Simulating Soil Moisture Dynamics in a Diversified Cropping System Under Heterogeneous Soil Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Data Collection
2.2.1. Soil Data
2.2.2. Observed Soil Moisture Data
2.2.3. Pairing of Soil Moisture and Soil Textural Data
2.2.4. Crop Management
2.2.5. Biomass
2.3. Model Description
2.3.1. Simulated Soil Water Dynamics
2.3.2. Pedotransfer Functions and Bulk Density
2.3.3. Crop Parameters
2.4. Model Initial Conditions
2.5. Model Performance Statistics
3. Results
3.1. Observed Soil Moisture Dynamics
3.2. Pedotransfer Functions and Soil Hydraulic Properties
3.3. Effect of Pedotransfer Function and Bulk Density on SWC Simulation
3.4. Observed Above Ground Biomass
3.5. Effect of Pedotransfer Function and Bulk Density on Biomass Simulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Schiller, J.; Jänicke, C.; Reckling, M.; Ryo, M. Higher Crop Rotational Diversity in More Simplified Agricultural Landscapes in Northeastern Germany. Landsc. Ecol. 2024, 39, 1–18. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural Diversification Promotes Multiple Ecosystem Services without Compromising Yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef] [PubMed]
- Basso, B.; Antle, J. Digital Agriculture to Design Sustainable Agricultural Systems. Nat. Sustain. 2020, 3, 254–256. [Google Scholar] [CrossRef]
- Clough, Y.; Kirchweger, S.; Kantelhardt, J. Field Sizes and the Future of Farmland Biodiversity in European Landscapes. Conserv. Lett. 2020, 13, e12752. [Google Scholar] [CrossRef]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond Organic Farming–Harnessing Biodiversity-Friendly Landscapes. Trends Ecol. Evol. 2021, 36, 919–930. [Google Scholar] [CrossRef]
- Sirami, C.; Gross, N.; Baillod, A.B.; Bertrand, C.; Carrié, R.; Hass, A.; Henckel, L.; Miguet, P.; Vuillot, C.; Alignier, A.; et al. Increasing Crop Heterogeneity Enhances Multitrophic Diversity across Agricultural Regions. Proc. Natl. Acad. Sci. USA 2019, 116, 16442–16447. [Google Scholar] [CrossRef] [PubMed]
- Groß, J.; Gentsch, N.; Boy, J.; Heuermann, D.; Schweneker, D.; Feuerstein, U.; Brunner, J.; Von Wirén, N.; Guggenberger, G.; Bauer, B. Influence of Small–Scale Spatial Variability of Soil Properties on Yield Formation of Winter Wheat. Plant Soil 2023, 493, 79–97. [Google Scholar] [CrossRef]
- Milics, G.; Kovacs, A.J.; Pörneczi, A.; Nyeki, A.; Varga, Z.; Nagy, V.; Lichner, L.; Nemeth, T.; Baranyai, G.; Nemenyi, M. Soil Moisture Distribution Mapping in Topsoil and Its Effect on Maize Yield. Biologia 2017, 72, 847–853. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Ferguson, R.B.; Hergert, G.W. Soil Heterogeneity and Crop Growth. In Precision Crop Protection–The Challenge and Use of Heterogeneity; Oerke, E., Gerhards, R., Menz, G., Sikora, R., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 3–16. [Google Scholar] [CrossRef]
- Nordmeyer, H.; Richter, J. Incubation Experiments on Nitrogen Mineralization in Loess and Sandy Soils. Plant Soil 1985, 83, 433–445. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; O’Connell, A.M.; Carlyle, J.C.; Smethurst, P.J.; Khanna, P.K. Defining the Relation between Soil Water Content and Net Nitrogen Mineralization. Eur. J. Soil Sci. 2003, 54, 39–48. [Google Scholar] [CrossRef]
