 2003, 87, 1179–1182. [Google Scholar] [CrossRef]
- Jones, R.A. Virus diseases of pasture grasses in Australia: Incidences, losses, epidemiology, and management. Crop Pasture Sci. 2013, 64, 216–233. [Google Scholar] [CrossRef]
- Louie, R. Sugarcane mosaic virus in Kenya. Plant Dis. 1981, 64, 944–947. [Google Scholar] [CrossRef]
- Thomas, J.E.; Raymond, M.; Tran, N.T.; Crew, K.S.; Teo, A.C.; Geering, A.D. Complete genome sequences and properties of Spartina mottle virus isolates from hybrid Bermudagrass (Cynodon dactylon × Cynodon transvaalensis). Plant Pathol. 2021, 70, 1062–1071. [Google Scholar] [CrossRef]
- Götz, R.; Huth, W.; Lesemann, D.E.; Maiss, E. Molecular and serological relationships of Spartina mottle virus (SpMV) strains from Spartina spec. and from Cynodon dactylon to other members of the Potyviridae. Arch. Virol. 2002, 147, 379–391. [Google Scholar] [CrossRef]
- Peláez, A.; McLeish, M.J.; Paswan, R.R.; Dubay, B.; Fraile, A.; García-Arenal, F. Ecological fitting is the forerunner to diversification in a plant virus with broad host range. J. Evol. Biol. 2021, 34, 1917–1931. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.T.; Teo, A.C.; Crew, K.S.; Thomas, J.E.; Campbell, P.R.; Geering, A.D. Bermudagrass latent virus in Australia: Genome sequence, sequence variation, and new hosts. Arch. Virol. 2022, 167, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, D.N.; Martin, D.P.; Van Der Walt, E.; Dent, K.; Varsani, A.; Rybicki, E.P. Maize streak virus: An old and complex ‘emerging’ pathogen. Mol. Plant Pathol. 2010, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Schubert, J.; Habekuß, A.; Kazmaier, K.; Jeske, H. Surveying cereal-infecting geminiviruses in Germany—Diagnostics and direct sequencing using rolling circle amplification. Virus Res. 2007, 127, 61–70. [Google Scholar] [CrossRef]
- Wu, B.; Shang, X.; Schubert, J.; Habekuß, A.; Elena, S.F.; Wang, X. Global-scale computational analysis of genomic sequences reveals the recombination pattern and coevolution dynamics of cereal-infecting geminiviruses. Sci. Rep. 2015, 5, 8153. [Google Scholar] [CrossRef]
- Ramsell, J.N.E.; Lemmetty, A.; Jonasson, J.; Andersson, A.; Sigvald, R.; Kvarnheden, A. Sequence analyses of Wheat dwarf virus isolates from different hosts reveal low genetic diversity within the wheat strain. Plant Pathol. 2008, 57, 834–841. [Google Scholar] [CrossRef]
- Jackson, A.O.; Dietzgen, R.G.; Goodin, M.M.; Bragg, J.N.; Deng, M. Biology of plant rhabdoviruses. Annu. Rev. Phytopathol. 2005, 43, 623–660. [Google Scholar] [CrossRef]
- Jones, R.A.C.; McKirdy, S.J.; Shivas, R.G. Occurrence of barley yellow dwarf virus in over-summering grasses and cereal crops in Western Australia. Australas. Plant Pathol. 1990, 19, 90–96. [Google Scholar] [CrossRef]
- Jones, P. Leaf mottling of Spartina species caused by a newly recognised virus, Spartina mottle virus. Ann. Appl. Biol. 1980, 94, 77–81. [Google Scholar] [CrossRef]
- Rose, H.; Menzel, W.; Knierim, D.; Rabenstein, F.; Maiss, E. Complete genome sequence of a German isolate of Spartina mottle virus supports its classification as a member of the proposed genus “Sparmovirus” within the family Potyviridae. Arch. Virol. 2020, 165, 2385–2388. [Google Scholar] [CrossRef]
- Tahir, M.N.; Lockhart, B.; Grinstead, S.; Mollov, D. Characterization and complete genome sequence of a panicovirus from Bermudagrass by high-throughput sequencing. Arch. Virol. 2017, 162, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Hanna, W.; Carrow, R.; Powell, A. Registration of ’Tift 94’ bermudagrass. Crop Sci. 1997, 37, 1012. [Google Scholar] [CrossRef]
