Molecular Marker-Assisted Breeding and Seed Production Techniques for Shenyou R3, a New Premium Aromatic Hybrid Japonica Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Pedigree Family Tree of Shenyou R3
2.2. Molecular Marker Detection
2.3. Field Agronomic Conditions for Yield Data
2.4. Data Sources
2.5. Identification of Rice Blast Disease
3. Results
3.1. Gene Chip Identification of Parents
3.2. Characteristics of Hybrid Japonica Rice Shenyou R3
3.3. The Yield Performance of Shenyou R3
3.4. Key Technologies for Seed Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, L.P. Development of Hybrid Rice to Ensure Food Security. Rice Sci. 2014, 21, 1–2. [Google Scholar] [CrossRef]
- Custodio, M.C.; Cuevas, R.P.; Ynion, J.; Laborte, A.G.; Velasco, M.L.; Demont, M. Rice quality: How is it defined by consumers, industry, food scientists, and geneticists? Trends Food Sci. Technol. 2019, 92, 122–137. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Zhou, H.; Xia, D.; He, Y. Rice grain quality-traditional traits for high quality rice and health-plus substances. Mol. Breed. 2020, 40, 1. [Google Scholar] [CrossRef]
- Niu, F.A.; Chu, H.W.; Sun, B.; Zhou, J.H.; Zhang, A.P.; Huang, Y.W.; Li, Y.; Yao, Y.; Cheng, C.; Cao, L.M. Molecular Marker Assisted Breeding of a New Japonica Hybrid Rice ‘Shenyou28’ with High Quality and Disease Resistance. Mol. Plant Breed. 2023, 1, 198–204. [Google Scholar]
- Du, Z.M.; Yang, Y.C.; Xia, Y.Y.; Gong, Y.L.; Yan, Z.Q.; Xu, H. The Effect of Harvest Period on the Quality of Northern Hybrid Japonica Rice and Conventional Japonica Rice. Crops 2018, 1, 147–151. [Google Scholar]
- Xi, M.; Ji, Y.L.; Wu, W.G.; Xu, Y.Z.; Sun, X.Y.; Zhou, Y.J. Research progress and prospects of factors affecting rice eating quality. Chin. Agric. Sci. Bull. 2020, 36, 159–164. [Google Scholar]
- Yu, G.P.; Xu, C.C.; Wu, Y.W.; Xiu, X.J.; Tong, H.H. Thoughts on the supply side reform of China’s rice industry. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 53–62. [Google Scholar]
- Buttery, R.G.; Ling, L.C.; Juliano, B.O. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food Chem. 1983, 31, 823–826. [Google Scholar] [CrossRef]
- Peng, B.; Kong, D.; Song, X.; Li, H.L.; He, L.L.; Gong, A.; Sun, Y.; Pang, R.; Liu, L.; Li, J.T.; et al. A Method for Detection of Main Metabolites in Aromatic Rice Seeds. Agric. Biotechnol. 2018, 1, 112–116. [Google Scholar]
- Bardburyl, M.T.; Fitzgerald, T.L.; Henry, R.J.; Jin, Q.S.; Waters, D.L.E. The gene for fragrance in rice. Plant Biotech. J. 2005, 3, 363–371. [Google Scholar]
- Fukuda, T.; Takeda, T.; Yoshida, S. Comparison of volatiles in cooked rice with various amylose contents. Food Sci. Technol. Res. 2014, 20, 1251–1259. [Google Scholar] [CrossRef]