- Kersebaum, K.C.; Lorenz, K.; Reuter, H.I.; Schwarz, J.; Wegehenkel, M.; Wendroth, O. Operational Use of Agro-Meteorological Data and GIS to Derive Site Specific Nitrogen Fertilizer Recommendations Based on the Simulation of Soil and Crop Growth Processes. Phys. Chem. Earth 2005, 30, 59–67. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T.; Pierce, F.J.; Braga, R.P.; Jones, J.W. Spatial Validation of Crop Models for Precision Agriculture. Agric. Syst. 2001, 68, 97–112. [Google Scholar] [CrossRef]
- Kersebaum, K.C.; Wallor, E. Process-Based Modelling of Soil–Crop Interactions for Site-Specific Decision Support in Crop Management. In Precision Agriculture: Modelling; Cammarano, D., van Evert, F.K., Kempenaar, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 25–47. [Google Scholar] [CrossRef]
- Jarvis, N.; Coucheney, E.; Lewan, E.; Klöffel, T.; Meurer, K.H.E.; Keller, T.; Larsbo, M. Interactions between Soil Structure Dynamics, Hydrological Processes, and Organic Matter Cycling: A New Soil-Crop Model. Eur. J. Soil Sci. 2024, 75, e13455. [Google Scholar] [CrossRef]
- Bethwell, C.; Burkhard, B.; Daedlow, K.; Sattler, C.; Reckling, M.; Zander, P. Towards an Enhanced Indication of Provisioning Ecosystem Services in Agro-Ecosystems. Environ. Monit. Assess. 2021, 193, 269. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Luan, X.; Yin, Y.; Sun, S.; Li, Y.; Mo, F.; Wang, J. Exploring Long-Term Impacts of Different Crop Rotation Systems on Sustainable Use of Groundwater Resources Using DSSAT Model. J. Clean. Prod. 2022, 336, 130377. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, vzj2015-09. [Google Scholar] [CrossRef]
- Ginaldi, F.; Bajocco, S.; Bregaglio, S.; Cappelli, G. Spatializing Crop Models for Sustainable Agriculture. In Innovations in Sustainable Agriculture; Farooq, M., Pisante, N., Eds.; Springer Nature: Berlin, Germany, 2019; pp. 599–619. [Google Scholar] [CrossRef]
- Falco, N.; Wainwright, H.M.; Dafflon, B.; Ulrich, C.; Soom, F.; Peterson, J.E.; Brown, J.B.; Schaettle, K.B.; Williamson, M.; Cothren, J.D.; et al. Influence of Soil Heterogeneity on Soybean Plant Development and Crop Yield Evaluated Using Time—Series of UAV and Ground—Based Geophysical Imagery. Sci. Rep. 2021, 11, 7046. [Google Scholar] [CrossRef]
- Tenreiro, T.R.; García-Vila, M.; Gómez, J.A.; Jimenez-Berni, J.A.; Fereres, E. Water Modelling Approaches and Opportunities to Simulate Spatial Water Variations at Crop Field Level. Agric. Water Manag. 2020, 240, 106254. [Google Scholar] [CrossRef]
- Jarvis, N.; Larsbo, M.; Lewan, E.; Garre, S. Improved Descriptions of Soil Hydrology in Crop Models: The Elephant in the Room? Agric. Syst. 2022, 202, 103477. [Google Scholar] [CrossRef]
- Siad, S.M.; Iacobellis, V.; Zdruli, P.; Gioia, A.; Stavi, I.; Hoogenboom, G. A Review of Coupled Hydrologic and Crop Growth Models. Agric. Water Manag. 2019, 224, 105746. [Google Scholar] [CrossRef]
- Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment, 3rd ed.; Academic Press–Elsevier: London, UK, 2019. [Google Scholar] [CrossRef]
- Vianna, M.d.S.; Metselaar, K.; de Jong van Lier, Q.; Gaiser, T. The Importance of Model Structure and Soil Data Detail on the Simulations of Crop Growth and Water Use: A Case Study for Sugarcane. Agric. Water Manag. 2024, 301, 108938. [Google Scholar] [CrossRef]
- Longo, M.; Jones, C.D.; Izaurralde, R.C.; Cabrera, M.L.; Dal Ferro, N.; Morari, F. Testing the EPIC Richards Submodel for Simulating Soil Water Dynamics under Different Bottom Boundary Conditions. Vadose Zone J. 2021, 20, e20142. [Google Scholar] [CrossRef]