- Defelice, M.S. Green Foxtail, Setaria viridis (L.) P. Beauv. Weed Technol. 2002, 16, 253–257. [Google Scholar] [CrossRef]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds: Distribution and Biology; Krieger Publishing: Malabar, FL, USA, 1977; p. 609. [Google Scholar]
- Yatskievych, G. Steyermarks’s Flora of Missouri; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; Volume 1, p. 991. [Google Scholar]
- Douglas, B.J.; Gordon, T.A.; Morrison, I.N.; Maw, M.G. The biology of Canadian weeds. 70. Setaria viridis (L.) Beauv. Can. J. Plant Sci. 1985, 65, 669–690. [Google Scholar] [CrossRef]
- Gent, D.H.; du Toit, L.J.; Fichtner, S.F.; Mohan, S.K.; Pappu, H.R.; Schwartz, H.F. Iris yellow spot virus: An emerging threat to onion bulb and seed production. Plant Dis. 2006, 90, 1468–1480. [Google Scholar] [CrossRef]
- Evans, C.K.; Bag, S.; Frank, E.; Reeve, J.; Ransom, C.; Drost, D.; Pappu, H.R. Green foxtail (Setaria viridis), a naturally infected grass host of Iris yellow spot virus in Utah. Plant Dis. 2009, 93, 670. [Google Scholar] [CrossRef]
- Paulsen, A.Q.; Niblett, C.L. Purification and properties of foxtail mosaic virus. Phytopathology 1977, 67, 1346–1351. [Google Scholar] [CrossRef]
- Remold, S.K. Unapparent virus infection and host fitness in three weedy grass species. J. Ecol. 2002, 90, 967–977. [Google Scholar] [CrossRef]
- Rosenkranz, E. New Hosts and Taxonomic Analysis of the Mississippi Native Species tested for reaction to maize dwarf mosaic and sugarcane mosaic viruses. Phytopathology 1987, 77, 598–607. [Google Scholar] [CrossRef]
- Scheets, K. Infectious transcripts of an asymptomatic panicovirus identified from a metagenomic survey. Virus Res. 2013, 176, 161–168. [Google Scholar] [CrossRef]
- Viswanathan, R.; Balamuralikrishnan, M. Impact of mosaic infection on growth and yield of sugarcane. Sugar Tech 2005, 7, 61. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea: Alismataceae to Orchidaceae (Monocotyledones); Cambridge University Press: Cambridge, UK, 1980; Volume 5, p. 452. [Google Scholar]
- Warwick, S.I.; Black, L.D. “The Biology of Canadian Weeds”. 61 Sorghum halepense (L.) Pers. Can. J. Plant Sci. 1983, 63, 997–1014. [Google Scholar] [CrossRef]
- Mueller, J.P.; Lewis, W.M.; Green, J.T.; Burns, J.C. “Yield and Quality of Silage Corn as Altered by Johnsongrass Infestation. Agron. J. 1993, 85, 49–52. [Google Scholar] [CrossRef]
- Lym, R.G.; Travnicek, A.J. Identification and Control of Invasive and Troublesome Weeds in North Dakota; NDSU Extension Service: Fargo, ND, USA, 2015; pp. 1–76. [Google Scholar]
- Byron, M.; Treadwell, D.D.; Dittmar, P.J. Weeds as Reservoirs of Plant Pathogens Affecting Economically Important Crops: HS1335, 9/2019; EDIS: Frankston, Australia, 2019; p. 7. [Google Scholar]
- Narayana, Y.D.; Muniyappa, V. Survey, symptomatology and detection of an isolate of maize stripe virus on sorghum in Karnataka. Indian Phytopathol. 1995, 48, 171–176. [Google Scholar]
- Petrik, K.; Sebestyén, E.; Gell, G.; Balázs, E. Natural insertions within the N-terminal region of the coat protein of Maize dwarf mosaic potyvirus (MDMV) have an effect on the RNA stability. Virus Genes 2010, 40, 135–139. [Google Scholar] [CrossRef]
- Xie, W.; Marty, D.M.; Xu, J.; Khatri, N.; Willie, K.; Moraes, W.B.; Stewart, L.R. Simultaneous gene expression and multi-gene silencing in Zea mays using maize dwarf mosaic virus. BMC Plant Biol. 2021, 21, 208. [Google Scholar] [CrossRef]
- Moradi, Z.; Mehrvar, M.; Nazifi, E.; Zakiaghl, M. Iranian johnsongrass mosaic virus: The complete genome sequence, molecular and biological characterization, and comparison of coat protein gene sequences. Virus Genes 2017, 53, 77–88. [Google Scholar] [CrossRef]
- Gough, K.H.; Shukla, D.D. Nucleotide sequence of Johnsongrass mosaic potyvirus genomic RNA. Intervirology 1993, 36, 181–192. [Google Scholar] [CrossRef]
