Root Exudates from Areca catechu L. Intercropping System Promote Nutrient Uptake and Sustainable Production of Piper nigrum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field Description, Experimental Design, and Sampling
2.2. Characteristics of Root Spatial Distribution
2.3. Root Exudate Collection and Measurement
2.4. Soil Microbiome Detection and Data Analysis
2.5. Soil Metabolite Extraction and Detection
2.6. Determination of Soil Physical and Chemical Properties, and Leaf Mineral Nutrient Contents
2.7. Statistical Analysis
3. Results
3.1. Effects of A. catechu Intercropping on P. nigrum Yield and Root Growth
3.2. Effects of Intercropping on the Quantity and Composition of P. nigrum and A. catechu Root Exudates
3.3. Correlation Analysis Between Soil Bacterial Community and Root Exudates
3.4. Effects of Intercropping on the Soil Metabolites of P. nigrum and A. catechu
3.5. Effects of Intercropping on the Soil Physicochemical Properties and Mineral Nutrient Content of Leaves in P. nigrum and A. catechu
3.6. Effects of Exogenous Addition of Root Exudates on the Growth of P. nigrum Seeding
4. Discussion
4.1. Roots of A. catechu Release More Root Exudates into the Rhizosphere in Intercropping than in Monocropping
4.2. Root Exudates in the Intercropping System Enriched the Diversity of Bacterial Communities in the P. nigrum Rhizosphere
4.3. The Intercropping System Provides More C Sources for P. nigrum Roots and Promotes Nutrient Uptake and Sustainable Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collange, B.; Navarrete, M.; Montfort, F.; Mateille, T.; Tavoillot, J.; Martiny, B.; Tchamitchian, M. Alternative cropping systems can have contrasting effects on various soil-borne diseases: Relevance of a systemic analysis in vegetable cropping systems. Crop Prot. 2014, 55, 7–15. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, Z.; Zhao, Q.; Huang, X.; Huang, K. Effect of continuous cropping on the rhizosphere soil and growth of common buckwheat. Plant Prod. Sci. 2020, 23, 81–90. [Google Scholar] [CrossRef]
- Zhang, H.L.; Huang, M.; Zhang, W.H.; Gardea-Torresdey, J.L.; White, J.C.; Ji, R.; Zhao, L.J. Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils. Environ. Sci. Technol. 2020, 54, 3334–3342. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, Y.; Jiang, J.; Meng, X.; Huang, Z.; Wu, H.; He, L.; Xiong, F.; Liu, J.; Zhong, R. Sugarcane/peanut intercropping system improves physicochemical properties by changing N and P cycling and organic matter turnover in root zone soil. PeerJ 2021, 9, e10880. [Google Scholar] [CrossRef] [PubMed]
- Homulle, Z.; George, T.S.; Karley, A.J. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant Soil 2021, 471, 1–26. [Google Scholar] [CrossRef]
- Hassan, A.; Dresbøll, D.B.; Rasmussen, C.R.; Kjaerbye, A.L.; Nicolaisen, M.H.; Stokholm, M.S. Root distribution in intercropping systems-a comparison of DNA based methods and visual distinction of roots. Arch. Agron. Soil Sci. 2021, 67, 15–28. [Google Scholar] [CrossRef]
- Gebru, H. A review on the comparative advantages of intercropping to mono-cropping system. J. Biol. Agric. Healthc. 2015, 5, 1–13. [Google Scholar]
- Hu, L.; Robert, C.A.M.; Cadot, S.; Zhang, X.I.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; Van Der Heijden, M.G.A. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; De Boer, W.; Ding, C.; Zhang, T.; Wang, X. Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biol. Biochem. 2018, 116, 120–130. [Google Scholar] [CrossRef]