- Yang, D.S.; Lee, K.S.; Jeong, O.Y.; Kim, K.J.; Kays, S.J. Characterization of volatile aroma compounds in cooked black rice. J. Agric. Food Chem. 2008, 56, 235–240. [Google Scholar] [CrossRef]
- Pan, Y.Y.; Huang, D.Q.; Wang, Z.R.; Li, H.; Zhou, D.G.; Wang, Z.D.; Chen, Y.B.; Zhao, L.; Gong, R.; Zhou, S.C. Research progress in haplotype of Badh2 gene and metabolic pathway of aroma component 2-acetyl-1-pyrroline in fragrant rice. Guangdong Agric. Sci. 2021, 48, 9–16. [Google Scholar]
- Kovach, M.J.; Calingacion, M.N.; Fitzgerald, M.A.; Mccouch, S.R. The origin and evolution of fragrance in rice (Oryza sativa L.). Proc. Natl. Acad. Sci. USA 2009, 106, 14444–14449. [Google Scholar] [CrossRef]
- Amarawathi, Y.; Singh, R.; Singh, A.K.; Singh, V.P.; Mohapatra, T.; Sharma, T.R.; Singh, N.K. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol. Breed. 2008, 21, 49–65. [Google Scholar] [CrossRef]
- He, Q.; Park, Y.J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol. Breed. 2015, 35, 217–226. [Google Scholar] [CrossRef]
- Ootsuka, K.; Takahashi, I.; Tanaka, K.; Itani, T.; Tabuchi, H.; Yoshihashi, T.; Tonouchi, A.; Ishikawa, R. Genetic polymorphisms in Japanese flagrant landraces and novel fragrant allele domesticated in Northern Japan. Breed. Sci. 2014, 64, 115–124. [Google Scholar] [CrossRef]
- Shao, G.N.; Tang, A.; Tang, S.Q.; Luo, J.; Jiao, G.A.; Wu, J.L.; Hu, P.S. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice. Plant Breed. 2011, 130, 172–176. [Google Scholar] [CrossRef]
- Shao, G.N.; Tang, S.Q.; Chen, M.L.; Wei, X.J.; He, J.W.; Luo, J.; Jiao, G.A.; Hu, Y.C.; Xie, L.H.; Hu, P.S. Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics 2013, 101, 157–162. [Google Scholar] [CrossRef]
- Shi, W.W.; Yang, Y.; Chen, S.H.; Xu, M.L. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol. Breed. 2008, 22, 185–192. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Zhao, G.C.; Xu, X.L.; Li, J.Y. Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice. Mol. Breed. 2014, 33, 701–708. [Google Scholar] [CrossRef]
- Sun, P.Y.; Zhang, W.H.; Shu, F.; He, Q.; Zhang, L.; Peng, Z.R.; Deng, H.F. Analysis of Mutation Sites of OsBADH2 Gene in Fragrant Rice and Development of Related Functional Marker. Biotechnol. Bull. 2021, 37, 1–7. [Google Scholar]
- Gao, Z.Y.; Zeng, D.L.; Cui, X.; Zhou, Y.H.; Yan, M.X.; Huang, D.N.; Li, J.Y.; Qian, Q. Map-based cloning and sequence analysis of a gene, ALK, responsible for gelatinization temperature in rice (Oryza sativa L.). Sci. China 2003, 46, 661–668. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Zeng, D.L.; Cheng, F.M.; Tian, Z.X.; Guo, L.B.; Su, Y.; Yan, M.X.; Jiang, H.; Dong, G.J.; Huang, Y.C.; et al. ALK, the Key Gene for Gelatinization Temperature, is a Modifier Gene for Gel Consistency in Rice. J. Integr. Plant Biol. 2011, 53, 756–765. [Google Scholar]