- Achon, M.A.; Serrano, L.; Clemente-Orta, G.; Sossai, S. First report of Maize chlorotic mottle virus on a perennial host, Sorghum halepense, and maize in Spain. Plant Dis. 2017, 101, 393. [Google Scholar] [CrossRef]
- Quito-Avila, D.F.; Reyes-Proaño, E.G.; Mendoza, A.; Margaria, P.; Menzel, W.; Bera, S.; Simon, A.E. Two new umbravirus-like associated RNAs (ulaRNAs) discovered in maize and johnsongrass from Ecuador. Arch. Virol. 2022, 167, 2093–2098. [Google Scholar] [CrossRef]
- Achon, M.A.; Larranaga, A.; Alonso-Duenas, N. The population genetics of maize dwarf mosaic virus in Spain. Arch. Virol. 2012, 157, 2377–2382. [Google Scholar] [CrossRef] [PubMed]
- Tosic, M.; Ford, R.E.; Shukla, D.D.; Jilka, J. Differentiation of sugarcane, maize dwarf, Johnsongrass, and sorghum mosaic viruses based on reactions of oat and some sorghum cultivars. Plant Dis. 1990, 74, 549–552. [Google Scholar] [CrossRef]
- Ford, R.E.; Tosic, M. New hosts of maize dwarf mosaic virus and sugarcane mosaic virus and a comparative host range study of viruses infecting corn. J. Phytopathol. 1972, 75, 15–48. [Google Scholar] [CrossRef]
- Achon, M.A.; Alonso-Dueñas, N.; Serrano, L. Maize dwarf mosaic virus diversity in the Johnsongrass native reservoir and in maize: Evidence of geographical, host and temporal differentiation. Plant Pathol. 2011, 60, 369–377. [Google Scholar] [CrossRef]
- Gatton, H.A. Crop Profile for Sweet Corn in Virginia. In IPM Crop Profiles; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2015. [Google Scholar]
- Masumi, M.; Zare, A.; Izadpanah, K. Biological, serological and molecular comparisons of potyviruses infecting poaceous plants in Iran. Iran. J. Plant Pathol. 2011, 47, 47–66. [Google Scholar]
- Shukla, D.D.; Frenkel, M.J.; McKern, N.M.; Ward, C.W.; Jilka, J.; Tosic, M.; Ford, R.E. Present Status of the Sugarcane Mosaic Subgroup of Potyviruses; Springer: Vienna, Austria, 1992; pp. 363–373. [Google Scholar]
- Berger, P.H.; Adams, M.J.; Barnett, O.W.; Brunt, A.A.; Hammond, J.; Hill, J.H.; Jordan, R.L.; Kashiwazaki, S.; Rybicki, E.P.; Spence, N.; et al. Virus taxonomy: Classification and nomenclature of viruses. In 8th Report of the International Committee on the Taxonomy of Viruses; Mayo, M.A., Ball, L.A., Desselberger, U., Maniloff, J., Fauquet, C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 819–841. [Google Scholar]
- Adams, M.J.; Zerbini, F.M.; French, R.; Rabenstein, F.; Stenger, D.C.; Valkonen, J.P.T. Virus Taxonomy: 9th Report of the International Committee on the Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2012; pp. 1069–1089. [Google Scholar]
- Chen, J.; Chen, J.; Adams, M.J. Characterisation of potyviruses from sugarcane and maize in China. Arch. Virol. 2002, 147, 1237–1246. [Google Scholar] [CrossRef]
- Wangai, A.W.; Redinbaugh, M.G.; Kinuya, Z.M.; Miano, D.W.; Leley, P.K.; Kasina, M.; Mahuku, G.; Scheets, K.; Jeffers, D. First Report of Maize chlorotic mottle virus and Maize Lethal Necrosis in Kenya. Plant Dis. 2012, 96, 1582. [Google Scholar] [CrossRef]
- Nault, L.R.; Gordon, D.T.; Gingery, R.E.; Bradfute, O.E.; Castillo Loayza, J. Identification of maize viruses and mollicutes and their potential insect vectors in Peru. Phytopathology 1979, 69, 824–828. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, J.; Wang, Q.; Meng, C.; Hong, J.; Zhou, X. Characterization of maize chlorotic mottle virus associated with maize lethal necrosis disease in China. J. Phytopathol. 2011, 159, 191–193. [Google Scholar] [CrossRef]