- Cordente, A.G.; Schmidt, S.; Beltran, G.; Torija, M.J.; Curtin, C.D. Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Appl. Microbiol. Biot. 2019, 103, 4325–4336. [Google Scholar] [CrossRef]
- Liu, Y.C.; Yin, X.H.; Zheng, Y. Influences of intercropping and nitrogen supply on flavonoid exudation in wheat roots. J. Plant Nutr. 2020, 43, 2757–2772. [Google Scholar] [CrossRef]
- Ma, Q.; Pan, W.; Tang, S.; Sun, X.; Xie, Y.; Chadwick, D.R.; Hill, P.W.; Si, L.; Wu, L.; Jones, D.L. Maize and soybean experience fierce competition from soil microorganisms for the uptake of organic and inorganic nitrogen and sulphur: A pot test using 13C, 15N, 14C, and 35S labelling. Soil Biol. Biochem. 2021, 157, 108260. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Y.; Zou, X.; Zhang, X.; Yu, X.; Wang, Y.; Si, T. Rotational strip peanut/cotton intercropping improves agricultural production through modulating plant growth, root exudates, and soil microbial communities. Agric. Ecosyst. Environ. 2024, 359, 108767. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Yao, S.; Yang, X.L.; Jiang, X. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation. Sci. Total Environ. 2020, 728, 138439. [Google Scholar] [CrossRef]
- Massalha, H.; Korenblum, E.; Tholl, D.; Aharoni, A. Small molecules below-ground: The role of specialized metabolites in the rhizosphere. Plant J. 2017, 90, 788–807. [Google Scholar] [CrossRef]
- Li, Z.G.; Zu, C.; Wang, C.; Yang, J.F.; Yu, H.; Wu, H.S. Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture. Sci. Rep. 2016, 6, 35825. [Google Scholar] [CrossRef]
- Neha, P.; Joshi, M.D. Piper nigrum: An overview of effects on human health. Res. J. Sci. Technol. 2020, 12, 331–337. [Google Scholar] [CrossRef]
- Zu, C.; Li, Z.; Wang, C.; Wang, X.X.; Ji, H.; Shen, J.B.; Rengel, Z.; Li, H.B.; Yang, J.F. Dissimilarity in root traits and spatial distribution promotes the productivity of Piper nigrum L. and tree species in mixture systems. Eur. J. Agron. 2024, 154, 127094. [Google Scholar] [CrossRef]
- Gong, X.; Feng, Y.; Dang, K.; Jiang, Y.; Qi, H.; Feng, B. Linkages of microbial community structure and root exudates: Evidence from microbial nitrogen limitation in soils of crop families. Sci. Total Environ. 2023, 881, 163536. [Google Scholar] [CrossRef]
- Glauser, G.; Veyrat, N.; Rochat, B.; Wolfender, J.L.; Turlings, T.C.J. Ultra-high pressure liquid chromatography–mass spectrometry for plant metabolomics: A systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers. J. Chromatogr. A 2013, 1292, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Imparato, V.; Hansen, V.; Santos, S.S.; Nielsen, T.K.; Giagnoni, L.; Hauggaard-Nielsen, H.; Johansen, A.; Renella, G.; Winding, A. Gasification biochar has limited effects on functional and structural diversity of soil microbial communities in a temperate agroecosystem. Soil Biol. Biochem. 2016, 99, 128–136. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Hartmann, M.; Johan, S. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Ravindran, P.N. 1. Agronomy and Nutrition of Black Pepper; Black Pepper; CRS Press: Boca Raton, FL, USA, 2000; pp. 185–248. [Google Scholar]
