Evaluation of the Effects of Degradable Mulching Film on the Growth, Yield and Economic Benefit of Garlic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Its Growing Environment
2.2. Mulch Experiment and Sampling
2.3. Measurement of Agronomic Traits of Garlic and Economic Benefits
2.4. Determination of Nutritional Quality of Garlic Bulbs
2.5. Soil Temperature Measurement
2.6. Determination of Soil Physicochemical Properties and Enzyme Activity
2.7. Criteria of Degradation of Mulch Film
2.8. Data Processing
3. Results
3.1. Primary Agronomic Traits of the Above-Ground Part of Garlic
3.2. Garlic Bulb Yield and Economic Benefits Analysis
3.3. Nutritional Characteristics of Garlic Bulbs
3.4. Effects of Different Mulching Films on Soil Temperature
3.5. Soil Physicochemical Properties
3.6. Soil Enzyme Activities
3.7. Comparison of Degradation Rate of Mulch Film
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, Y.; Teng, Y.; Wang, X.; Wen, D.; Gao, P.; Yan, D.; Yang, N. Biodegradable PBAT microplastics adversely affect pakchoi (Brassica chinensis L.) growth and the rhizosphere ecology: Focusing on rhizosphere microbial community composition, element metabolic potential, and root exudates. Sci. Total Environ. 2024, 912, 169048. [Google Scholar] [CrossRef]
- Li, B.; Huang, S.; Wang, H.; Liu, M.; Xue, S.; Tang, D.; Cheng, W.; Fan, T.; Yang, X. Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition. Environ. Pollut. 2021, 272, 116418. [Google Scholar] [CrossRef]
- Muroi, F.; Tachibana, Y.; Kobayashi, Y.; Sakurai, T.; Kasuya, K. Influences of poly (butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym. Degrad. Stab. 2016, 219, 338–346. [Google Scholar] [CrossRef]
- Barche, S.; Nair, R.; Jain, P. A review of mulching on vegetable crops production. Ecol. Environ. Conserv. 2015, 21, 859–866. [Google Scholar] [CrossRef]
- Marí, A.I.; Pardo, G.G.; Cirujeda, A.; Martínez, Y. Economic evaluation of biodegradable plastic films and paper mulches used in open-air grown pepper (Capsicum annum L.) crop. Agronomy 2019, 9, 36. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Yan, C.; He, W.; Turner, N. Plastic-film mulch in Chinese agriculture: Importance and problems. World Agric. 2014, 4, 32–36. [Google Scholar]
- Liu, J.; Han, S.; Wang, P.; Zhang, X.; Zhang, J.; Hou, L.; Zhang, Y.; Wang, Y.; Li, L.; Lin, Y. Soil microorganisms play an important role in the detrimental impact of biodegradable microplastics on plants. Sci. Total Environ. 2024, 933, 172933. [Google Scholar] [CrossRef]
- Somanathan, H.; Sathasivam, R.; Sivaram, S.; Kumaresan, S.; Muthuraman, M.; Park, S. An update on polyethylene and biodegradable plastic mulch films and their impact on the environment. Chemosphere 2022, 307, 135839. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, C.; Zhang, R.; Li, Q.; Liu, H.; Wang, X. Effects of microplastics derived from biodegradable mulch film on different plant species growth and soil properties. Sci. Total Environ. 2024, 948, 174899. [Google Scholar] [CrossRef]