- Zhao, M.; Ho, H.; Wu, Y.; He, Y.; Li, M. Western Flower Thrips (Frankliniella occidentalis) Transmits Maize Chlorotic Mottle Virus. J. Phytopathol. 2014, 162, 532–536. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, X.P.; Wu, J.X. First report of Maize chlorotic mottle virus infecting sugarcane (Saccharum officinarum). Plant Dis. 2014, 98, 572. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wen, G.S.; Li, M.J.; Sun, C.C.; Sun, Y.; Zhao, M.F.; He, Y.Q. First report of Maize chlorotic mottle virus naturally infecting sorghum and coix seed in China. Plant Dis. 2016, 100, 1955. [Google Scholar] [CrossRef]
- Niblett, C.; Claflin, L. Plant disease reporter—Corn lethal necrosis—A new virus disease of corn in Kansas. Plant Dis. Bull. 1978, 62, 15. [Google Scholar]
- Kusia, E.S.; Subramanian, S.; Nyasani, J.O.; Khamis, F.; Villinger, J.; Ateka, E.M.; Pappu, H.R. First report of lethal necrosis disease associated with co-infection of finger millet with Maize chlorotic mottle virus and Sugarcane mosaic virus in Kenya. Plant Dis. 2015, 99, 899–900. [Google Scholar] [CrossRef]
- Ryabov, E.V.; Taliansky, M.E. Umbraviruses (Calvusvirinae, Tombusviridae). In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Morrison, L.A.; Wrigley, C. Taxonomic classification of grain species. In Encylopedia of Grain Science; Wrigley, C., Corke, H., Walker, C.E., Eds.; Elsevier: Oxford, UK, 2004; Volume 3, pp. 271–280. [Google Scholar]
- Gomez, M.I.; Gupta, S.C. Millets. In Caballero BBT-E of FS and N, 2nd ed.; Academic Press: Oxford, UK, 2003; pp. 3974–3979. [Google Scholar]
- Brown, H.R. C4 Plants and humanity. In C4 Plant Biology; Sage, R.F., Monson, R.K., Eds.; Academic Press: San Diego, CA, USA, 1999; pp. 473–508. [Google Scholar]
- Taylor, J.R.; Awika, J. (Eds.) Gluten-Free Ancient Grains: Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century; Woodhead publishing: Cambridge, UK, 2017. [Google Scholar]
- Pásztor, G.; Szabó, R.; Takács, A.; Henézi, Á.; Nádasy, E. The natural viral infections of the weedy Panicum miliaceum (L.). Columella J. Agric. Environ. Sci. 2017, 4, 35–38. [Google Scholar]
- Pasztor, G.; Galbacs, N.Z.; Kossuth, T.; Demian, E.; Nadasy, E.; Takacs, A.P.; Varallyay, E. Millet Could Be Both a Weed and Serve as a Virus Reservoir in Crop Fields. Plants 2020, 9, 954. [Google Scholar] [CrossRef]
- Briddon, R.W.; Lunness, P.; Bedford, I.D.; Chamberlin, L.C.; Mesfin, T.; Markham, P.G. A streak disease of pearl millet caused by a leafhopper-transmitted geminivirus. Eur. J. Plant Pathol. 1996, 102, 397–400. [Google Scholar] [CrossRef]
- Shen, H.R.; Dong, Z.P.; Wang, Y.F.; Quan, J.Z.; Bai, H.; Li, Z.Y. First report of dwarf disease in foxtail millet (Setaria italica) caused by Barley Yellow Striate Mosaic Virus in China. Plant Dis. 2020, 104, 1262. [Google Scholar] [CrossRef]
- Yoon, Y.; Jung, J.; Lee, B.; Lee, Y.; Lee, J.; Kim, H.; Bae, S.; Nam, M.; Lee, K.; Yago, J. First report of rice stripe virus of proso millet in Korea. Plant Dis. 2012, 96, 150. [Google Scholar] [CrossRef]
- Agindotan, B.O.; Ahonsi, M.O.; Domier, L.L.; Gray, M.E.; Bradley, C.A. Application of sequence-independent amplification (SIA) for the identification of RNA viruses in bioenergy crops. J. Virol. Methods 2010, 169, 119–128. [Google Scholar] [CrossRef]
- Agindotan, B.O.; Gray, M.E.; Hammond, R.W.; Bradley, C.A. Complete genome sequence of switchgrass mosaic virus, a member of a proposed new species in the genus Marafivirus. Arch. Virol. 2012, 157, 1825–1830. [Google Scholar] [CrossRef] [PubMed]
- Palanga, E.; Tibiri, E.B.; Bangratz, M.; Filloux, D.; Julian, C.; Pinel-Galzi, A.; Koala, M.; Néya, J.B.; Brugidou, C.; Tiendrébéogo, F.; et al. Complete genome sequence of a novel marafivirus infecting pearl millet in Burkina Faso. Arch. Virol. 2022, 167, 245–248. [Google Scholar] [CrossRef]
