Cover Crops Can Reduce Greenhouse Gas Emissions from No-Till Maize in Southern Brazil: Insights from a Long-Term Field Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Field Experimental Design
2.2. Goal and Scope
2.3. Functional Units and System Boundary
2.4. Data Collection and Inventory Data
2.5. Life-Cycle Impact Assessment
2.6. Uncertainty Analysis and Comparison of Agroecosystems
3. Results
3.1. Life-Cycle Inventory (LCI) Analysis
3.2. GHG Emissions from the Agroecosystems
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Emissions Trends and Drivers. In Climate Change 2022-Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 215–294. [Google Scholar]
- SEEG. Análise das Emissões de Gases de Efeito Estufa e Suas Implicações para as Metas Climáticas do Brasil 1970-2021; SEEG: Piracicaba, Brasil, 2022. [Google Scholar]
- Blanco, H.; Lal, R. Tillage Systems. Soil Conserv. Manag. 2023, v.1, 127–157. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Successful Experiences and Lessons from Conservation Agriculture Worldwide. Agronomy 2022, 12, 769. [Google Scholar] [CrossRef]
- IBGE. Censo Agropecuário 2017; IBGE: Rio de Janeiro, Brasil, 2019. [Google Scholar]
- Naseri, H.; Parashkoohi, M.G.; Ranjbar, I.; Zamani, D.M. Energy-Economic and Life Cycle Assessment of Sugarcane Production in Different Tillage Systems. Energy 2021, 217, 119252. [Google Scholar] [CrossRef]
- Silva, G.R.; Liska, A.J.; Bayer, C. Life Cycle Greenhouse Gas Emissions in Maize No-Till Agroecosystems in Southern Brazil Based on a Long-Term Experiment. Sustainability 2024, 16, 4012. [Google Scholar] [CrossRef]
- Houshyar, E.; Grundmann, P. Environmental Impacts of Energy Use in Wheat Tillage Systems: A Comparative Life Cycle Assessment (LCA) Study in Iran. Energy 2017, 122, 11–24. [Google Scholar] [CrossRef]
- Zaher, U.; Stöckle, C.; Painter, K.; Higgins, S. Life Cycle Assessment of the Potential Carbon Credit from No- and Reduced-Tillage Winter Wheat-Based Cropping Systems in Eastern Washington State. Agric. Syst. 2013, 122, 73–78. [Google Scholar] [CrossRef]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosiers, A.R.; Paustian, K. The Potential to Mitigate Global Warming with No-Tillage Management Is Only Realized When Practised in the Long Term. Glob. Change Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E.; Jenkins, R. Life Cycle Assessment of Corn Grain and Corn Stover in the United States. Int. J. Life Cycle Assess. 2009, 14, 160–174. [Google Scholar] [CrossRef]
- Triplett, G.B., Jr.; Dick, W.A. No-Tillage Crop Production: A Revolution in Agriculture! Agron. J. 2008, 100, S-153–S-165. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Life Cycle Assessment Study of Biopolymers (Polyhydroxyalkanoates) Derived from No-Tilled Corn. Int. J. Life Cycle Assess. 2005, 10, 200–210. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killi, D.; Maratha, P.; Williams, M.; et al. Assessing the Combined Use of Reduced Tillage and Cover Crops for Mitigating Greenhouse Gas Emissions from Arable Ecosystem. Geoderma 2014, 223–225, 9–20. [Google Scholar] [CrossRef]
- Camargo, G.G.T.; Ryan, M.R.; Richard, T.L. Energy Use and Greenhouse Gas Emissions from Crop Production Using the Farm Energy Analysis Tool. Bioscience 2013, 63, 263–273. [Google Scholar] [CrossRef]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, Nitrogen and Crop Residue Effects on Crop Yield, Nutrient Uptake, Soil Quality, and Greenhouse Gas Emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops–A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Bayer, C.; Gomes, J.; Zanatta, J.A.; Vieira, F.C.B.; Dieckow, J. Mitigating Greenhouse Gas Emissions from a Subtropical Ultisol by Using Long-Term No-Tillage in Combination with Legume Cover Crops. Soil Tillage Res. 2016, 161, 86–94. [Google Scholar] [CrossRef]