- Kimura, S.; Tung, Y.; Pan, M.; Su, N.; Lai, Y.; Cheng, K. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef]
- Kim, S.; Biswas, A.; Islam, M.; Lee, S. Effects of garlic powder allicin mixture on the in vitro and in vivo rumen fermentation of Hanwoo steers. J. Agric. Life Sci. 2020, 54, 55–61. [Google Scholar] [CrossRef]
- Avgeri, I.; Zeliou, K.; Petropoulos, S.; BebeliF, P.; Papasotiropoulos, V.; Lamari, F. Variability in Bulb Organosulfur Compounds, Sugars, Phenolics, and Pyruvate among Greek Garlic Genotypes: Association with antioxidant properties. Antioxidants 2020, 9, 967. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, B.; Yagoub, A.; Ma, H.; Sun, Y.; Xu, X.; Yu, X.; Zhou, C. Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chem. 2021, 343, 128404. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.; Azad, M.; Hwang, J.; Kwon, J. Changes in soil microclimates by using different mulches and removing time of PE film in garlic (Allium Sativum) field. Acta Hortic. 2014, 2, 933–938. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, N.; Zhang, Q.; Sun, H.; Zhu, L. Effects of biodegradable plastic film mulching on the global warming potential, carbon footprint, and economic benefits of garlic production. Agronomy 2024, 14, 504. [Google Scholar] [CrossRef]
- IPGRI; ECP/GR; AVRDC. Descriptors for Allium (Allium spp.); International Plant Genetic Resources Institute: Rome, Italy, 2001; p. 6. [Google Scholar]
- Li, X.; Zhu, D. Descriptors and Data Standard for Garlic (Allium sativum L.); China Agricultural Press: Beijing, China, 2006; Volume 1, pp. 1–74. [Google Scholar]
- Karayannis, M. Kinetic determination of ascorbic acid by the 2,6-dichlorophenolindophenol reaction with a stopped-flow technique. Anal. Chim. Acta 1975, 76, 121–130. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Liu, S.; Jin, S. Quantitative determination of allicin in Allium sativum L. bulbs by UPLC. Chromatographia 2010, 71, 159–161. [Google Scholar] [CrossRef]
- Ju, J.; Zhang, S.; Hu, Y.; Zhang, M.; He, R.; Li, Y.; Liu, X.; Liu, H. Effects of supplemental red and far-red light at different growth stages on the growth and nutritional properties of Lettuce. Agronomy 2023, 14, 55. [Google Scholar] [CrossRef]
- Tyurin, I.V. A new modification of the volumetric method of determining soil organic matter by means of chromic acid. Pochvovedenie 1931, 26, 36–47. [Google Scholar]
- Harwood, J.E.; Hattingh, W.H.J.; Edward, J.G.; Alfred, B.; Jean, M.S.; Dee, T.M. Colorimetric methods of analysis of phosphorus at low concentrations in water. In Environmental Phosphorus Handbook; Wiley: Hoboken, NJ, USA, 1973. [Google Scholar]
- Bernstein, R.E. The determination of potassium and sodium in biological fluids by flame spectrophotometry. S. Afr. J. Med. 1952, 17, 101–116. [Google Scholar]
- Kalra, Y.P. Determination of pH of soils by different methods: Collaborative study. J. AOAC Int. 1995, 2, 310–324. [Google Scholar] [CrossRef]