- Lim, S.; Yoon, Y.; Jang, Y.W.; Bae, D.H.; Kim, B.S.; Maharjan, R.; Yi, H.; Bae, S.; Lee, Y.H.; Lee, B.C.; et al. First report of Maize yellow mosaic virus infecting Panicum miliaceum and Sorghum bicolor in South Korea. Plant Dis. 2018, 102, 689. [Google Scholar] [CrossRef]
- Kumar, L.M.; Foster, J.A.; McFarland, C.; Malapi-Wight, M. First report of Barley virus G in switchgrass (Panicum virgatum). Plant Dis. 2018, 102, 466. [Google Scholar] [CrossRef]
- Camelo-García, V.M.; da Silva Andrade, S.C.; Geering, A.D.; Kitajima, E.W.; Rezende, J.A. Genome organization and host range of a Brazilian isolate of johnsongrass mosaic virus. Arch. Virol. 2016, 161, 1335–1341. [Google Scholar] [CrossRef]
- Almasi, R.; Afsharifar, A.; Niazi, A.; Pakdel, A.; Izadpanah, K. Analysis of the complete nucleotide sequence of the polymerase gene of barley yellow striate mosaic virus-Iranian isolate. J. Phytopathol. 2010, 158, 351–356. [Google Scholar] [CrossRef]
- Yan, T.; Zhu, J.R.; Di, D.; Gao, Q.; Zhang, Y.; Zhang, A.; Yan, C.; Miao, H.; Wang, X.B. Characterization of the complete genome of Barley yellow striate mosaic virus reveals a nested gene encoding a small hydrophobic protein. Virology 2015, 478, 112–122. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, G.; Wu, J.; Liu, Y.; Qian, Y.; Zhou, X. Characterization of a novel polerovirus infecting maize in China. Viruses 2016, 8, 120. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Godinho, M.; Alves-Freitas, D.M.T.; Varsani, A.; Ribeiro, S.G. First report of maize yellow mosaic virus infecting maize in Brazil. Plant Dis. 2017, 101, 2156. [Google Scholar] [CrossRef]
- Yahaya, A.; Al Rwahnih, M.; Dangora, D.B.; Gregg, L.; Alegbejo, M.D.; Lava Kumar, P.; Alabi, O.J. First report of maize yellow mosaic virus infecting sugarcane (Saccharum spp.) and itch grass (Rottboellia cochinchinensis) in Nigeria. Plant Dis. 2017, 101, 1335. [Google Scholar] [CrossRef]
- Park, C.Y.; Min, H.G.; Lee, H.K.; Yeom, Y.A.; Oh, J.; Kim, B.S.; Bae, D.H.; Yoon, Y.N.; Lee, S.H. Occurrence of viruses infecting foxtail millet (Setaria italica) in South Korea. Res. Plant Dis. 2017, 23, 69–74. [Google Scholar] [CrossRef]
- Vafaei, S.H.; Mahmoodi, M. Distribution and Partial Properties of Three Viruses Infecting Cucumber in West Iran and Their Reservoir Weed Hosts. Arch. Phytopathol. Plant Prot. 2015, 48, 519–536. [Google Scholar] [CrossRef]
- Ng, J.C.; Falk, B.W. Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annu. Rev. Phytopathol. 2006, 44, 183–212. [Google Scholar] [CrossRef]
- Macharia, I.; Backhouse, D.; Wu, S.B.; Ateka, E.M. Weed Species in Tomato Production and Their Role as Alternate Hosts of Tomato Spotted Wilt Virus and Its Vector Frankliniella occidentalis: Weeds as Reservoir of TSWV. Ann. Appl. Biol. 2016, 169, 224–235. [Google Scholar] [CrossRef]
- Montero-Astúa, M.; Rotenberg, D.; Leach-Kieffaber, A.; Schneweis, B.A.; Park, S.; Park, J.K.; German, T.L.; Whitfield, A.E. Disruption of vector transmission by a plant-expressed viral glycoprotein. Mol. Plant Microbe Interact. 2014, 27, 296–304. [Google Scholar] [CrossRef]
- Seepiban, C.; Charoenvilaisiri, S.; Kumpoosiri, M.; Bhunchoth, A.; Chatchawankanphanich, O.; Gajanandana, O. Development of a Protocol for the Identification of Tospoviruses and Thrips Species in Individual Thrips. J. Virol. Methods 2015, 222, 206–213. [Google Scholar] [CrossRef]
- Rotenberg, D.; Jacobson, A.L.; Schneweis, D.J.; Whitfield, A.E. Thrips Transmission of Tospoviruses. Curr. Opin. Virol. 2015, 15, 80–89. [Google Scholar] [CrossRef]
- Warren, P.L.; Schalau, J.; Aphids. The University of Arizona—College of Agriculture and Life Sciences—Cooperative Extension, AZ1635. 2014. Available online: https://extension.arizona.edu/sites/default/files/pubs/az1635-2014.pdf (accessed on 10 June 2024).