- Tang, X.; He, Y.; Zhang, Z.; Wu, H.N.; He, L.Q.; Jiang, J.; Meng, W.W.; Huang, Z.P.; Xiong, F.Q.; Liu, J.; et al. Beneficial shift of rhizosphere soil nutrients and metabolites under a sugarcane/peanut intercropping system. Front. Plant Sci. 2022, 13, 1018727. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, L.; Huang, J.; Himabindu, K.; Tewari, D.; Horbańczuk, J.O.; Xu, S.; Chen, Z.; Atanasov, A.G. Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine. Trends Food Sci. Technol. 2021, 117, 34–45. [Google Scholar] [CrossRef]
- Luo, T.; Hou, S.; Yang, L.; Qi, G.; Zhao, X. Nematodes avoid and are killed by Bacillus mycoides-produced styrene. J. Invertebr. Pathol. 2018, 159, 129–136. [Google Scholar] [CrossRef]
- Amer, A. Role of soil amendments, plant growth regulators and amino acids in improvement salt affected soils properties and wheat productivity. J. Soil Sci. Agric. Eng. 2017, 8, 123–131. [Google Scholar] [CrossRef]
- Chen, S.; Wei, B.; Fu, Y. A study of the chemical composition and biological activity of michelia macclurei dandy heartwood: New sources of natural antioxidants, enzyme inhibitors and bacterial inhibitors. Int. J. Mol. Sci. 2023, 24, 7972. [Google Scholar] [CrossRef]
- Lasselain, M.J.; Pareyre, C.; Deysson, G. Contribution to the understanding of the mechanism of cytokinesis in plant cells: The action of deoxyguanosine on the kinetics of a root meristem cell population. Cell Prolif. 1978, 11, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Harbort, C.J.; Hashimoto, M.; Inoue, H.; Niu, Y.; Guan, R.; Rombolà, A.D.; Kopriva, S.; Voges, M.J.; Sattely, E.S.; Garrido-Oter, R. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 2020, 28, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Sasse, J.; Martinoia, E.; Northen, T. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci. 2017, 23, 25–41. [Google Scholar] [CrossRef]
- Koprivova, A.; Kopriva, S. Plant secondary metabolites altering root microbiome composition and function. Curr. Opin. Plant Biol. 2022, 67, 102227. [Google Scholar] [CrossRef]
- Yamada, T.; Sekiguchi, Y. Cultivation of uncultured Chloroflexi subphyla: Significance and ecophysiology of formerly uncultured chloroflexi’subphylum i’with natural and biotechnological relevance. Microbes Environ. 2009, 24, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhou, Y.; Li, J.; Song, Z.; Han, H. Novel approach to enhance Bradyrhizobium diazoefficiens nodulation through continuous induction of ROS by manganese ferrite nanomaterials in soybean. J. Nanobiotechnol. 2022, 20, 168. [Google Scholar] [CrossRef]
- Qiao, M.; Sun, R.; Wang, Z.; Dumack, K.; Xie, X.; Dai, C.; Wang, E.; Zhou, J.; Sun, B.; Peng, X.; et al. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nat. Commun. 2024, 15, 2924. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Xu, J.; Li, Y.; Fang, H.; Niu, W.; Li, X.; Zhang, Y.; Ding, W.; Chen, S. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil Biol. Biochem. 2018, 125, 64–74. [Google Scholar] [CrossRef]
- Gravel, V.; Antoun, H.; Tweddell, R.J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 2007, 39, 1968–1977. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Quan, X.; Liang, H.; Wang, L.; Yan, X. Effects of nitrogen stress and nitrogen form ratios on the bacterial community and diversity in the root surface and rhizosphere of Cunninghamia lanceolata and Schima superba. Fron. Plant Sci. 2023, 14, 1240675. [Google Scholar] [CrossRef] [PubMed]