- Soldevilla-Martinez, M.; Quemada, M.; Lopez-Urrea, R.; Munoz-Carpena, R.; Lizaso, J.I. Soil water balance: Comparing two simulation models of different complexity with lysimeter observations. Agric. Water Manag. 2014, 139, 53–63. [Google Scholar] [CrossRef]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef]
- Weihermüller, L.; Lehmann, P.; Herbst, M.; Rahmati, M.; Verhoef, A.; Or, D.; Jacques, D.; Vereecken, H. Choice of Pedotransfer Functions Matters When Simulating Soil Water Balance Fluxes. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002404. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar]
- Tóth, B.; Weynants, M.; Nemes, A.; Makó, A.; Bilas, G.; Tóth, G. New Generation of Hydraulic Pedotransfer Functions for Europe. Eur. J. Soil Sci. 2015, 66, 226–238. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and Use of a Database of Hydraulic Properties of European Soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Contreras, C.P.; Bonilla, C.A. A Comprehensive Evaluation of Pedotransfer Functions for Predicting Soil Water Content in Environmental Modeling and Ecosystem Management. Sci. Total Environ. 2018, 644, 1580–1590. [Google Scholar] [CrossRef]
- Román Dobarco, M.; Cousin, I.; Le Bas, C.; Martin, M.P. Pedotransfer Functions for Predicting Available Water Capacity in French Soils, Their Applicability Domain and Associated Uncertainty. Geoderma 2019, 336, 81–95. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Gonçalves, M.C. Development and Functional Evaluation of Pedotransfer Functions for Estimating Soil Hydraulic Properties in Portuguese Soils: Implications for Soil Water Dynamics. Geoderma Reg. 2023, 35, e00717. [Google Scholar] [CrossRef]
- Rosso, P.; Kersebaum, K.-C.; Groh, J.; Gerke, H.; Heil, K.; Gebbers, R. Pedotransfer Functions and Their Impact on Water Dynamics Simulation and Yield Prediction. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 14–19 April 2024. [Google Scholar] [CrossRef]
- Ad-hoc-AG Boden. Bodenkundliche Kartieranleitung. In Manual of Soil Mapping (KA5), 5th ed.; Sponagel, H., Grottenthaler, W., Hartmann, K.J., Hartwich, R., Janetzko, P., Joisten, H., Kühn, D., Sabel, K.J., Traidl, R., Eds.; Wolf Eckelmann, Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2005; Volume 5. [Google Scholar]
- Vos, C.; Don, A.; Prietz, R.; Heidkamp, A.; Freibauer, A. Field-Based Soil-Texture Estimates Could Replace Laboratory Analysis. Geoderma 2016, 267, 215–219. [Google Scholar] [CrossRef]
- Rawls, W.J.; Brankensiek, D.L. Prediction of Soil Water Properties for Hydrological Modeling. In Watershed Management in the Eighties Proceeding Irrigation Drainage Division; American Society of Civil Engineers, NY: Denver, CO, USA, 1985; Volume 34. [Google Scholar]
- Zhang, Y.; Schaap, M.G. Weighted Recalibration of the Rosetta Pedotransfer Model with Improved Estimates of Hydraulic Parameter Distributions and Summary Statistics (Rosetta3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef]
- APW. Auskunftsplattform Wasser Land Brandenburg. Available online: https://apw.brandenburg.de/?feature=showNodesInTree%7C%5B%5B256.399,256.444,256.411,256.445%5D,true&th=zr_gw_me# (accessed on 6 February 2024).
- Donat, M.; Geistert, J.; Grahmann, K.; Bloch, R.; Bellingrath-Kimura, S.D. Patch Cropping- a New Methodological Approach to Determine New Field Arrangements That Increase the Multifunctionality of Agricultural Landscapes. Comput. Electron. Agric. 2022, 197, 106894. [Google Scholar] [CrossRef]
- Soil-Color Charts; Munsell Color: Grand Rapids, MI, USA, 2020.