- Przewodowska, A.; Zacharzewska, B.; Chołuj, J.; Treder, K. A One-Step, Real-Time Reverse Transcription Loopmediated Isothermal Amplification Assay to Detect Potato Virus Y. Am. J. Potato Res. 2015, 92, 303–311. [Google Scholar] [CrossRef]
- Tosh, C.R.; Brogan, B. Control of Tomato Whiteflies Using the Confusion Effect of Plant Odours. Agron. Sustain. Dev. 2015, 35, 183–193. [Google Scholar] [CrossRef]
- Chen, W.; Hasegawa, D.; Arumuganathan, K.; Simmons, A.; Wintermantel, W.; Fei, Z.; Ling, K.-S. Estimation of the Whitefly Bemisia Tabaci Genome Size Based on K-Mer and Flow Cytometric Analyses. Insects 2015, 6, 704–715. [Google Scholar] [CrossRef]
- Srinivasan, R.; Alvarez, J.M.; Cervantes, F. The Effect of an Alternate Weed Host, Hairy Nightshade, Solanum Sarrachoides (Sendtner) on Green Peach Aphid Distribution and Potato Leafroll Virus Incidence in Potato Fields of the Pacific Northwest. Crop Prot. 2013, 46, 52–56. [Google Scholar] [CrossRef]
- Canto, T.; Aranda, M.A.; Fereres, A. Climate Change Effects on Physiology and Population Processes of Hosts and Vectors That Influence the Spread of Hemipteran-Borne Plant Viruses. Glob. Chang. Biol. 2009, 15, 1884–1894. [Google Scholar] [CrossRef]
Genus | Virus Name | Abbreviation | Detection Method | Genbank Accession Number | Geographical Origin | Citation |
---|---|---|---|---|---|---|
Begomovirus | Tomato yellow leaf curl virus | TYLCV | PCR and amplicon sequencing | no sequence in GenBank | Republic of Korea | [14] |
Tungrovirus | Rice tungro bacilliform virus | RTBV | vector transmission | no sequence in GenBank | Philippines | [15] |
RT-PCR | no sequence in GenBank | Indonesia | [16] | |||
Phytoreovirus | Echinochloa ragged stunt virus | ERSV | EM, serology | no sequence in GenBank | Japan | [17] |
EM, serology | no sequence in GenBank | Taiwan | [18] | |||
Rice black-streaked dwarf fijivirus | SRBSDV | seedling inoculation | no sequence in GenBank | Republic of Korea | [19] | |
Maize rough dwarf virus | MRDV | vector transmission | no sequence in GenBank | France and Italy | [20] | |
Rhabdovirus | Maize Iranian mosaic virus | MIMV | Sanger sequencing | MG367447, MG242377, MG242375 | Iran | [21] |
Tenuivirus | Rice stripe virus | RSV | ELISA | no sequence in GenBank | Republic of Korea | [22] |
Waikavirus | Rice tungro spherical virus | RTSV | vector transmission | no sequence in GenBank | Philippines | [15] |
Luteovirus | Barley yellow dwarf virus | BYDV-PAV | DAS-ELISA | no sequence in GenBank | Czech Republic | [23] |
DAS-ELISA, RT-PCR | KJ816653 | Turkey | [24] | |||
Barley virus G | BVG | small RNA HTS | PQ047243 | Hungary | [25] | |
Polerovirus | Cereal yellow dwarf virus | CYDV | DAS-ELISA, RT-PCR | KT923457 | Turkey | [24] |
Maize yellow mosaic virus | MaYMV | Sanger dideoxy sequencing/RT-PCR | OP846588, OP846589, OP846590, OP846591 | China | [26] | |
Potyvirus | Watermelon mosaic virus | WMV | Sanger dideoxy sequencing | KP980661 | Belgium | GB |
Sugarcane mosaic virus | SCMV | Sanger dideoxy sequencing | MN586599 | China | GB | |
Tritimovirus | Wheat streak mosaic virus | WSMV | no sequence in GenBank | [27] | ||
TAS-ELISA and RT-PCR | no sequence in GenBank | Czech Republic | [28] | |||
small RNA HTS | PQ047238 | Hungary | [25] | |||
Tombusvirus | Sanya tombus-like virus | STlV | HTS | OM514394, OM514434, OM514426, OM514421 | China | [29] |
Narnavirus | Guiyang narna-like virus 2 | GNlV2 | HTS | OM514595 | China | [29] |
Tobravirus | Tobacco rattle virus | TRV | ELISA and bioassay | no sequence in GenBank | Germany | [30] |
Dicipivirus | Aphis glycines virus 1 | ApGlV1 | small RNA HTS | PQ047244 | Hungary | [25] |
Dicistrovirus | Ljubljana dicistrovirus | LDV | small RNA HTS | PQ047247 | Hungary | [25] |
Genus | Virus Name | Abbreviation | Detection Method | Genbank Accession Number | Geographical Origin | Citation |