- Prechsl, U.E.; Wittwer, R.; van der Heijden, M.G.A.; Lüscher, G.; Jeanneret, P.; Nemecek, T. Assessing the Environmental Impacts of Cropping Systems and Cover Crops: Life Cycle Assessment of FAST, a Long-Term Arable Farming Field Experiment. Agric. Syst. 2017, 157, 39–50. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Schad, P. World Reference Base for Soil Resources—Its Fourth Edition and Its History. J. Plant Nutr. Soil Sci. 2023, 186, 151–163. [Google Scholar] [CrossRef]
- USDA-NRCS. Keys to Soil Taxonomy, 13th ed.; NRCS: Washington, DC, USA, 2022. [Google Scholar]
- Wang, M. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Version 1.5; US Department of Energy: Washington, DC, USA, 1999. [Google Scholar]
- Gomes, J. Emissão de Gases do Efeito Estufa e Mitigação do Potencial de Aquecimento Global por Sistemas Conservacionistas de Manejo do Solo. Ph.D. Thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2006. [Google Scholar]
- Oliveros, L.F.C. Balanço da Emissão de Gases de Efeito Estufa Em Argissolo Vermelho Sob Sistemas de Cultura Em Plantio Direto. Ph.D. Thesis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2011. [Google Scholar]
- Denega, G.L. Emissão de Gases de Efeito Estufa Em Argissolo Sob Sistemas de Preparo e Leguminosas de Cobertura No Sul do Brasil. Ph.D. Thesis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2014. [Google Scholar]
- Vieira, F.C.B. Estoques e Labilidade da Matéria Orgânica e Acidificação de um Argissolo sob Plantio Direto Afetados por Sistemas de Cultura e Adubação Nitrogenada. Ph.D. Thesis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2007. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Ellert, B.H.; Bettany, J.R. Calculation of Organic Matter and Nutrients Stored in Soils under Contrasting Management Regimes. Can. J. Soil. Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A.; Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A. ExpDes: An R Package for ANOVA and Experimental Designs. Appl. Math. 2014, 5, 2952–2958. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Blanco, H.; Lal, R. Cover Crops. Soil Conserv. Manag. 2023, 1, 211–237. [Google Scholar] [CrossRef]
- Nemecek, T.; von Richthofen, J.S.; Dubois, G.; Casta, P.; Charles, R.; Pahl, H. Environmental Impacts of Introducing Grain Legumes into European Crop Rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
- Nemecek, T.; Hayer, F.; Bonnin, E.; Carrouée, B.; Schneider, A.; Vivier, C. Designing Eco-Efficient Crop Rotations Using Life Cycle Assessment of Crop Combinations. Eur. J. Agron. 2015, 65, 40–51. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Guggenberger, T.; Fritz, C.; Steinwidder, A.; Zollitsch, W. Eco-Efficiency of Farms Considering Multiple Functions of Agriculture: Concept and Results from Austrian Farms. J. Clean. Prod. 2021, 297, 126662. [Google Scholar] [CrossRef]
- Zingale, S.; Ingrao, C.; Reguant-Closa, A.; Guarnaccia, P.; Nemecek, T. A Multifunctional Life Cycle Assessment of Durum Wheat Cropping Systems. Agron. Sustain. Dev. 2024, 44, 1–22. [Google Scholar] [CrossRef]
- Bayer, C.; Dieckow, J.; Amado, T.J.C.; Eltz, F.L.F.; Vieira, F.C.B. Cover Crop Effects Increasing Carbon Storage in a Subtropical No-till Sandy Acrisol. Commun. Soil Sci. Plant Anal. 2009, 40, 1499–1511. [Google Scholar] [CrossRef]