- Beauregard, M.S.; Hamel, C.; St-Arnaud, M. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microb. Ecol. 2010, 59, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Yuan, M.; Tang, L.; Shen, Y.; Yu, Q.; Li, S. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm. Sci. Total Environ. 2022, 817, 152878. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.W.; Chadwick, D.R.; Bending, G.D.; Chris, D.C.; Whelton, H.L.; Daulton, E.; Covington, J.A.; Bull, I.D.; Jones, D.L. Nutrient (C, N and P) enrichment induces significant changes in the soil metabolite profile and microbial carbon partitioning. Soil Biol. Biochem. 2022, 172, 108779. [Google Scholar] [CrossRef]
- Malalgoda, M.; Ohm, J.B.; Howatt, K.A.; Green, A.; Simsek, S. Effects of pre-harvest glyphosate use on protein composition and shikimic acid accumulation in spring wheat. Food Chem. 2020, 332, 127422. [Google Scholar] [CrossRef]
- Tan, J.P.; Jahim, J.M.; Wu, T.Y.; Harun, S.; Kim, B.H.; Mohammad, A.W. Insight into biomass as a renewable carbon source for the production of succinic acid and the factors affecting the metabolic flux toward higher succinate yield. Ind. Eng. Chem. Res. 2014, 53, 16123–16134. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kuzyakov, Y.; Sanaullah, M.; Heitkamp, F.; Zelenev, V.; Kumar, A.; Blagodatskaya, E. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds. Biol. Fert. Soils 2017, 53, 287–301. [Google Scholar] [CrossRef]
- Gurmu, G. Soil organic matter and its role in soil health and crop productivity improvement. For. Ecol. Manag. 2019, 7, 475–483. [Google Scholar]
- Kaur, C.; Selvakumar, G.; Ganeshamurthy, A.N. Organic acids in the rhizosphere: Their role in phosphate dissolution. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: New Delhi, India, 2016; pp. 165–177. [Google Scholar]
- Ablimit, R.; Li, W.; Zhang, J.D.; Gao, H.N.; Zhao, Y.M.; Cheng, M.M.; Meng, X.Q.; An, L.Z.; Chen, Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. J. Environ. Manag. 2022, 321, 115859. [Google Scholar] [CrossRef]
Treatments | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|
Pnmonoculture/plant (kg/plant) | 3.33 ± 0.13 b | 2.4 ± 0.08 b | 4.72 ± 0.05 b | 1.82 ± 0.38 b |
Pnintercropping/plant (kg/plant) | 4.23 ± 0.11 a | 3.14 ± 0.14 a | 7.34 ± 0.06 a | 2.43 ± 0.21 a |
Pnmonoculture/ha (t/ha) | 6.64 ± 0.21 b | 4.79 ± 0.02 b | 9.42 ± 0.14 b | 3.55 ± 0.07 b |
Pnintercropping/ha (t/ha) | 6.98 ± 0.19 a | 5.18 ± 0.22 a | 12.11 ± 0.13 a | 4.74 ± 0.15 a |
Acmonoculture/plant (kg/plant) | 2.21 ± 0.07 a | 2.47 ± 0.09 a | 2.42 ± 0.09 a | 3.99 ± 0.32 a |
Acintercropping/plant (kg/plant) | 2.13 ± 0.12 a | 2.53 ± 0.11 a | 2.5 ± 0.13 a | 4.41 ± 0.46 a |
Acmonoculture/ha (t/ha) | 3.64 ± 0.25 a | 4.07 ± 0.08 a | 4.0 ± 0.11 a | 7.63 ± 0.12 a |
Acintercropping/ha (t/ha) | 3.51 ± 0.18 a | 4.17 ± 0.05 a | 4.12 ± 0.11 a | 3.71 ± 0.15 b |
Root to Plant Distance (cm) | Pnmonoculture | Pnintercropping | Acmonoculture | Acintercropping | ||||
---|---|---|---|---|---|---|---|---|
Root Surface Area (cm2/dm3) | Proportion | Root Surface Area (cm2/dm3) | Proportion | Root Surface Area (cm2/dm3) | Proportion | Root Surface Area (cm2/dm3) | Proportion | |
(%) | (%) | (%) | (%) | |||||
0~30 | 38.82 ± 7.77 a | 38.91 | 10.63 ± 1.20 b | 10.22 | 249.85 ± 32.91 a | 49.05 | 141.47 ± 57.19 b | 61.67 |
30~60 | 40.93 ± 12.49 a | 41.02 | 41.71 ± 13.01 a | 44.53 | 125.12 ± 24.4 a | 22.81 | 41.18 ± 10.38 b | 15.96 |
60~90 | 24.02 ± 6.09 b | 20.06 | 46.64 ± 10.18 a | 32.77 | 96.91 ± 13.56 a | 16.31 | 32.63 ± 5.22 b | 14.22 |
90~120 | —— | —— | 32.47 ± 7.88 a | 12.48 | 93.71 ± 11.15 a | 11.83 | 33.63 ± 10.02 b | 8.15 |
Root to Plant Distance (cm) | Pnmonoculture | Pnintercropping | Acmonoculture | Acintercropping | ||||