---|---|---|---|---|---|---|
Mastrevirus | Eleusine indica-associated virus | EIAV | Sanger sequencing | OQ211417 | France | [48] |
Maize streak virus | MSV | Sanger sequencing | OQ211437, OQ211434 | France | [48] | |
Wheat dwarf virus | WDV | Sanger sequencing | KT958243 | Iran | [49] | |
Tungrovirus | Rice tungro virus | RTV | Inoculation infected material | no sequence in GenBank | India | [50] |
Cytorhabdovirus | Barley yellow striate mosaic virus | BYSMV | small RNA HTS | PQ047240 | Hungary | [25] |
Nucleorhabdovirus | Maize Iranian mosaic virus | MIMV | Sanger sequencing | MG242374 | Iran | [21] |
Cynodon chlorotic streak virus | CCSV | ELISA | no sequence in GenBank | Morocco | [51] | |
Cynodon rhabdovirus | CRV | Sanger sequencing | EU650683 | South Africa | [52] | |
Nepovirus | Grapevine fanleaf virus | GFLV | ELISA and RT-PCR | no sequence in GenBank | Iran | [53] |
Luteovirus | Barley yellow dwarf virus | BYDV | ELISA | no sequence in GenBank | Australia | [54] |
Polerovirus | Cereal yellow dwarf virus | CYDV | ELISA | no sequence in GenBank | Australia | [54] |
Tritimovirus | Wheat streak mosaic virus | WSMV | small RNA HTS | PQ047238 | Hungary | [25] |
Potyvirus | Sugarcane mosaic virus | SCMV | ELISA | no sequence in GenBank | Kenya | [55] |
Spartina mottle virus | SpMV | Illumina | MW314143, MW314142 | USA | [56] | |
Immunoelectron microscopy and RT-PCR | AF491352 | Assisi, Italy | [57] | |||
Watermelon mosaic virus | WMV | Sanger sequencing | MN814406 | Spain | [58] | |
Tombusvirus | Bermuda grass latent virus | BGLV | HTS/RT-PCR/Sanger sequencing | MZ671022, MZ671024, MZ671025, MZ671026, MZ671028, OK258314, OK258317, OK258318 | Australia | [59] |
Dicistrovirus | Ljubljana dicistrovirus | LDV | small RNA HTS | PQ047246 | Hungary | [25] |
Genus | Virus Name | Abbreviation | Detection Method | Genbank Accession Number | Geographical Origin | Citation |
---|---|---|---|---|---|---|
Tospovirus | Iris yellow spot virus | IYSV | DAS-ELISA, RT-PCR | FJ652594 | USA | [75] |
Potexvirus | Foxtail mosaic virus | FoMV | EM, serology | no sequence in GenBank | USA | [76] |
Luteovirus | Barley yellow dwarf virus | BYDV | DAS-ELISA | no sequence in GenBank | USA | [77] |
Polerovirus | Maize yellow mosaic virus (Sv-ZZ-1, ZZ-2) | MaYMV | RT-PCR/Sanger sequencing | OP871831, OP871832 | China | [26] |
Tritimovirus | Wheat streak mosaic virus | WSMV | no sequence in GenBank | [27] | ||
small RNA HTS | PQ047238 | Hungary | [25] | |||
Potyvirus | Sugarcane mosaic virus (S-SCMV) | SCMV | Sanger sequencing | MN586598 | China | GB |
Maize dwarf mosaic virus | MDMV | seedling inoculation | no sequence in GenBank | USA | [78] | |
Panicovirus | Thin paspalum asymtpomatic virus | TPAV | seedling inoculation | no sequence in GenBank | USA | [79] |
Genus | Virus Name | Abbreviation | Detection Method | Genbank Accession Number | Geographical Origin | Citation |
---|---|---|---|---|---|---|
Mastrevirus | Wheat dwarf virus | WDV | Sanger sequencing | KT958235 | Iran | [49] |
Sorghum arundinaceum-associated virus | SAAV | HTS | PP461403 | Ecuador | GB | |
Begomovirus | Papaya leaf curl virus | PaLCuV | Sanger sequencing | MZ041266 | India | GB |
Tomato leaf curl Palampur virus | ToLCPalV | Sanger sequencing | MZ041256 | India | GB | |
Endornavirus | Johnsongrass virus | JVG | HTS | MW756210, MW756211 | Turkey | GB |
Tenuivirus | Maize stripe tenuivirus | MSpV | ELISA | no sequence in GenBank | India | [86] |
Potyvirus | Maize dwarf mosaic virus | MDMV | PCR | FM883224, FM883214, FM883193, FM883174 | Hungary | [87] |
Sanger sequencing | MN615724 | USA | [88] | |||
HTS | OK149210-14 | Spain | GB | |||
HTS | MZ188925 | Spain | GB | |||
Iranian Johnsongrass mosaic virus | IJMV | Sanger sequencing | KU746860, KU746862 | Iran | [89] | |