- Gomes, J.; Bayer, C.; de Souza Costa, F.; de Cássia Piccolo, M.; Zanatta, J.A.; Vieira, F.C.B.; Six, J. Soil Nitrous Oxide Emissions in Long-Term Cover Crops-Based Rotations under Subtropical Climate. Soil Tillage Res. 2009, 106, 36–44. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Zhang, Q.; Zhu, B. Warming Inhibits the Priming Effect of Soil Organic Carbon Mineralization: A Meta-Analysis. Sci. Total Environ. 2023, 904, 166170. [Google Scholar] [CrossRef]
- Baggs, E.M.; Chebii, J.; Ndufa, J.K. A Short-Term Investigation of Trace Gas Emissions Following Tillage and No-Tillage of Agroforestry Residues in Western Kenya. Soil Tillage Res. 2006, 90, 69–76. [Google Scholar] [CrossRef]
- Rigon, J.P.G.; Calonego, J.C.; Pivetta, L.A.; Castoldi, G.; Raphael, J.P.A.; Rosolem, C.A. Using Cover Crops to Offset Greenhouse Gas Emissions from a Tropical Soil under No-Till. Exp. Agric. 2021, 57, 217–231. [Google Scholar] [CrossRef]
- Essich, L.; Nkebiwe, P.M.; Schneider, M.; Ruser, R. Is Crop Residue Removal to Reduce N2O Emissions Driven by Quality or Quantity? A Field Study and Meta-Analysis. Agriculture 2020, 10, 546. [Google Scholar] [CrossRef]
- Shumba, A.; Chikowo, R.; Corbeels, M.; Six, J.; Thierfelder, C.; Cardinael, R. Long-Term Tillage, Residue Management and Crop Rotation Impacts on N2O and CH4 Emissions from Two Contrasting Soils in Sub-Humid Zimbabwe. Agric. Ecosyst. Environ. 2023, 341, 108207. [Google Scholar] [CrossRef]
- Grassmann, C.S.; Mariano, E.; Rocha, K.F.; Gilli, B.R.; Rosolem, C.A. Effect of Tropical Grass and Nitrogen Fertilization on Nitrous Oxide, Methane, and Ammonia Emissions of Maize-Based Rotation Systems. Atmos. Environ. 2020, 234, 117571. [Google Scholar] [CrossRef]
- Bayer, C.; Spagnollo, E.; Wildner, L.d.P.; Ernani, P.R.; Alburqueque, J.A. Incremento de Carbono e Nitrogênio Num Latossolo Pelo Uso de Plantas Estivais Para Cobertura Do Solo. Ciênc. Rural 2003, 33, 469–475. [Google Scholar] [CrossRef]
- Spagnollo, E.; Bayer, C.; Wildner, L.P.; Ernani, P.R.; Albuquerque, J.A.; Proença, M.M. Leguminosas Estivais Intercalares Como Fonte de Nitrogênio Para o Milho, No Sul Do Brasil. Rev. Bras. Ciênc. Solo 2002, 26, 417–423. [Google Scholar] [CrossRef]
- Holka, M.; Bieńkowski, J. Carbon Footprint and Life-Cycle Costs of Maize Production in Conventional and Non-Inversion Tillage Systems. Agronomy 2020, 10, 1877. [Google Scholar] [CrossRef]
- Keshavarz Afshar, R.; Dekamin, M. Sustainability Assessment of Corn Production in Conventional and Conservation Tillage Systems. J. Clean. Prod. 2022, 351, 131508. [Google Scholar] [CrossRef]
- Costa, M.P.; Chadwick, D.; Saget, S.; Rees, R.M.; Williams, M.; Styles, D. Representing Crop Rotations in Life Cycle Assessment: A Review of Legume LCA Studies. Int. J. Life Cycle Assess. 2020, 25, 1942–1956. [Google Scholar] [CrossRef]
- Yang, X.; Gao, W.; Zhang, M.; Chen, Y.; Sui, P. Reducing Agricultural Carbon Footprint through Diversified Crop Rotation Systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Wang, X.; McConkey, B. Lowering Carbon Footprint of Durum Wheat by Diversifying Cropping Systems. Field Crops Res. 2011, 122, 199–206. [Google Scholar] [CrossRef]
Thesis | Years | Unit | Farming System | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F/M | OV/M | OV/MB | PM | LM | ||||||||
N2O | CH4 | N2O | CH4 | N2O | CH4 | N2O | CH4 | N2O | CH4 | |||
Gomes [24] | 2003/2004 | kg ha−1 yr−1 | - | - | - | - | 2.5 | 0.2 | 2.1 | 2.0 | −1.4 | −0.02 |
Oliveros [25] | 2009/2010 | kg ha−1 yr−1 | - | - | 23.4 | −9.2 | 48.4 | −10.6 | - | - | 15.4 | −8.1 |
Denega [26] | 2010/2011 | kg ha−1 yr−1 | 0.6 | −0.4 | 2.2 | −1.8 | 4.2 | −1.4 | - | - | - | - |