- Xie, Z.; Yan, B.X.; Shou, J.Y.; Tang, J.; Wang, X.; Zhai, K.R.; Liu, J.Y.; Li, Q.; Luo, M.Z.; Deng, Y.W.; et al. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philos. Trans. R. Soc. B—Biol. Sci. 2019, 374, 20180308. [Google Scholar] [CrossRef]
- Deng, Y.W.; Zhai, K.R.; Xie, Z.; Yang, D.Y.; Zhu, X.D.; Liu, J.Z.; Wang, X.; Qin, P.; Yang, Y.Z.; Zhang, G.M.; et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 2017, 355, 962–965. [Google Scholar] [CrossRef]
- Zhou, B.; Qu, S.H.; Liu, G.F.; Dolan, M.; Sakai, H.; Lu, G.D.; Bellizzi, M.; Wang, G.L. The Eight Amino-Acid Differences Within Three Leucine-Rich Repeats Between Pi2 and Piz-t Resistance Proteins Determine the Resistance Specificity to Magnaporthe grisea. Mol. Plant-Microbe Interact. 2006, 19, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.W.; Chern, M.; Canlas, P.E.; Ruan, D.L.; Jiang, C.Y.; Ronald, P.C. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc. Natl. Acad. Sci. USA 2010, 107, 8029–8034. [Google Scholar] [CrossRef]
- Chen, F.; Gao, M.J.; Miao, Y.S.; Yuan, Y.X.; Wang, M.Y.; Li, Q.; Mao, B.Z.; Jiang, L.W.; He, Z.H. Plasma Membrane Localization and Potential Endocytosis of Constitutively Expressed XA21 Proteins in Transgenic Rice. Mol. Plant 2010, 3, 917–926. [Google Scholar] [CrossRef]
- Ercoli, M.F.; Luu, D.D.; Rim, E.Y.; Shigenaga, A.; Araujo, J.A.T.; Chern, M.; Jain, R.; Ruan, R.; Joe, A.; Stewart, V.; et al. Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proc. Natl. Acad. Sci. USA 2022, 119, e2121568119. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Y.; Wang, G.L.; Chen, L.L.; Kim, H.S.; Pi, L.Y.; Holsten, T.; Gardner, J.; Wang, B.; Zhai, W.X.; Zhu, L.H.; et al. A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21. Science 1995, 270, 1804–1806. [Google Scholar] [CrossRef]
- Luo, Y.C.; Sangha, J.S.; Wang, S.H.; Li, Z.F.; Yang, J.B.; Yin, Z.C. Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Mol. Breed. 2012, 30, 1601–1610. [Google Scholar] [CrossRef]
- Tong, J.P.; Han, Z.S.; Han, A.N.; Liu, X.J.; Zhang, S.Y.; Fu, B.Y.; Hu, J.; Su, J.P.; Li, S.Q.; Wang, S.J.; et al. Sdt97: A Point Mutation in the 5′ Untranslated Region Confers Semidwarfism in Rice. G3 Genes Genomes Genet. 2016, 6, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Fujino, K.; Sekiguchi, H.; Matsuda, Y.; Sugimoto, K.; Ono, K.; Yano, M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc. Natl. Acad. Sci. USA 2008, 105, 12623–12628. [Google Scholar] [CrossRef]
- Fujino, K.; Matsuda, Y. 64. Global expression profiling of genes targeted by qLTG3-1 controlling low temperature tolerance at the germination stage in rice. Cryobiology 2009, 59, 387–388. [Google Scholar] [CrossRef]