- FAO. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006. [Google Scholar]
- ISO 11277:2002; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation (ISO 11277:1998 + ISO 11277:1998 Corrigendum 1:2002). DIN: Berlin, Germany, 2002.
- Acclima Inc.: True TDR-310N Datasheet Soil Water-Temperature-BEC Sensor, USA. 2023. Available online: https://acclima.com/wp-content/uploads/Acclima-TDR310H-Data-Sheet-v2.1.pdf (accessed on 29 June 2024).
- Scholz, H.; Lischeid, G.; Ribbe, L.; Ochoa, I.H.; Grahmann, K. Differentiating between Crop and Soil Effects on Soil Moisture Dynamics. Hydrol. Earth Syst. Sci. 2024, 28, 2401–2419. [Google Scholar] [CrossRef]
- Enders, A.; Vianna, M.; Gaiser, T.; Krauss, G.; Webber, H.; Srivastava, A.K.; Seidel, S.J.; Tewes, A.; Rezaei, E.E.; Ewert, F. SIMPLACE—A Versatile Modelling and Simulation Framework for Sustainable Crops and Agroecosystems. In Silico Plants 2023, 5, diad006. [Google Scholar] [CrossRef]
- Wolf, J. User Guide for Lintul5: Simple Generic Model for Simulation of Crop Growth Under Potential, Water Limited and Nitrogen, Phosphorus and Potassium Limited Conditions; Wageningen University: Wageningen, The Netherlands, 2012. [Google Scholar]
- Corbeels, M.; McMurtrie, R.E.; Pepper, D.A.; O’Connell, A.M. A Process-Based Model of Nitrogen Cycling in Forest Plantations: Part I. Structure, Calibration and Analysis of the Decomposition Model. Ecol. Modell. 2005, 187, 426–448. [Google Scholar] [CrossRef]
- Addiscott, T.M.; Whitmore, A.P. Simulation of Solute Leaching in Soils with Different Permeabilities. Soil Use Manag. 1991, 7, 94–102. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. In Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Hernández-Ochoa, I.M.; Gaiser, T.; Grahmann, K.; Engels, A.; Kersebaum, K.C.; Seidel, S.J.; Ewert, F. Cross Model Validation for a Diversified Cropping System. Eur. J. Agron. 2024, 157, 127181. [Google Scholar] [CrossRef]
- Agriconomie. Phacelia–STALA. Available online: https://www.agriconomie.de/de_DE/phacelia-stala/p195007 (accessed on 15 September 2023).
- Kubíková, Z.; Smejkalová, H.; Hutyrová, H.; Kintl, A.; Elbl, J. Effect of Sowing Date on the Development of Lacy Phacelia (Phacelia Tanacetifolia Benth). Plants 2022, 11, 3177. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, C. Late Season Fall-Seeded Cover Crop Observation Study; Cape May Court House: Cape May County, NJ, USA, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. 2023. Available online: https://www.r-project.org/ (accessed on 12 December 2024).