---|---|---|---|---|---|---|---|---|
Root Volume (cm3/dm3) | Proportion | Root Volume (cm3/dm3) | Proportion | Root Volume (cm3/dm3) | Proportion | Root Volume (cm3/dm3) | Proportion | |
(%) | (%) | (%) | (%) | |||||
0~30 | 0.99 ± 0.24 a | 43.6 | 0.54 ± 0.30 b | 17.65 | 12.58 ± 2.08 b | 57.22 | 6.90 ± 3.25 a | 69.39 |
30~60 | 0.89 ± 0.31 b | 39.39 | 1.34 ± 0.41 a | 48.61 | 4.81 ± 1.10 a | 20.31 | 1.34 ± 0.32 b | 11.96 |
60~90 | 0.46 ± 0.12 b | 17.02 | 0.93 ± 0.16 a | 22.46 | 3.25 ± 0.53 a | 12.66 | 1.13 ± 0.18 b | 11.3 |
90~120 | —— | —— | 0.93 ± 0.21 a | 11.27 | 3.36 ± 0.46 a | 9.81 | 1.30 ± 0.62 b | 7.29 |
Root to Plant Distance (cm) | Pnmonoculture | Pnintercropping | Acmonoculture | Acintercropping |
---|---|---|---|---|
0~30 | 0.96 ± 0.11 b | 1.23 ± 0.29 a | 1.77 ± 0.08 a | 1.55 ± 0.14 b |
30~60 | 0.78 ± 0.10 b | 1.21 ± 0.15 a | 1.38 ± 0.10 a | 1.28 ± 0.12 b |
60~90 | 0.81 ± 0.08 b | 0.83 ± 0.06 a | 1.29 ± 0.06 a | 1.38 ± 0.11 a |
90~120 | —— | 1.25 ± 0.28 a | 1.53 ± 0.12 a | 1.36 ± 0.22 b |
Different Organizations | Different Categories | N Content (mg/kg) | P Content (mg/kg) | K Content (mg/kg) | Ca Content (mg/kg) | Mg Content (mg/kg) |
---|---|---|---|---|---|---|
Overground part | Organic acids | 17.57 ± 0.49 a | 3.88 ± 0.16 a | 36.63 ± 0.92 a | 17.51 ± 0.19 a | 3.62 ± 0.04 c |
Amino acids | 15.25 ± 0.49 bc | 3.15 ± 0.07 bc | 34.07 ± 0.87 b | 16.27 ± 0.23 b | 3.75 ± 0.02 ab | |
Saccharides | 15.46 ± 0.5 bc | 3.07 ± 0.03 cd | 31.2 ± 0.69 c | 16.21 ± 0.21 b | 3.78 ± 0.02 ab | |
Flavonoids | 15.67 ± 0.74 bc | 3.89 ± 0.06 a | 36.89 ± 0.67 a | 16.32 ± 0.18 b | 3.85 ± 0.02 a | |
CK | 12.97 ± 0.27 d | 2.83 ± 0.04 d | 20.53 ± 0.7 e | 14.07 ± 0.34 c | 3.54 ± 0.05 c | |
Roots | Organic acids | 31.99 ± 0.87 a | 3.69 ± 0.23 a | 30.37 ± 0.61 a | 11.94 ± 0.23 bc | 6.36 ± 0.05 a |
Amino acids | 27.32 ± 0.75 b | 3.22 ± 0.05 bc | 29.82 ± 0.64 a | 11.14 ± 0.23 d | 4.63 ± 0.05 c | |
Saccharides | 29.61 ± 0.48 a | 3.12 ± 0.06 c | 29.84 ± 0.65 a | 10.09 ± 0.15 e | 4.61 ± 0.06 c | |
Flavonoids | 30.3 ± 0.96 a | 3.5 ± 0.11 ab | 31.4 ± 0.51 a | 12.62 ± 0.16 a | 4.82 ± 0.04 b | |
CK | 23.88 ± 0.47 c | 2.12 ± 0.07 d | 25.54 ± 0.59 b | 9.73 ± 0.25 e | 4.06 ± 0.06 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhao, Y.; Zu, C.; Li, Z.; Zheng, W.; Yu, H.; Gao, S.; Liu, S.; Zhang, B.; Wang, X.; et al. Root Exudates from Areca catechu L. Intercropping System Promote Nutrient Uptake and Sustainable Production of Piper nigrum L. Agronomy 2025, 15, 355. https://doi.org/10.3390/agronomy15020355
Li Z, Zhao Y, Zu C, Li Z, Zheng W, Yu H, Gao S, Liu S, Zhang B, Wang X, et al. Root Exudates from Areca catechu L. Intercropping System Promote Nutrient Uptake and Sustainable Production of Piper nigrum L. Agronomy. 2025; 15(2):355. https://doi.org/10.3390/agronomy15020355
Chicago/Turabian StyleLi, Zhiyuan, Yaqi Zhao, Chao Zu, Zhigang Li, Weiquan Zheng, Huan Yu, Shengfeng Gao, Shichao Liu, Baogui Zhang, Xinxin Wang, and et al. 2025. "Root Exudates from Areca catechu L. Intercropping System Promote Nutrient Uptake and Sustainable Production of Piper nigrum L." Agronomy 15, no. 2: 355. https://doi.org/10.3390/agronomy15020355
APA StyleLi, Z., Zhao, Y., Zu, C., Li, Z., Zheng, W., Yu, H., Gao, S., Liu, S., Zhang, B., Wang, X., Wang, C., & Yang, J. (2025). Root Exudates from Areca catechu L. Intercropping System Promote Nutrient Uptake and Sustainable Production of Piper nigrum L. Agronomy, 15(2), 355. https://doi.org/10.3390/agronomy15020355