- Fujino, K.; Sekiguchi, H. Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Plant Mol. Biol. 2011, 75, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Ogiso-Tanaka, E.; Hori, K.; Ebana, K.; Ando, T.; Yano, M. Natural Variation in Hd17, a Homolog of Arabidopsis ELF3 That is Involved in Rice Photoperiodic Flowering. Plant Cell Physiol. 2012, 53, 709–716. [Google Scholar] [CrossRef]
- Guo, N.H.; An, R.H.; Ren, Z.L.; Jiang, J.; Cai, B.N.; Hu, S.K.; Shao, G.N.; Jiao, G.A.; Xie, L.H.; Wang, L.; et al. Developing super rice varieties resistant to rice blast with enhanced yield and improved quality. Plant Biotechnol. J. 2025, 23, 232–234. [Google Scholar] [CrossRef]
- Chen, H.D.; Xie, W.B.; He, H.; Yu, H.H.; Chen, W.; Li, J.; Yu, R.B.; Yao, Y.; Zhang, W.H.; He, Y.Q.; et al. A high-density SNP genotyping array for rice biology and molecular breeding. Mol. Plant 2014, 7, 541–553. [Google Scholar] [CrossRef]
- Qiu, S.Q.; Lu, Q.; Yu, H.H.; Ni, X.M.; Zhang, G.Y.; He, H.; Xie, W.B.; Zhou, F.S. The development and application of rice whole genome selection breeding platform. Chin. Bull. Life Sci. 2018, 30, 1120–1128. [Google Scholar]
- Singh, W.H.; Kapila, R.K.; Sharma, T.R.; Rathour, R. Genetic and physical mapping of a new allele of Pik locus from japonica rice ‘Liziangxintuanheigu’. Euphytica 2015, 205, 889–901. [Google Scholar] [CrossRef]
- Liang, T.M.; Chen, Z.J.; Chen, S.B. Research and progress of the application of genomewide analysis strategy in gene identification of rice blast resistance. Mol. Plant Breed. 2019, 17, 1525–1530. [Google Scholar]
- Tang, W.B.; Zhang, G.L.; Deng, H.B. Technology exploration and practice of hybrid rice mechanized seed production. Rice Sci. 2020, 34, 95–103. [Google Scholar]
- Xu, Q.G.; Huang, F. Studies and progress on seed production mechanization technology in hybrid rice. Trans. Chin. Soc. Agric. Eng. 2010, 26, 37–41. [Google Scholar]
- Min, J.; Zhu, Z.W.; Xu, L.; Mou, R.X. Studies on grain quality and high quality rate of japonica hybrid rice in China. Hybrid Rice 2007, 22, 67–70. [Google Scholar]
Gene | Probe | Reference Variety | Shen CR1-3 | Shen 24A | Gene | Probe | Reference Variety | Shen CR1-3 | Shen 24A |
---|---|---|---|---|---|---|---|---|---|
Gn1a | SNP | Habataki, 9311 | xa5 | Haplotype | 48SNP | 0.56 | 0.44 | ||
LSCHL4 | SNP | 9311 | Xa7 | Haplotype | 18SNP | 0.11 | 0.17 | ||
Hwi1 | InDel | Rufipogon | √ | N | Rc | SNP | Kasalath | ||
OsSPL14 | SNP | ST-12, SNJ, Ri22 | Rd | SNP | Kasalath | ||||
OsSPL16 | InDel | HJX74 | OsAAP6 | InDel | 9311 | ||||
SKC1 | SNP | Nona Bokra | √ | GW2 | SNP | WY3, Oochikara | |||
NRAT1 | SNP | Kasalath | GS3 | SNP | Minghui 63 | ||||
OsHMA4 | SNP | Lemont | GS3 | SNP | Chuan 7 | ||||