- Wang, L.; Hamel, C.; Lu, P.; Wang, J.; Sun, D.; Wang, Y.; Lee, S.J.; Gan, G.Y. Using enzyme activities as an indicator of soil fertility in grassland—An academic dilemma. Front. Plant Sci. 2023, 14, 1175946. [Google Scholar] [CrossRef]
- Gosewinkel, U.; Broadbent, F.E. Conductimetric determination of soil urease activity. Commun. Soil Sci. Plant. Anal. 1987, 15, 1377–1389. [Google Scholar] [CrossRef]
- Song, W.; Han, F.; Bao, Z.; Chai, Y.; Wang, L.; Huang, C.; Cheng, H.; Chang, L. Mulching practices improve soil moisture and enzyme activity in drylands, increasing potato yield. Agronomy 2024, 14, 1077. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, H.; Meng, H.; Ding, J.; Shen, Y.; Cheng, H.; Zhang, X.; Li, R.; Fan, S. Amino acid profile characterization during the co-composting of a livestock manure and maize straw mixture. J. Clean. Prod. 2021, 278, 123494. [Google Scholar] [CrossRef]
- Fahad, S.; Ali, I.; Hussain, I.; Ahmad, D.; Saud, S.; Dawar, K.; Danish, S.; Datta, R.; Hassan, S.; Liu, H.; et al. Modulation of maize growth, yield and soil enzymes activities by introducing wheat straw mulching and tillage practices. Plant Soil 2024, 496, 699–719. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumari, A.; Choudhary, S. Effect of mulching on vegetable production: A review. Agric. Rev. 2022, 43, 296–303. [Google Scholar] [CrossRef]
- Deng, L.; Yu, Y.; Zhang, H.; Wang, Q.; Yu, R. The effects of biodegradable mulch film on the growth, yield, and water use efficiency of cotton and maize in an arid region. Sustainability 2019, 11, 7039. [Google Scholar] [CrossRef]
- Hu, L.; Tang, J.; Wang, J.; Li, S.; Xu, C. Application experiment of different biodegradable films in the production of Cabbage in spring. Vegetable 2024, S63, 7–12. [Google Scholar]
- Liu, M.; Huang, Z.; Yang, Y. Analysis of biodegradability of three biodegradable mulching films. J. Polym. Environ. 2010, 18, 148–154. [Google Scholar] [CrossRef]
- Li, Y.; Yan, Q.; Wang, J.; Shao, M.; Li, Z.; Jia, H. Biodegradable plastics fragments induce positive effects on the decomposition of soil organic matter. J. Hazard. Mater. 2024, 468, 133820. [Google Scholar] [CrossRef]
- Kaur, R.; Chauhan, I. Biodegradable plastics: Mechanisms of degradation and generated bio microplastic impact on soil health. Biodegradation 2024, 35, 863–892. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, Y.; Sui, X.; Zhang, Z.; Wang, E.; Liu, Y.; Yu, T.; Yang, J.; Wu, Y. Comparative analysis of the effects of conventional and biodegradable plastic mulching films on soil-peanut ecology and soil pollution. Chemosphere 2023, 334, 139044. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Shi, H.; Jia, Y.; Miao, Q.; Jia, Q.; Wang, N. Infiltration and water use efficiency of maize fields with drip irrigation and biodegradable mulches in the West Liaohe Plain, China. Plants 2023, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jin, R.; Li, T.; Yang, S.; Shen, M. Are biodegradable plastic mulch films an effective way to solve residual mulch film pollution in farmland? Plant Soil 2024, 494, 85–94. [Google Scholar] [CrossRef]