Sugarcane mosaic virus | SCMV | Sanger sequencing | KX430773, KX430774 | Iran | [89] | |
Johnsongrass mosaic virus | JGMV | NC_003606.1 | [90] | |||
Tombusvirus | Maize chlorotic mottle virus | MCMV | Sanger sequencing | KX824059, KX824060 | Spain | [91] |
Johnsongrass umbra-like virus 1 | JgULV | HTS | OM937760 | Ecuador | [92] | |
Johnsongrass chlorotic stripe mosaic virus | JCSMV | HTS | MT682309 | Iran | GB | |
Dicipivirus | Aphis glycines virus 1 | ApGlV1 | small RNA HTS | PQ047244 | Hungary | [25] |
Genus | Virus Name | Abbreviation | Detection Method | Genbank Accession Number | Geographical Origin | Species | Citation |
---|---|---|---|---|---|---|---|
Mastrevirus | Millet streak virus | MSV | PCR | X86705 | UK | Pennisetum glaucum | [118] |
Cytorhabdovirus | Barley yellow stripe mosaic virus = Cytorhabdovirus hordei strain | BYSMV | Small RNA HTS | MT260881, MT260882, MT260883, MT260884, PQ047240 | Hungary | Panicum milaceum | [25,117] |
HTS, RT-PCR | MN434075, MN434076, MN434077 | China | Setaria italica | [119] | |||
Tenuivirus | Rice stripe virus | RSV | ELISA, RT-PCR | JN245627, JN245628 | South Korea | Panicum milaceum; Setaria italica | [120] |
Tymovirus | Maize rayado fino virus | MRFV | SIA | GU068591, HM133581, HM133582 | USA | Panicum virgatum | [121] |
Switchgrass mosaic virus | SwMV | PCR | NC_015522 = JF727261 | USA | Panicum virgatum | [122] | |
Pennisetum glaucum marafivirus | PGMV | HTS, Sanger sequencing | MZ305310 | Burkina Faso | Cenchrus americanus | [123] | |
Luteovirus | Barley yellow dwarf virus | BYDV-PAV | PCR | KR259156, KR259157 | Pakistan | Cenchrus americanus | GB |
Polerovirus | Maize yellow mosaic virus | MaYMV | Sanger sequencing | MF622081 | Republic of Korea | Panicum miliaceum | [124] |
Barley virus G | BVG | JTS | MF960779 | Netherlands | Panicum virgatum | [125] | |
Small RNA HTS, Sanger sequencing | MT260885, PQ047241, PQ047242 | Hungary | Panicum milaceum | [25,117] | |||
Panicum distortion mosaic virus | PDMV | PCR | LC424839 | Republic of Korea | Panicum milaceum | GB | |
Tritimovirus | Wheat streak mosaic virus | WSMV | Small RNA HTS, Sanger sequencing | MT260879, MT780552, MT780553, PQ047238, PQ047239 | Hungary | Panicum milaceum | [25,117] |
Potyvirus | Sugarcane mosaic virus | SCMV | SIA | HM133587 | USA | Panicum virgatum | [121] |
DAS-ELISA, RT-PCR | KM926613, KM926614, KM926615, KM926616 | Kenya | Eleusine coracana | [110] | |||
Johnsongrass mosaic virus | JGMV | PTA-ELISA, HTS | KT289893 | Brazil | Panicum maximum | [126] | |
Tombusvirus | Maize chlorotic mottle virus | MCMV | DAS-ELISA, RT-PCR | KM926617,KM926618 | Kenya | Eleusine coracana | [110] |
Dicistrovirus | Ljubljana dicistrovirus | LDV | small RNA HTS | PQ047246 | Hungary | Panicum milaceum | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agyemang, E.D.; Ofosu, R.; Desiderio, F.; Galbacs, Z.N.; Takács, A.P.; Várallyay, É. The Occurrence and Diversity of Viruses Identified in Monocotyledonous Weeds. Agronomy 2025, 15, 74. https://doi.org/10.3390/agronomy15010074
Agyemang ED, Ofosu R, Desiderio F, Galbacs ZN, Takács AP, Várallyay É. The Occurrence and Diversity of Viruses Identified in Monocotyledonous Weeds. Agronomy. 2025; 15(1):74. https://doi.org/10.3390/agronomy15010074
Chicago/Turabian StyleAgyemang, Evans Duah, Rita Ofosu, Francesco Desiderio, Zsuzsanna Nagyne Galbacs, András Péter Takács, and Éva Várallyay. 2025. "The Occurrence and Diversity of Viruses Identified in Monocotyledonous Weeds" Agronomy 15, no. 1: 74. https://doi.org/10.3390/agronomy15010074
APA StyleAgyemang, E. D., Ofosu, R., Desiderio, F., Galbacs, Z. N., Takács, A. P., & Várallyay, É. (2025). The Occurrence and Diversity of Viruses Identified in Monocotyledonous Weeds. Agronomy, 15(1), 74. https://doi.org/10.3390/agronomy15010074