OsALS | SNP | LP-P1 | qGL3 | SNP | N411 | ||||
qLTG3-1 | SNP | Hayamasari | Bh4 | SNP | W1943 | √ | |||
qLTG3-1 | SNP | Nipponbare | √ | √ | OsCYP704A3 | SNP | IR 24 | ||
TT1 | SNP | African rice | qSW5/GW5 | InDel | Nipponbare | √ | √ | ||
OsFRO1 | SNP | KDML105 | √ | √ | Chalk5 | SNP | H94 | ||
BET1 | SNP | Wataribune | Waxy | SNP | Nipponbare | √ | √ | ||
Cold1 | SNP | 9311 | ALK | SNP | Minghui 63 | √ | √ | ||
SUB1A | SNP | FR13A | N | N | OsHMA3 | SNP | Anjana Dhan | ||
DRO1 | InDel | IR64 | BADH2 (fgr) | SNP | Wuxiangjing9 | ||||
qUVR-10 | SNP | Sasanishiki | √ | BADH2 (fgr) | SNP | Suyunuo | √ | ||
qUVR-10 | SNP | Kasalath | Os01g62780 | SNP | Haplotype B | √ | √ | ||
Nced | SNP | IRAT104 | dth3 | SNP | African rice | ||||
TOND1 | SNP | Teqing | Hd1 | SNP | Tadukan | ||||
NRT1.1B | SNP | 9311 | Hd1 | SNP | Kasalath | ||||
Rymv1 | SNP | Nipponbare | √ | √ | Hd1 | SNP | Ma Sho | ||
Pi63 | SNP | Kahei | Hd6 | SNP | Nipponbare | √ | |||
Pizt | InDel | Toride 1 | Hd16 | SNP | Koshihikari | ||||
STV11 | SNP | Kasalath | √ | Hd17 | SNP | Koshihikari | √ | ||
Bph14 | Haplotype | 29SNP | 0.45 | 0.45 | Hd3a | SNP | Nipponbare | √ | √ |
Bph15 | Haplotype | 56SNP | 0.29 | 0.18 | OsPRR37 | SNP | H143 | ||
Bph18 | Haplotype | 30SNP | 0.63 | 0.8 | Os11g08410 | SNP | Haplotype C | √ | |
Bph26 | Haplotype | 24SNP | 0.38 | 0.62 | SaF | SNP | Nipponbare | √ | √ |
Bph6 | Haplotype | 26SNP | 0.35 | 0.35 | TMS5 | SNP | AnS-1 | ||
Bph9 | Haplotype | 26SNP | 0.31 | 0.46 | Rf2 | SNP | kasalath | ||
Pi1 | Haplotype | 10SNP | 0.7 | 0.8 | S5 | SNP | Nanjing11,Zhenshan97 | ||
Pi2 | Haplotype | 99SNP | 1 | 1 | pms1 | SNP | 58S | ||
Pi5 | Haplotype | 33SNP | 0.7 | 0.79 | PMS3 | SNP | NK58S (tgtg) | ||
Pi9 | Haplotype | 80SNP | 0.66 | 0.66 | Sd-1 | InDel | DGWG-type | ||
Pia | Haplotype | 13SNP | 0.69 | 0.85 | Sd-1 | SNP | Calrose 76 | ||
Pid2 | Haplotype | 66SNP | 0.14 | 0.11 | Sdt97 | SNP | Y98149 | √ | √ |
Pid3 | Haplotype | 64SNP | 0.06 | 0.09 | TAC3 | SNP | Sadu-cho | ||
Pigm | Haplotype | 90SNP | 0.72 | 0.72 | OsLG1 | SNP | YJCWR | ||
pikh | Haplotype | 34SNP | 0.85 | 0.47 | qNGR9 | SNP | O. rufipogon | N | |
Pita | Haplotype | 32SNP | 0.12 | 1 | LP1 | SNP | C-bao | ||
xa13 | Haplotype | 61SNP | 0.21 | 0.21 | TAC1 | SNP | IR24 | ||
Xa21 | Haplotype | 12SNP | 0.92 | 0.83 | qSH1 | SNP | Nipponbare | ||
Xa23 | Haplotype | 40SNP | 0.1 | 0.4 | sh4 | SNP | Nipponbare | √ | √ |
Inspection Items | Unit | Standard Formulation | Test Result | Single Item Judgment | Testing Basis |
---|---|---|---|---|---|
Whole-head rice rate | % | ≥69.0 | 73.0 | Level 1 | NY/T 2334-2013 |
Chalkiness | % | ≤3.0 | 1.6 | Level 2 | NY/T 2334-2013 |
Transparency | Grade | ≤1 | 1 | Level 1 | NY/T 2334-2013 |