2011/2012 | kg ha−1 yr−1 | 0.2 | −0.9 | 2.0 | −0.3 | 5.2 | −0.1 | - | - | - | - | |
Average | kg ha−1 yr−1 | 0.4 | −0.6 | 9.2 | −3.8 | 15.1 | −3.0 | 2.1 | 2.0 | 7.0 | −4.1 |
Farming System | SOC Stock | SOC Storage Rate |
---|---|---|
0–30 cm | 0–30 cm | |
Mg C ha−1 | Mg C ha−1 yr−1 | |
F/M | 50 b | 0 b |
OV/M | 53.1 b | 0.166 b |
OV/MB | 58.1 ab | 0.427 ab |
PM | 60.5 ab | 0.552 ab |
LM | 66.3 a | 0.856 a |
Farming System | Unit | SOC | SD | CH4 | SD | N2O | SD |
---|---|---|---|---|---|---|---|
F/M | kg CO2 eq. ha−1 | 0.0 | 0.0 | −14.3 | 11.1 | 82.7 | 40.2 |
OV/M | kg CO2 eq. ha−1 | −607.3 | 384.4 | −101.9 | 18.0 | 2506.9 | 730.6 |
OV/MB | kg CO2 eq. ha−1 | −1564.4 | 769.7 | −80.7 | 10.6 | 4057.3 | 601.7 |
PM | kg CO2 eq. ha−1 | −2023.7 | 407.4 | 55.1 | 33.7 | 556.0 | 341.7 |
LM | kg CO2 eq. ha−1 | −3137.9 | 1292.7 | −109.3 | 69.4 | 1915.2 | 1246.5 |
F/M | OV/M | OV/MB | PM | LM | Unit | |
---|---|---|---|---|---|---|
Farm size | 1 | 1 | 1 | 1 | 1 | hectare |
Maize yield | 3574 | 4740 | 5250 | 6296 | 6393 | kg ha−1 |
Annual inputs | ||||||
Diesel | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | L ha−1 |
Monoammonium phosphate | 50 | 50 | 50 | 50 | 50 | kg ha−1 |
K2O | 50 | 50 | 50 | 50 | 50 | kg ha−1 |
CaCO3 | 167 | 167 | 167 | 167 | 167 | kg ha−1 |
Herbicide | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | kg ha−1 |
Annual Output | F/M | OV/M | OV/MB | PM | LM | Unit |
---|---|---|---|---|---|---|
Energy Diesel | 12.0 | 12.2 | 12.2 | 12.0 | 12.2 | kg CO2e ha−1 |
Phosphorus Fertilizer P2O5 | 23.5 | 23.5 | 23.5 | 23.5 | 23.5 | kg CO2e ha−1 |
Potash Fertilizer K2O | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | kg CO2e ha−1 |
Lime CaCO3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | kg CO2e ha−1 |
CO2 emissions from CaCO3 use | 7.4 | 7.4 | 7.4 | 7.4 | 7.4 | kg CO2e ha−1 |
Herbicide | 118.9 | 118.9 | 118.9 | 118.9 | 118.9 | kg CO2e ha−1 |
CO2 SOC | 0.0 a | −607.3 ab | −1564.4 ab | −2023.7 ab | −3137.9 b | kg CO2e ha−1 |
CH4 Chamber | −14.3 b | −101.9 c | −80.7 c | 55.1 a | −109.3 c | kg CO2e ha−1 |
N2O Chamber | 82.7 d | 2506.9 b | 4057.3 a | 556.0 cd | 1915.2 bc | kg CO2e ha−1 |
Farming System | GHG Intensity, kg CO2e ha−1 yr−1 | ||||
---|---|---|---|---|---|
Min. | Average | Max. | SD | CV% * | |
F/M | 84.0 | 236.3 | 420.8 | 41.7 | 18% |
OV/M | −1166.4 | 1965.8 | 5304.4 | 825.1 | 42% |
OV/MB | −1017.8 | 2580.2 | 6115.9 | 972.8 | 38% |
PM | −3276.9 | −1244.8 | 693.8 | 533.1 | −43% |
LM | −7408.5 | −1163.9 | 6215.1 | 1806.9 | −155% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.R.d.; Liska, A.J.; Bayer, C. Cover Crops Can Reduce Greenhouse Gas Emissions from No-Till Maize in Southern Brazil: Insights from a Long-Term Field Experiment. Agronomy 2025, 15, 267. https://doi.org/10.3390/agronomy15020267
Silva GRd, Liska AJ, Bayer C. Cover Crops Can Reduce Greenhouse Gas Emissions from No-Till Maize in Southern Brazil: Insights from a Long-Term Field Experiment. Agronomy. 2025; 15(2):267. https://doi.org/10.3390/agronomy15020267
Chicago/Turabian StyleSilva, Guilherme Rosa da, Adam J. Liska, and Cimélio Bayer. 2025. "Cover Crops Can Reduce Greenhouse Gas Emissions from No-Till Maize in Southern Brazil: Insights from a Long-Term Field Experiment" Agronomy 15, no. 2: 267. https://doi.org/10.3390/agronomy15020267
APA StyleSilva, G. R. d., Liska, A. J., & Bayer, C. (2025). Cover Crops Can Reduce Greenhouse Gas Emissions from No-Till Maize in Southern Brazil: Insights from a Long-Term Field Experiment. Agronomy, 15(2), 267. https://doi.org/10.3390/agronomy15020267