- Goldberger, J.R.; Jones, R.E.; Miles, C.A.; Wallace, R.W.; Inglis, D.A. Barriers and bridges to the adoption of biodegradable plastic mulches for US specialty crop production. Renew. Agric. Food Syst. 2015, 30, 143–153. [Google Scholar] [CrossRef]
Conditions | Plant Height (cm) | Plant Width (cm) | Leaf Length (cm) | Leaf Width (mm) | Number of Leaves | Pseudostem Height (cm) | Pseudostem Diameter (cm) |
---|---|---|---|---|---|---|---|
No mulching | 18 ± 2.7 b | 21.7 ± 3.2 b | 16.4 ± 2.7 b | 11.8 ± 0.8 b | 5.4 ± 0.6 b | 1.6 ± 0.5 b | 6.4 ± 0.5 b |
PEM 0.008 mm | 30.5 ± 3.1 a | 45.3 ± 6.2 a | 28.6 ± 2.7 a | 14.9 ± 1.5 a | 6.9 ± 0.3 a | 2.2 ± 0.2 a | 7.7 ± 0.6 a |
BDM 0.006 mm | 30.3 ± 1.7 a | 43.3 ± 2.6 a | 28 ± 1.8 a | 14.5 ± 0.6 a | 6.8 ± 0.2 a | 2.1 ± 0.3 a | 7.4 ± 0.5 a |
BDM 0.008 mm | 30.3 ± 2.2 a | 44.6 ± 3.3 a | 28 ± 2.7 a | 14 ± 0.5 a | 6.7 ± 0.2 a | 2.2 ± 0.2 a | 7.4 ± 0.4 a |
BDM 0.010 mm | 30.4 ± 2.0 a | 45.8 ± 4.8 a | 28.4 ± 1.5 a | 14.2 ± 0.5 a | 6.9 ± 0.2 a | 2.1 ± 0.2 a | 7.5 ± 0.1 a |
Conditions | Plant Height (cm) | Plant Width (cm) | Leaf Length (cm) | Leaf Width (mm) | Number of Leaves | Pseudostem Height (cm) | Pseudostem Diameter (cm) | Bolt Length (cm) |
---|---|---|---|---|---|---|---|---|
No mulching | 73.1 ± 6.2 b | 36.3 ± 3.1 b | 44. ± 4.3 b | 26.5 ± 3.0 c | 6.8 ± 0.6 a | 32.8 ± 4.0 a | 12.1 ± 1.4 c | 45.6 ± 3.7 c |
PEM 0.008 mm | 87.8 ± 5.5 a | 47.4 ± 6.6 a | 59.1 ± 4.3 a | 31.8 ± 3.2 ab | 7.3 ± 0.5 a | 33.9 ± 2.3 a | 14.6 ± 2.0 ab | 70.2 ± 6.7 ab |
BDM 0.006 mm | 86.6 ± 4.1 a | 46.7 ± 4.9 a | 54.8 ± 3.2 a | 30.4 ± 2.7 b | 7.1 ± 0.7 a | 35.9 ± 4.5 a | 14.9 ± 1.8 ab | 65.9 ± 6.7 b |
BDM 0.008 mm | 87.3 ± 2.5 a | 46.8 ± 4.8 a | 56.2 ± 3.0 a | 31.7 ± 4.7 ab | 6.9 ± 0.8 a | 35.8 ± 3.6 a | 14.9 ± 1.6 ab | 72.9 ± 6.6 a |
BDM 0.010 mm | 88.6 ± 2.8 a | 48.1 ± 3.9 a | 58.7 ± 2.2 a | 34.5 ± 1.8 a | 7.1 ± 0.3 a | 36.2 ± 3.2 a | 16.4 ± 1.6 a | 67.5 ± 6.3 b |
Conditions | Output | Input | Net Profit (RMB/ha) | Ratio of Output to Input | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bulb Weight (g) | Bulb Yield (kg/ha) | Total of Output (RMB/ha) | Fertilizer (RMB/ha) | Mulching Film (RMB/ha) | Garlic Cloves (RMB/ha) | Pesticide (RMB/ha) | Water Cost (RMB/ha) | Labor Cost (RMB/ha) | Mulch Recycling Cost (RMB/ha) | Total of Input (RMB/ha) | |||
No mulching | 34.2 ± 2.0 | 12,811.8 ± 758.3 | 115,306.6 | 11,994 | 0 | 11,994 | 1499.3 | 599.7 | 29,985 | 0 | 56,072 | 59,234.2 | 2.1 |
PEM 0.008 mm | 63.7 ± 1.7 | 23,859.7 ± 646.2 | 214,737 | 11,994 | 599.7 | 11,994 | 1499.3 | 599.7 | 29,985 | 599.7 | 57,271.4 | 157,465.8 | 3.8 |
BDM 0.006 mm | 61.2 ± 1.6 | 22,947.8 ± 599.6 | 206,530.4 | 11,994 | 2248.9 | 11,994 | 1499.3 | 599.7 | 29,985 | 0 | 56,072 | 147,460.6 | 3.5 |
BDM 0.008 mm | 65.1 ± 2.0 | 24,392.2 ± 753.4 | 219,529.8 | 11,994 | 3148.4 | 11,994 | 1499.3 | 599.7 | 29,985 | 0 | 57,271.4 | 160,460 | 3.7 |
BDM 0.010 mm | 60 ± 2.3 | 22,475 ± 877.8 | 202,274.7 | 11,994 | 3598.2 | 11,994 | 1499.3 | 599.7 | 29,985 | 0 | 58,320.8 | 143,204.2 | 3.4 |