Alkali elimination value | Grade | ≥7.0 | 7.0 | Level 1 | NY/T 83-2017 |
Gel consistency | mm | ≥70 | 73 | Level 1 | GB/T 22294-2008 |
Amylose content | % | 13.0–18.0 | 17.0 | / | NY/T 2639-2014 |
Grain length | mm | / | 5.5 | / | NY/T 2334-2013 |
Aspect ratio | / | / | 2.0 | / | NY/T 2334-2013 |
Brown rice percentage | % | / | 83.8 | / | NY/T 83-2017 |
Polished rice rate | % | / | 75.5 | / | NY/T 83-2017 |
Chalky grain rate | % | / | 14 | / | NY/T 2334-2013 |
Aroma | Score | / | 70 | Popcorn fragrance | NY/T 596-2002 |
Year | 2021 | 2022 | ||
---|---|---|---|---|
Variety | Shenyou R3 | Huayou 14 (CV) | Shenyou R3 | Huayou 14 (CV) |
Zhuanghang Town, Fengxian District | 9903.0 | 9012.0 | 10,090.5 | 9312.0 |
Anhui | 12,051.0 | 11,140.5 | 11,035.5 | 11,685.0 |
Jiangsu | 11,766.0 | 10,998.0 | 10,288.5 | 9105.0 |
Zhejiang | 11,926.5 | 10,425.0 | 10,170.0 | 10,665.0 |
Shangshi Company | 10,404.0 | 9805.5 | 11,368.5 | 9754.5 |
Qingcun, Fengxian District | 8307.0 | 8181.0 | 9172.5 | 8193.0 |
Guangming Seed Industry | 8959.5 | 8298.0 | 10,288.5 | 9405.0 |
Average | 10,479.0 | 9694.5 | 10,345.5 | 9732.0 |
CV+% | 8.1 | 0 | 6.3 | 0 |
Planting Base | Planting Area, ha | Yield per ha, kg |
---|---|---|
Quzhou City, Zhejiang Province | 1/3 | 11,344.5 |
Haiwan Town, Fengxian District | 1/3 | 10,618.5 |
Zhujing Town, Jinshan District | 2/15 | 10,728.0 |
Zhuanghang Town, Fengxian District | 1/3 | 10,132.5 |
Sanxing Town, Chongming District | 2/15 | 10,396.5 |
Average | 0.2533 | 10,644.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, A.; Zhang, J.; Cheng, C.; Niu, F.; Zhou, J.; Sun, B.; Dai, Y.; Xie, K.; Chu, H.; Cao, L. Molecular Marker-Assisted Breeding and Seed Production Techniques for Shenyou R3, a New Premium Aromatic Hybrid Japonica Rice. Agronomy 2025, 15, 317. https://doi.org/10.3390/agronomy15020317
Zhang A, Zhang J, Cheng C, Niu F, Zhou J, Sun B, Dai Y, Xie K, Chu H, Cao L. Molecular Marker-Assisted Breeding and Seed Production Techniques for Shenyou R3, a New Premium Aromatic Hybrid Japonica Rice. Agronomy. 2025; 15(2):317. https://doi.org/10.3390/agronomy15020317
Chicago/Turabian StyleZhang, Anpeng, Jianming Zhang, Can Cheng, Fuan Niu, Jihua Zhou, Bin Sun, Yuting Dai, Kaizhen Xie, Huangwei Chu, and Liming Cao. 2025. "Molecular Marker-Assisted Breeding and Seed Production Techniques for Shenyou R3, a New Premium Aromatic Hybrid Japonica Rice" Agronomy 15, no. 2: 317. https://doi.org/10.3390/agronomy15020317
APA StyleZhang, A., Zhang, J., Cheng, C., Niu, F., Zhou, J., Sun, B., Dai, Y., Xie, K., Chu, H., & Cao, L. (2025). Molecular Marker-Assisted Breeding and Seed Production Techniques for Shenyou R3, a New Premium Aromatic Hybrid Japonica Rice. Agronomy, 15(2), 317. https://doi.org/10.3390/agronomy15020317