- Wallor, E.; Kersebaum, K.C.; Ventrella, D.; Bindi, M.; Cammarano, D.; Coucheney, E.; Gaiser, T.; Garofalo, P.; Giglio, L.; Giola, P.; et al. The Response of Process-Based Agro-Ecosystem Models to within-Field Variability in Site Conditions. F. Crop. Res. 2018, 228, 1–19. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T. Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS. Vadose Zone J. 2008, 7, 782–797. [Google Scholar] [CrossRef]
- Boden, A.G. Bodenkundliche Kartieranleitung—Band 1: Grundlagen, Kennwerte und Methoden (KA6), 6th ed.; Hartmann, K.-J., Bauriegel, A., Dehner, U., Eberhardt, E., Hesse, S., Kühn, D., Martin, W., Waldmann, F., Eds.; Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2024. [Google Scholar]
- Koszinski, S.; Wendroth, O.; Lehfeldt, J. Field Scale Heterogeneity of Soil Structural Properties in a Moraine Landscape of North-Eastern Germany. Int. Agrophysics 1995, 9, 201–210. [Google Scholar]
- Romano, N.; Palladino, M.; Chirico, G.B. Parameterization of a Bucket Model for Soil-Vegetation-Atmosphere Modeling under Seasonal Climatic Regimes. Hydrol. Earth Syst. Sci. 2011, 15, 3877–3893. [Google Scholar] [CrossRef]
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Imran Khan, M.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.; et al. Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability 2022, 14, 11538. [Google Scholar] [CrossRef]
- Stahn, P.; Busch, S.; Salzmann, T.; Eichler-Löbermann, B.; Miegel, K. Combining Global Sensitivity Analysis and Multiobjective Optimisation to Estimate Soil Hydraulic Properties and Representations of Various Sole and Mixed Crops for the Agro-Hydrological SWAP Model. Environ. Earth Sci. 2017, 76, 1–19. [Google Scholar] [CrossRef]
- Brogi, C.; Huisman, J.A.; Weihermüller, L.; Herbst, M.; Vereecken, H. Added Value of Geophysics-Based Soil Mapping in Agro-Ecosystem Simulations. SOIL 2021, 7, 125–143. [Google Scholar] [CrossRef]
- Wallor, E.; Kersebaum, K.-C.; Lorenz, K.; Gebbers, R. Soil State Variables in Space and Time: First Steps towards Linking Proximal Soil Sensing and Process Modelling. Precis. Agric. 2019, 20, 313–334. [Google Scholar] [CrossRef]
- Ehrhardt, A.; Koszinski, S.; Gerke, H.H. A Field Experiment for Tracing Lateral Subsurface Flow in a Post-Glacial Hummocky Arable Soil Landscape. Water 2023, 15, 1248. [Google Scholar] [CrossRef]
- Groh, J.; Diamantopoulos, E.; Duan, X.; Ewert, F.; Herbst, M.; Holbak, M.; Kamali, B.; Kersebaum, K.C.; Kuhnert, M.; Lischeid, G.; et al. Crop Growth and Soil Water Fluxes at Erosion-Affected Arable Sites: Using Weighing Lysimeter Data for Model Intercomparison. Vadose Zone J. 2020, 19, e20058. [Google Scholar] [CrossRef]
- Wegehenkel, M.; Luzi, K.; Sowa, D.; Barkusky, D.; Mirschel, W. Simulation of Long-Term Soil Hydrological Conditions at Three Agricultural Experimental Field Plots Compared with Measurements. Water 2019, 11, 989. [Google Scholar] [CrossRef]
- Wong, M.T.F.; Asseng, S. Determining the Causes of Spatial and Temporal Variability of Wheat Yield at Sub-Field Scale Using a New Method of Upscaling a Crop Model. Plant Soil 2006, 283, 203–210. [Google Scholar] [CrossRef]
- Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; et al. Comparing the Performance of 11 Crop Simulation Models in Predicting Yield Response to Nitrogen Fertilization. J. Agric. Sci. 2016, 154, 1218–1240. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Open Agrar Repositorium: Greifswald, Germany, 2018. [Google Scholar] [CrossRef]
High Yield Potential | Low Yield Potential | |||||
---|---|---|---|---|---|---|
Text. Class 1 | Sand% | Silt% | Clay% | Sand% | Silt% | Clay% |
Ss | 86.4 | 9.8 | 3.8 | 91.0 | 5.9 | 3.1 |
Su2 | 80.9 | 15.0 | 4.1 | 83.4 | 12.9 | 3.7 |
Su3 | 67.9 | 26.6 | 5.5 | NA | NA | NA |
Sl2 | 70.8 | 22.5 | 6.7 | 79.7 | 14.5 | 5.8 |
Sl3 | 66.7 | 24.0 | 9.3 | 72.5 | 18.0 | 9.5 |
Sl4 | 59.0 | 25.5 | 15.5 | 65.0 | 20.0 | 15.0 |
Ls4 | 57.7 | 22.6 | 19.7 | 56.5 | 24.0 | 19.5 |
Patch | Auger Locations Considered 1 | Homogeneity of Soil 2 | Auger ID | Source of Soil Moisture Data 3 | Incorporation of 60 cm TDR Sensor 4 | Distance of Auger to Left/Right Sensor [m] 5 |
---|---|---|---|---|---|---|
12 | 1 | yes | 12-s-2-2 | average | discarded | 2.9/1.5 |
19 | 1 | no | 19-s-2-2 | average | considered | 3.7/1.6 |
58 | 1 | yes | 58-s-2-2 | average | discarded | 2.3/2 |
65 | 2 | no | 65-s-2-3 | left | considered | 2/NA |
65-s-2-2 | right | considered | NA/1.6 | |||
66 | 1 | no | 66-s-1-2 | left | considered | 0.7/NA |
76 | 2 | yes | 76-s-1-3 | average | considered | 3/5 |
81 | 2 | yes | 81-s-2-2 | average | discarded | 5/1.7 |
89 | 2 | no | 89-s-2-3 | right | considered | NA/2 |
95 | 2 | yes | 95-s-2-2 | average | discarded | 4.6/2.3 |
102 | 2 | no | 102-s-2-3 | right | considered | NA/1.8 |
114 | 1 | yes | 114-s-2-2 | average | discarded | 5.3/2.7 |
High Yield Potential | Low Yield Potential | ||||||||
---|---|---|---|---|---|---|---|---|---|
Patch-ID | Cali./ Vali. 1 | Auger ID 2 | Bottom Depth (cm) | Textural Class 3 | Patch-ID | Cali./ Vali. 1 | Auger ID 2 | Bottom Depth (cm) | Textural Class 3 |
12 | C | 12-s-2-2 | 33 | Sl3 | 76 | C | 76-s-1-3 | 40 | Sl2 |
45 | Sl3 | 75 | Ss | ||||||
65 | Ls4 | 100 | Ss | ||||||
96 | Ls4 | 89 | C | 89-s-2-3 | 40 | Sl2 | |||
19 | V | 19-s-2-2 | 43 | Su3 | 70 | Sl2 | |||
65 | Su3 | 100 | Ss | ||||||
87 | Su3 | 95 | C | 95-s-2-2 | 38 | Su2 | |||
100 | Sl4 | 58 | Su2 | ||||||
58 | C | 58-s-2-2 | 33 | Su3 | 90 | Ss | |||
44 | Su3 | 100 | Ss | ||||||
56 | Su3 | 102 | V | 102-s-2-3 | 35 | Su2 | |||
81 | Sl4 | 87 | Ss | ||||||
100 | Sl4 | 100 | Ss | ||||||
65 | C | 65-s-2-2 | 41 | Sl2 | 114 | V | 114-s-2-2 | 39 | Ss |
67 | Sl2 | 61 | Sl4 | ||||||
100 | Ss | 99 | Sl4 | ||||||
65 | V | 65-s-2-3 | 33 | Sl2 | |||||
47 | Sl2 | ||||||||
58 | Sl2 | ||||||||
79 | Ss | ||||||||
100 | Sl4 | ||||||||
66 | C | 66-s-1-2 | 40 | Sl2 | |||||
58 | Sl2 | ||||||||
76 | Sl2 | ||||||||
100 | Ls4 | ||||||||
81 | V | 81-s-2-2 | 40 | Sl2 | |||||
58 | Sl3 | ||||||||
100 | Ls4 |
Crop | Season | Sowing Dates | Fertilizer Dates | Fertilizer Amount (Total N [kg N ha−1]) |