Nutritional Quality | PEM 0.008 mm | BDM 0.008 mm |
---|---|---|
Soluble sugar content (%) | 24 ± 1.1 | 23.3 ± 1.4 |
Vitamin C content (mg/100 g) | 4.3 ± 0.2 | 4.4 ± 0.2 |
Allicin content (g/100 g) | 0.3 ± 0.03 | 0.3 ± 0.02 |
Conditions | Organic Matter Content (%) | Total Nitrogen Content (g/kg) | Available Phosphorus Content (mg/kg) | Available Potassium Content (μg/kg) | pH Value |
---|---|---|---|---|---|
Before planting | 3.7 ± 0.2 a | 1.1 ± 0.04 b | 27.3 ± 3.4 a | 230.5 ± 19.1 bc | 7 ± 0.09 b |
No mulching | 2.8 ± 0.4 b | 1.2 ± 0.2 ab | 28.5 ± 3.1 a | 260.3 ± 20.3 b | 7.5 ± 0.02 a |
PEM 0.008 mm | 2.8 ± 0.4 b | 1.3 ± 0.2 a | 30.5 ± 2 a | 290.5 ± 16.9 b | 7.4 ± 0.03 a |
BDM 0.006 mm | 2.7 ± 0.5 b | 1.2 ± 0.2 a | 29.9 ± 3.3 a | 340.1 ± 43.4 a | 7.4 ± 0.05 a |
BDM 0.008 mm | 2.5 ± 0.5 b | 1.2 ± 0.06 ab | 29.2 ± 2.6 a | 314.3 ± 20.1 a | 7.3 ± 0.05 a |
BDM 0.010 mm | 2.4 ± 0.4 b | 1.1 ± 0.02 b | 29.9 ± 0.5 a | 296 ± 25.6 ab | 7.5 ± 0.04 a |
Soil Enzyme Activities | PEM 0.008 mm | BDM 0.008 mm |
---|---|---|
Catalase activity (ml (20 mM KMnO4) g−1 h−1) | 0.7 ± 0.3 | 1.1 ± 0.1 * |
Urease activity (μg NH4+-N·g−1 24 h−1) | 0.06 ± 0.02 | 0.07 ± 0.01 |
Phosphatase activity (μg PNP·g−1 h−1) | 108.5 ± 22.3 | 194.8 ± 12.5 * |
Invertase activity (mg glucose·g−1 24 h−1) | 20.5 ± 3 | 33.1 ± 1.3 * |
Conditions | Induction Period | Cracking Period | Big Cracking Stage | Fragmentation Period | Film-Free Period |
---|---|---|---|---|---|
PEM 0.008 mm | 2024.4.11–2024.5.18 | Unreached | Unreached | Unreached | Unreached |
BDM 0.006 mm | 2023.11.9–2024.2.10 | 2024.2.11–2024.3.10 | 2024.3.11–2024.4.20 | 2024.4.21–2024.5.18 | Unreached |
BDM 0.008 mm | 2023.11.29–2024.4.8 | 2024.4.9–2024.4.20 | 2024.4.21–2024.5.8 | 2024.5.9–2024.5.18 | Unreached |
BDM 0.010 mm | 2024.3.29–2024.4.20 | 2024.4.21–2024.5.18 | Unreached | Unreached | Unreached |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Jia, H.; Wang, Y.; Zhang, X.; Yang, W.; Zhang, T.; Wang, N.; Yang, J.; Wang, H. Evaluation of the Effects of Degradable Mulching Film on the Growth, Yield and Economic Benefit of Garlic. Agronomy 2025, 15, 93. https://doi.org/10.3390/agronomy15010093
Song J, Jia H, Wang Y, Zhang X, Yang W, Zhang T, Wang N, Yang J, Wang H. Evaluation of the Effects of Degradable Mulching Film on the Growth, Yield and Economic Benefit of Garlic. Agronomy. 2025; 15(1):93. https://doi.org/10.3390/agronomy15010093
Chicago/Turabian StyleSong, Jiangping, Huixia Jia, Yang Wang, Xiaohui Zhang, Wenlong Yang, Tingting Zhang, Naijian Wang, Jianqiang Yang, and Haiping Wang. 2025. "Evaluation of the Effects of Degradable Mulching Film on the Growth, Yield and Economic Benefit of Garlic" Agronomy 15, no. 1: 93. https://doi.org/10.3390/agronomy15010093
APA StyleSong, J., Jia, H., Wang, Y., Zhang, X., Yang, W., Zhang, T., Wang, N., Yang, J., & Wang, H. (2025). Evaluation of the Effects of Degradable Mulching Film on the Growth, Yield and Economic Benefit of Garlic. Agronomy, 15(1), 93. https://doi.org/10.3390/agronomy15010093