---|---|---|---|---|
Grain maize | 2021 | 16 April 2021 | 16 April 2021 | 13.5 |
17 April 2021 | 101.1 | |||
04 June 2021 | 61.3 | |||
2022 | 29 April 2022 | 20 May 2022 | 71 | |
23 June 2022 | 60.7 | |||
Soybean | 2021 | 15 May 2021 | - | - |
2022 | 10 May 2022 | - | - | |
Sunflower | 2022 | 31 March 2022 | 31 March 2022 | 18.0 |
05 April 2022 | 54.0 | |||
Lupine | 2022 | 18 March 2022 | - | - |
Phacelia | 2021 | 08 September 2021 | - | - |
Winter wheat | 2022 | 15 November 2021 | 11 March 2022 | 80.0 |
05 April 2022 | 44.3 | |||
19 May 2022 | 55.1 | |||
Winter barley | 2021 | 21 September 2020 | 17 March 2021 | 48.2 |
08 April 2021 | 71.1 | |||
07 May 2021 | 25 | |||
Winter oats | 2021 | 27 October 2020 | 17 March 2021 | 61.5 |
08 April 2021 | 58.7 | |||
Winter rye | 2021 | 02 October 2020 | 17 March 2021 | 61.5 |
01 April 2021 | 51.1 | |||
14 May 2021 | 25 |
Pedotransfer Setup | Source | Input | |
---|---|---|---|
Location Specific Info | Bulkdensity | ||
BK | German manual of soil mapping 1 | Soil textural class by depth | - |
Hypres1315 | Hypres 2 | Sand [%], Silt [%], Clay [%] by depth | Topsoil: 1.3 g/cm3 Subsoil: 1.5 g/cm3 |
Hypres1517 | Hypres 2 | Sand [%], Silt [%], Clay [%] by depth | Topsoil: 1.5 g/cm3 Subsoil: 1.7 g/cm3 |
Pedotransfer Setup 1 | Calibration/ Validation | rRMSE 2 | R2 | Error 3 | EF 4 | MAE 5 | N |
---|---|---|---|---|---|---|---|
BK | Calibration | 35.6 | 0.64 | 1.68 | 0.58 | 3.40 | 10,136 |
Validation | 36.2 | 0.66 | 2.21 | 0.54 | 3.58 | 7240 | |
Hypres1315 | Calibration | 31.4 | 0.67 | −0.01 | 0.67 | 2.99 | 10,136 |
Validation | 31.6 | 0.66 | 0.57 | 0.65 | 2.84 | 7240 | |
Hypres1517 | Calibration | 29.5 | 0.72 | −0.41 | 0.71 | 2.76 | 10,136 |
Validation | 32.5 | 0.64 | 0.19 | 0.63 | 2.96 | 7240 |
Pedotransfer Setup 1 | rRMSE 2 | R2 | Error 3 | MAE 4 | N |
---|---|---|---|---|---|
BK | 19.6 | 0.80 | 0.23 | 1.07 | 16 |
Hypres1315 | 18.2 | 0.84 | 0.20 | 0.97 | 16 |
Hypres1517 | 18.5 | 0.84 | −0.35 | 0.97 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engels, A.M.; Gaiser, T.; Ewert, F.; Grahmann, K.; Hernández-Ochoa, I. Simulating Soil Moisture Dynamics in a Diversified Cropping System Under Heterogeneous Soil Conditions. Agronomy 2025, 15, 407. https://doi.org/10.3390/agronomy15020407
Engels AM, Gaiser T, Ewert F, Grahmann K, Hernández-Ochoa I. Simulating Soil Moisture Dynamics in a Diversified Cropping System Under Heterogeneous Soil Conditions. Agronomy. 2025; 15(2):407. https://doi.org/10.3390/agronomy15020407
Chicago/Turabian StyleEngels, Anna Maria, Thomas Gaiser, Frank Ewert, Kathrin Grahmann, and Ixchel Hernández-Ochoa. 2025. "Simulating Soil Moisture Dynamics in a Diversified Cropping System Under Heterogeneous Soil Conditions" Agronomy 15, no. 2: 407. https://doi.org/10.3390/agronomy15020407
APA StyleEngels, A. M., Gaiser, T., Ewert, F., Grahmann, K., & Hernández-Ochoa, I. (2025). Simulating Soil Moisture Dynamics in a Diversified Cropping System Under Heterogeneous Soil Conditions. Agronomy, 15(2), 407. https://doi.org/10.3390/agronomy15020407